簡易檢索 / 詳目顯示

研究生: 陳定閒
FREEMAN - CHEN
論文名稱: 可光固化 PCL 結合PEG-diacrylate 添加幾丁聚醣(Chitosan)應用於製作組織工程支架之研究
Research on Combining Photo-curable PCL with PEG-diacrylate and Chitosan to Fabricate Tissue Engineering Scaffold
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 陳志豪
none
楊銘乾
Ming-Chien Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 144
中文關鍵詞: 無光罩成型系統組織工程支架幾丁聚醣
外文關鍵詞: PCL, PEG-diacrylate, Chitosan
相關次數: 點閱:274下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 組織工程結合工程與生命科學的原理與方法,發展活組織的取代物,修復、維持與改善人體組織的功能。組織工程支架為組織工程的三要素之一,利用層加工(積層製造)堆疊成型的方式,可解決傳統支架製造方法的孔洞不易控制、特定形狀難以製作等問題。本實驗室發展的生醫動態光罩快速成型系統,已可利用可見光固化PCL 類的生物可分解材料,惟PCL較屬疏水性,容易降低細胞的貼附效果。
    而Chitosan是生物相容性非常高、親水性佳的天然生醫材料。本研究添加Chitosan於原先已掌握的可光固化PCL 材料系統中,並測試材料性質之改善情況,以決定適當之添加量與快速成型系統之成型參數,並評估細胞於該材料上生長貼附之情形,最後透過動態光罩快速成型系統製作出組織工程支架。結果發現添加Chitosan可以有效的增加材料的親水性以及生物相容性,又其中以添加10%Chitosan的材料組合擁有優良的親水性且精度、強度也可維持在所需要的水準,細胞培養也顯示出極佳的生長效果,本研究經由添加Chitosan有效的改善原先材料系統的疏水性缺點,並且使得材料擁有更佳的生物相容性,可以更廣泛的應用於生醫組織工程支架。


    Tissue Engineering combines the principles and methods of engineering and life science to develop biological substitutes to restore, maintain and improve human tissue functions. Scaffold is one of the three key elements in Tissue Engineering. Layered manufacturing techniques, also known as Additive manufacturing (AM) processes, provide a great opportunity to fabricate 3D scaffolds without problems such as limited control of pore-size and restricted geometric shapes in traditional methods. The Biomedical Maskless Rapid Prototyping System developed in our previous research, utilizing the visible light to cure photo-curable PCL-type biodegradable material, has proven the feasibility of building 3D scaffolds with several layers. However, PCL is more hydrophobic.
    On the other hand, chitosan is great natural biomaterials with high biocompatibility and hydrophilic property. Therefore, in this research, we plan to add chitosan individually into the photo-curable PCL material system and utilize Biomedical Maskless Rapid Prototyping System to fabricate tissue engineering scaffolds. Tests will be conducted to understand the improvement of scaffold properties after addition of chitosan. The results has shown that adding Chitosan can effectively increase the hydrophilicity and biocompatibility. We find that addition of 10% Chitosan material composition has good hydrophilicity and precision. Also, the strength can be maintained at the required level. The other hand, cell culture also shows outstanding growth effect. In this study, we improve the shortcomings of the original hydrophobic by adding Chitosan, and we make the material has excellent biocompatibility that can be widely used in biomedical tissue engineering scaffolds.

    摘要 I ABSTRACT II 致謝 IV 縮寫表(ABBREVIATIONS) VI 目錄 VII 表目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方法 3 1.4 論文架構 5 第二章 文獻探討 6 2.1 組織工程(TISSUE ENGINEERING)介紹 6 2.1.1 支架材料之特性 9 2.1.2 高分子生醫材料 10 PCL與幾丁聚醣相關: 17 2.1.3 傳統支架製備方法 18 2.2 應用積層製造 (ADDITIVE MANUFACTURING,AM)技術製造組織工程支架 23 2.2.1 快速原型加工原理 23 2.2.2 積層製造 (additive manufacturing,AM)技術應用於組織工程支架之製造 25 2.2.3 幾丁聚醣在生醫的應用 33 2.2.4 研究回顧 35 第三章 材料合成與性質檢測 40 3.1 實驗藥品與設備 40 3.2 材料系統介紹 41 3.2.1 PCL-DA合成 43 3.2.2 幾丁聚醣(Chitosan) 45 3.2.3 PEG-DA 48 3.2.4 光起始劑 49 3.2.5 混合方式 52 3.2.6 光聚合生醫材料 54 3.3 材料鑑定與性質檢測 56 3.3.1 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Rays spectroscopy ,FTIR)分析 56 3.3.2 熱示差掃描分析儀(DSC) 57 3.3.3 熱重量分析測試(TGA) 58 3.3.4 拉伸試驗 59 3.3.5 接觸角量測 63 3.4 材料性質檢測結果 66 3.4.1 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Rays spectroscopy ,FTIR)分析 66 3.4.2 熱示差掃描分析儀(DSC) 73 3.4.3 熱重量分析測試(TGA) 74 3.4.4 拉伸試驗 75 3.4.5 接觸角量測 80 第四章 系統簡介與參數調整 85 4.1 生醫動態光罩快速成型系統 85 4.1.2 下照式反射動態光罩成型系統 85 4.2 下照式動態光罩快速成型系統 88 4.2.1 動態光罩控制軟體 88 4.2.2 動態光罩產生器 92 4.3 加工流程 97 4.4 參數設定與精度檢測 98 4.4.1 參數設定 98 第五章 支架檢測與細胞培養結果 101 5.1 實驗藥品 101 5.2 材料性質測試 104 5.2.1 酸鹼值量測 105 5.2.2 重量損失量測 107 5.3 細胞培養與生物相容性檢測 110 5.3.1 細胞培養 110 5.3.2 倒立式顯微鏡觀察細胞生長情況 113 5.3.3 生物毒性檢測(MTT assay) 116 5.3.4 電子顯微鏡觀察(SEM) 120 第六章 系統精度檢測 125 6.1 系統精度量測 125 第七章 結論與未來研究方向 135 7.1 結論 135 7.2 未來研究方向 136 參考文獻 137

    【1】Liu, Z. Xia and J. T. Czernuszka“DESIGN AND DEVELOPMENT OFTHREE-DIMENSIONAL SCAFFOLDS
    FOR TISSUE ENGINEERING”, Vol 85 (A7) , 1051–1064.
    【2】C. Becker and G. Jakse, "Stem Cells for Regeneration of Urological Structures" european urolo g y , Volume 51 (2 0 0 7),1217 – 1228.
    【3】宋信文 梁晃千 ,“建立人類的身體工房-組織工程” ,科學發展第362期,2003年2月,6-11。
    【4】楊婷琪,“組織工程的重要元件-生物分子”,工研院經貿中心生醫組,2002年7月。
    【5】廖俊仁,“組織工程用多孔隙骨架材料”,工研院生醫工程中心,2002年。
    【6】S. Yang, K. F. Leong, Z. DU, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional Factors,” Tissue Engineering, Volume 7(2001), 679-689.
    【7】http://www.web66.com.tw/web/News?postId=411642.
    【8】俞耀庭,生物醫用材料,初版,新文京,2004。
    【9】D.K. Gilding, and A.M. Reed, “Biodegradable polymers for use in surgery -Poly(glycolic acid)/Poly(lactide acid)homo-and copolymers.2.In vitro degradation, ” Polymer, Volume 22 (1981) 494-498.
    【10】工業技術研究院,“生醫材料與組織工程”。
    【11】張根源,“生物吸收性PLGA材料合成與應用技術”,工業技術與資訊第112 期,2001年2月。
    【12】興技生物科技公司, (http://www.bio-invigor.com)。
    【13】蔡秉宏,”以聚殼醣合成光交聯性衍生物之探討”,國立成功大學化學工程研究所,碩士論文,1999。
    【14】D.S, “Medical application of synthetic polymers,” Marcel Dekker, NewYork (1994) 725.
    【15】J. S. Park , D. G. Woo , Bo Kyung Sun, “In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application,” Journal of Controlled Release,Volume 124 (2007) 51–59.
    【16】許芳豪,“以快速原型技術研究組織工程支架孔徑大小對細胞成長之影響”,國立台灣科技大學機械工程研究所,碩士論文,2006。
    【17】Soongee Hong, GeunHyung Kim“Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells”Carbohydrate Polymers, Volume. 83(2011) ,940-946.
    【18】Xia Zhong , Chengdong Ji, Andrew K. L. Chan, Sergei G. Kazarian,Andrew Ruys , Fariba Dehghani“Fabrication of chitosan/poly(e-caprolactone) composite hydrogels for tissue engineering applications”Mater Med , Volume. (2011) , 22:279–288 .
    【19】K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, “A novel method to fabricate bioabsorbable scaffolds,” Polymer,Volume 36 (1995), 837-842.
    【20】H. Wang, Y. Lia, Y. Zuoa, J. Lib, S. Mab, L. Cheng,“Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering,” Biomaterials , ,Volume 28 (2007) 3338–3348.
    【21】俞耀庭, “生物醫用材料,” 初版 新文京 2004年。
    【22】L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, S. Ramakrishna, “Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering, ” Materials Science and Engineering C , Volume 30 (2010) 1129–1136.
    【23】M. S. Widmer, P. K. Gupta, L. Lu, R. K. Meszlenyi ,G. R. Evans, K. Brandt, T. Savel, A. Gurlek, C. W. Patrick Jr. and A. G. Mikos, “Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration,” Biomaterials, Volume 19(1998),1945-1955.
    【24】M. J. Moore, J. A. Friedman, E. B. Lewellyn, S. M. Mantila, A. J. Krych, S. Ameenuddin, A. M. Knight, L. Lu, B. L. Currier, R. J. Spinner, R. W. Marsh, A. J. Windebank, M. J. Yaszemski, “Multiple-channel scaffolds to promote spinal cord axon regeneration, ” Biomaterials , Volume 27(2006), 419–429.
    【25】F. P.W. Melchels , J. Feijen , D. W. Grijpma,“A review on stereolithography and its applications in biomedical engineering,”Biomaterials , Volume 31(2010) ,6121-6130.
    【26】K.F. Leong, C.M. Cheah, C.K. Chua, “Solid freeform fabrication of 3D scaffolds for engineering replacement tissue and organs,” Biomaterials ,Volume24(2003), 2363–2378.
    【27】L. Shor, S. Guceri, X. Wen, M. Gandhi, W. Sun,“Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitr,”Biomaterials, Volume 28(2007),5291-5297.
    【28】W. Zeng, F. Lin, T. Shi, R. Zhang,Y. Nian, J. Ruan, T. Zhou“Fused deposition modelling of an auricle framework for microtia reconstruction based on CT images,” Rapid Prototyping Journal, Volume14/5 (2008), 280–284.
    【29】T. Cui, Y. Yan, R. Zhang, “Biomodeling and fabrication of a hybrid PU-collagen nerve regeneration conduit, ” VECIMS,Volume1(2009),3809-3815.
    【30】J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, Paul H. Krebsbach, S. E. Feinberg, S. J. Hollister and S. Das, “Bone tissue engineering using polycaprolactoe scaffolds fabricated via selective laser sintering,” Biomaterials, Volume 26 (2005) 4817-4827.
    【31】C. Mangano, A. D. Rosa, V. Desiderio, R.d’Aquino, A. Piattelli, F. D. Francesco , Virginia Tirino, Francesco Mangano, Gianpaolo Papaccio, “The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures,” Biomaterials, Volume 31(2010), 3543-3551.
    【32】M. Lee, J. C.Y. Dunn and B. M. Wu, “Scaffold fabrication by indirect three-dimensional printing,” Biomaterials, Volume 26 (2005), 4281-4289.
    【33】M. L. Macdonald, R. E. Samuel, N. J. Shah, R. F. Padera , Y. M. Beben,P. T. Hammond, “ Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants” Biomaterials, Volume 32(2011),1446-1453.
    【34】F. P.W. Melchels, J. Feijen, D. W. Grijpma, “A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography,” Biomaterials, Volume. 30(2009),3801-3809.
    【35】J. W. Choi, R. Wicker, S. H. Lee,K. H. Choi, C. S. Ha and I. Chung“Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography” , Journal of Materials Processing Technology, Volume 209(2009), 5494-5503
    【36】T.H. Ang, F.S.A. Sultana, Dietmar Hutmacher, Yoke San Wong,
    Jerry Fuh, X.M. Mo, Han Tong Loh,Etienne Burdet, andSwee-Hin
    Teoh, “Fabrication of 3D chitosan-hydroxyapatite scaffolds using a
    Robotic dispensing system,” Materials Science and Engineering C:
    Materials for Biological Applications, 20, pp. 35-42, 2002.
    【37】He Jiankang, Li Dichen, Liu Yaxiong, Yao Bo, Lu Bingheng, Lian
    Qin “Fabrication and characterization of chitosan/gelatin porous
    scaffolds with predefined internal microstructures,” Polymer,
    Vol.48, pp. 4578-4588, 2007.
    【38】Y. C. Kuo, C. F. Yeh, J. T. Yang, “Differentiation of bone marrow
    stromal cells in poly (lactide-coglycolide)/chitosan scaffolds,”
    Biomaterials,Vol.30 ,pp.6604-6613, 2009.
    【39】S. Saravanan,S. Nethala, S. Pattnaik, A. Tripathi, A. Moorthi, N.
    Selvamurugan, “Preparation, characterization and antimicrobial
    activity of a bio-composite scaffold containing
    chitosan/nanohydroxyapatite/nano-silver for bone tissue
    engineering,” International Journal of Biological Macromolecules,
    Vol. 49 pp. 188-193, 2011.
    【40】Yumin Yang, Weijia Zhao, Jianghong He, Yahong Zhao, Fei Ding,
    Xiaosong Gu, “Nerve conduits based on immobilization of nerve
    growth factor onto modified chitosan by using genipin as a
    crosslinking agent,” European Journal of Pharmaceutics and
    Biopharmaceutics, Vol.79 ,pp.519-525, 2011.
    【41】李孟龍,“動態光罩快速原型系統製造組織工程支架之研發”,國立台灣科技大學機械工程研究所,碩士論文,2005。
    【42】陳俊豪,“光固化快速成型技術製作組織工程支架之研究”,國立台灣科技大學機械工程研究所,碩士論文,2006。
    【43】許貽玨,“光聚合生物可分解材料應用於RP技術製作組織工程支架性質之研究”,國立台灣科技大學機械工程研究所,碩士論文,2007。
    【44】陳茂揚 “光固化快速成型系統製作3D組織工程支架”國立台灣科技大學機械工程研究所,碩士論文,2008。
    【45】曾俊元“動態光罩快速成型系統光聚合PCL-PEG-PCL製作3D組織工程支架”,國立台灣科技大學機械工程研究所,碩士論文,2008。
    【46】薛智仁“動態光罩快速成型系統製作3D PCL管狀多孔性組織工程支架之研究”,國立台灣科技大學機械工程研究所,碩士論文,2009。
    【47】謝浚雄“光聚合PCL材料系統成份探討及其應用於快速成型3D組織工程支架”國立台灣科技大學機械工程研究所,碩士論文,2011。
    【48】孫凱閔“PCL結合PEG-acrylate透過動態光罩成型系統製作
    3D多孔性組織工程支架” 國立台灣科技大學機械工程研究
    所,碩士論文,2011。
    【49】侯佳延“PCL結合PEG-diacrylate透過反射式動態光罩成型系
    統製作3D組織工程支架”國立台灣科技大學機械工程研究
    所,碩士論文,2012。
    【50】In-Yong Kim, Seog-Jin Seo, Hyun-Seuk Moon, Mi-Kyong Yoo,
    In-Young Park,Bom-Chol Kim, Chong-Su Cho “Chitosan and its
    derivatives for tissue engineering applications” Biotechnology
    Advances, 26 (2008) , 1–21 .
    【51】ASTM D638-10.
    【52】香港物理協會( http://www.hk-phy.org/ )
    【53】http://postfiles5.naver.net/data42/2009/1/8/100/noname02_toy327
    6.jpg?type=w3.
    【54】Aparna Sarasam, Sundararajan V. Madihally “Characterization of
    chitosan–polycaprolactone blends for tissue engineering
    applications” Biomaterials , 26 (2005), 5500–5508 .

    QR CODE