簡易檢索 / 詳目顯示

研究生: 許貽珏
Yi-chueh Hsu
論文名稱: 光聚合生物可分解材料應用於RP技術製作組織工程支架性質之研究
Research on properties of photo-polymerized biodegradation materials for tissue engineering scaffolds fabrication by rapid prototyping technology
指導教授: 鄭逸琳
Yih-lin Cheng
口試委員: 謝明發
none
楊銘乾
none
楊台鴻
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 116
中文關鍵詞: 快速原型光交聯支架PLGA
外文關鍵詞: Rapid Prototyping, Photo-crosslinking, Scaffold, PLGA
相關次數: 點閱:473下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗室先前所研發的生醫動態光罩快速成型系統製作PLGA混合PEG-HEMA支架,製作過程中,支架持續浸泡於有機溶劑溶液中,易造成未交聯的材料產生二次溶解。故本研究針對材料進行改質,以改善交聯情況,解決此問題;並對交聯後的材料進行降解測試與體外細胞培養,了解改質後之性質與差異。
    首先將PLGA材料進行末端OH鍵結改質為acrylate group C=C雙鍵,此雙鍵可受光激發交聯產生化學鍵結;因PLGA相對於acrylate group分子量過大,易造成鑑定上之困難,故又自行合成分子量較小且具有類似結構的PCL-PEG-PCL生醫材料,並加以改質,輔助驗證PLGA的改質成功與否。改質後的生醫材料,透過核磁共振儀與紅外線光譜儀,證明其末端改質為C=C雙鍵的成功性;其抗拉強度亦有明顯提升,顯示材料改質後,具交聯結構,而非原先之半滲透網狀結構。此外,將製作好的薄膜支架浸泡於氯仿溶液,進行重量損失量測,評估材料改質對二次溶解改善效果,得知二次溶解與acrylate group的接枝率有密切關係。降解測試,包括含水率量測、酸鹼值量測及重量損失率量測。因生醫材料改質會破壞原有的結晶性,而使其降解速率略為加快。細胞體外培養採用L929纖維母細胞與MG63類骨母細胞,並經由生物毒性反應測試、電子顯微鏡及倒立式顯微鏡等,檢測細胞生長於支架上的形態及活性。
    本研究成功將PLGA及PCL-PEG-PCL兩種生醫材料末段改質為C=C雙鍵,交聯後成功地改善二次溶解問題。改質後的生醫材料,降解速率略增,但其非生醫材料的acrylate group並不影響細胞生長。


    In the previous Dynamic Mask Rapid Prototyping System developed in our laboratory, PLGA was mixed with PEG-HEMA to create scaffolds. During the fabrication, the finished scaffold layers continue to be soaked in the organic solvent, resulting in re-dissolution of the non-photo-crosslinked material (or called semi-interpenetrating networks, semi-IPNs). In order to solve this problem, biodegradable materials were modified to improve crosslink in this research. Moreover, degradation tests and in vitro cell culture were performed to understand properties and differences of the modified materials.
    In the material modification, the OH bond of PLGA end was replaced by the C=C bond of the acrylate group, which can be photo-initiated to crosslink. Due to the large differences in molecular weight between PLGA and acrylate group, it may cause problems in verifying the acrylate replacement. Therefore, PCL-PEG-PCL with less molecular weight but similar structure to PLGA was also synthesized and replaced by acrylate group to assist the verification of the material modification. Both modified materials were successfully examined by the Nuclear Magnetic Resonance and the Infrared Rays Spectroscopy. The tensile strength of cured materials were obviously increased to demonstrate the crosslink networks exist instead of semi-IPNs. In addition, in order to prove the re-dissolution problem has been solved, the cured thin films of the modified materials were soaked in the chloroform solution and measured the weight loss. The results showed that the improvement of re-dissolution problem was closely related to the acrylate group grafting ratio. Degeneration test included water absorption ratio, pH value test, and weight loss ratio. Because the replacement of acrylate groups partially destroyed the original crystalline structure, the modified materials showed slightly faster degradation. L929 fibroblast cells and MG63 human osteoblast-like cells were cultured on porous scaffolds in vitro for three days. The cell growth morphology was observed by optical microscope and SEM, and evaluated by MTT assay kits.
    This research successfully modified biodegradable PLGA and PCL-PEG-PCL materials and improved the re-dissolution problem. The modified materials degraded slightly faster, but the non-biodegradable acrylate group did not affect cell growth.

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究目的和方法 2 1.3 論文撰寫架構 3 第二章 文獻探討 4 2.1 組織工程(Tissue Engineering)介紹 4 2.1.1 支架材料之特性 7 2.1.2 高分子生醫材料 8 2.1.3 傳統支架製作技術 14 2.2 應用快速原型技術製造組織工程之支架 16 2.2.1 快速原型加工原理 16 2.2.2 快速原型技術應用於組織工程支架之製造 17 第三章 材料合成及性質分析 27 3.1 實驗藥品 27 3.2 設備之簡介 28 3.3 生醫材料合成與改質 29 3.3.1 Dean-Stark apparatus 29 3.3.2 PEG-HEMA光交聯劑合成[32] 30 3.3.3 PLGA-diacrylate改質 33 3.3.4 PCL-PEG-PCL diacrylate共聚物合成 37 3.4 材料鑑定與性質測試 41 3.4.1 核磁共振(Nuclear Magnetic Resonance, NMR )光譜分析 41 3.4.2 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Rays spectroscopy ,FTIR)分析 51 3.4.3 拉伸試驗 55 4.1 動態光罩控制軟體 63 4.1.1 光罩輪廓資料之輸入與處理 64 4.1.2 動態光罩圖案的產生 64 4.2 動態光罩產生器 65 4.3 成型機構變更設計 66 4.4 加工系統流程與支架製作 67 4.4.1 支架設計與製作 68 第五章 材料檢測與細胞培養結果 79 5.1 實驗藥品 79 5.2 材料性質檢測 81 5.1.1 材料含水率(Water Absorption Ratio) 82 5.1.2 降解測試 83 5.3 細胞培養與生物相容性檢測 88 5.2.1 細胞培養 88 5.2.2 生物毒性檢測(MTT assay) 92 5.2.3 電子顯微鏡觀察(SEM) 97 6.1 結論 103 參考文獻 105 附錄一 110 附錄二 112

    1. Background on Tissue Engineering, (http://www-2.cs.cmu.edu/People/tissue/ tutorial.html)

    2. Dietmar W. Hutmacher, and Andres J. “Garcia, Scaffold-based bone engineering by using genetically modified cells,” Gene, Volume 347, p1-10, 2005.

    3. 張根源,”組織工程技術與應用”,化工科技與商情第33期,2002年6月。

    4. 楊婷琪,”組織工程的重要元件-生物分子”,工研院經貿中心生醫組,2002年7月。

    5. Shoufeng Yang, Kah-Fai Leong, Zhaohui DU, and Chee-Kai Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional Factors,” Tissue Engineering, Volume 7, p679-689, 2001.

    6. 俞耀庭,生物醫用材料,初版,新文京,2004。

    7. D.K. Gilding, and A.M. Reed. “Biodegradable polymers for use in surgery-Poly (glycolic acid)/Poly(lactide acid)homo-and copolymers.2.In vitro degradation,” Polymer, Volume 22, p494-498, 1981.

    8. 工業技術研究院,” 生醫材料與組織工程” (http://www.itri.org.tw/chi/rnd/focused_rnd/biotech_medicine/e003.jsp)

    9. 張根源,”生物吸收性PLGA材料合成與應用技術”,工業技術與資訊第112期,2001年2月。

    10. 興技生物科技公司, (http://www.bio-invigor.com)

    11. 蔡秉宏,”以聚殼醣合成光交聯性衍生物之探討”,國立成功大學化學工程研究所,碩士論文,1999。
    12. Dumitriu S. “Medical application of synthetic polymers,” Marcel Dekker, New York, Volume 725, 1994.

    13. J. Elisseeff, W. McIntosh, K. Anseth, S. Riley, P. Ragan, and R. Langer, “Photoencapsulation of chondrocytes in poly(ethylene oxide)-based Semi-interpenetrating networks,” Biomaterials, p164-171, 1999.

    14. Jennie Baier Leach, Kathryn A. Bivens, Charles W. Patrick, Jr., and Christine E. Schmidt, “Photocrosslinked Hyaluronic Acid Hydrogels: Natural, Biodegradable Tissue Engineering Scaffolds,” Biomaterials, p578-589, 2002.

    15. Hyung Woo Kim, Chung Wook Chung, Young Baek Kim, and Young Ha Rhee, “Preparation and hydrolytic degradation of Semi-interpenetrating networks of poly(3-hydroxyundecenoate) and poly( lactide-co-glycolide ),” International Journal of Biological Macromolecules, Volume 37, p221–226, 2005.

    16. J.M. Taboas, R.D. Maddox, P.H. Krebsbach, and S.J. Hollister, “Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds,” Biomaterials, Volume 24, p181-194, 2003.

    17. K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, “A novel method to fabricate bioabsorbable scaffolds,” Polymer, Volume 36, p837-842, 1995.

    18. 國立台灣科技大學雷射實驗室, (http://140.118.198.70/RP.html).

    19. Major RP Techologies, (http://www.uni.edu/~rao/rt/major_tech.htm)

    20. Distribuidores Autorizados de Impresoras 3D Zcorporation, (http://tecsol3d.com/ zcorp/)

    21. C.X.F. Lam, X.M. Mo, S.H. Teoh, and D.W. Hutmacher, “Scaffold development using 3D printi ng with a starch-based polymer,” Materials Science and Engineering, Volume 20, p49-56, 2002.

    22. K.F. Leong, C.M. Cheah, and C.K. Chua, “Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs,” Biomaterials, Volume 24, p2363–2378, 2003.

    23. Jessica M. Williamsa, Adebisi Adewunmib, Rachel M. Scheka, Colleen L. Flanagana, Paul H. Krebsbacha, Stephen E. Feinbergd, Scott J. Hollistera, and Suman Dasb, “Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering,” Biomaterials, Volume 26, p4817–4827, 2005.

    24. Arnaud Bertsch, Philippe Renaud, Christian Vogt, and Paul Bernhard, “Rapid Prototyping of small size objects,” Rapid Prototyping Journal, Volume 6, p259-266, 2000.

    25. Iwan Zein, Dietmar W. Hutmacher, Kim Cheng Tan, and Swee Hin Teoh, ”Fused deposition modeling of novel scaffold architecture for tissue engineering application,” Biomaterials, Volume 23, p1169-1185, 2002.

    26. Samar Jyoti Kalita, Susmita Bose, Howard L. Hosick, and Amit Bandyopadhyay, “Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling,” Materials Science and Engineering, Volume 23, p611-62, 2003.

    27. Vladimir Mironov, Thomas Boland, Thomas Trusk, Gabor Forgacs and Roger R. Markwald, “Organ printing: computer-aided jet-based 3D tissue engineering,” TRENDS in Biotechnology, Volume21, p157-161, 2003.

    28. Zhuo Xiong, Yongnian Yan, Renji Zhang, and Lei Sun, “Fabrication of porous poly(L-lactic acid) scaffolds for bone tissue engineering via precise extrusion,” Scripta materialia, Volume 45, p773-779, 2001.

    29. T.H. Ang, F.S.A. Sultana, D.W. Hutmacher, Y.S. Wong, J.Y.H. Fuh, X.M. Mo, H.T. Loh , E. Burdet , and S.H. Teoh., “Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system,” Materials Science and Engineering Volume 20, p35-42, 2002.

    30. Giovanni Vozzia, Christopher Flaimb, Arti Ahluwaliaa, and Sangeeta Bhatiab, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials, Volume 24, p2533–2540, 2003.

    31. Mariah S. Hahn, Lakeshia J. Taite, James J. Moon, Maude C. Rowland, Katie A. Ruffino, and Jennifer L. West, “Photolithographic patterning of polyethylene glycol hydrogels,” Biomaterials, Volume 27, p2519-5254, 2006.

    32. 許端容,“具紫外光交聯性的聚胺酯二醇樹酯合成及應用於組織工程之研究”,國立清華大學材料科學與工程研究所,碩士論文,2004。

    33. 國立台灣師範大學化學系網頁,(http://www.chem.ntnu.edu.tw/equipment/)

    34. 中原大學醫學工程系前瞻實驗室

    35. SHIMADZU,( http://www.shimadzu.com/)

    36. ASTM standards: D 638-02a, Standard Test Method for Tensile Properties of Plastics.p46-59

    37. 李孟龍,“動態光罩快速原型系統製造組織工程支架之研發”,國立台灣科技大學機械工程研究所,碩士論文,2005。

    38. 陳俊豪,“光固化快速成型技術製作組織工程支架之研究”,國立台灣科技大學機械工程研究所,碩士論文,2006

    39. Lichun Lu, Charles A. Garcia, and Antonios G. Mikos, “In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films,” Journal of Biomedical Materials Research, Volume 46, p236-244, 1999.

    40. Hae Yong Kweon, Mi Kyong Yoo, In KyuPark, Tae Hee Kim, Hyun Chul Lee, Hyun-Sook Lee, Jong-Suk Oh, Toshihiro Akaike, and Chong-SuCho, “A novel degradable polycaprolactone networks for tissue engineering,” Biomaterials, Volume 24, p801–808, 2003.

    41. 黎坤瓚,“在細胞育成環境中使用快速成型技術製作組織工程支架之可行性研究”,國立台灣科技大學機械工程研究所,碩士論文,2005。

    QR CODE