簡易檢索 / 詳目顯示

研究生: 陳冠廷
Kuan-Ting Chen
論文名稱: 運用合作問題解決與鷹架教學策略之擴增實境科學史教育桌遊之設計與評估
The design and evaluation of a science history educational board game with augmented reality integrating collaborative problem solving and scaffolding strategies
指導教授: 侯惠澤
Huei-Tse Hou
口試委員: 邱國力
Guo-Li Chiou
王舒民
Shu-Ming Wang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 65
中文關鍵詞: 擴增實境桌上遊戲鷹架理論遊戲式學習合作問題解決心流
外文關鍵詞: augmented reality, board game, scaffolding, game-based learning, collaborative problem solving, flow
相關次數: 點閱:655下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 擴增實境結合桌上遊戲有助於輔助學生學習化學家歷史及其相關研究,運用遊戲式學習不但能提高學生學習動機,也可以增加他們遊戲時所投入的程度,並且提高學習成效。本研究開發一款擴增實境結合桌上遊戲之行動載具遊戲「AR化學史」,此教學系統整合擴增實境、鷹架教學理論及合作問題解決情境的遊戲式學習系統,讓學生在遊戲體驗的過程中,搭配桌遊卡牌以及擴增實境所給予的各種線索作為鷹架,進行合作問題解決活動以達成遊戲任務。本研究從實徵分析中探討學習成效、心流狀態、接受度以及關鍵的學習行為次數。本研究之研究對象為35位台灣北部某高中學生。研究結果顯示,學生在使用本遊戲進行學習後,學習成效達到顯著進步效果。在心流狀態、接受度的各項維度皆高於中位數。研究發現,遊戲過程中在不同性別的學習者的心流、成效與接受度上皆無顯著差異。在行為次數部分,分析使用者AR行為分別為掃描卡牌牌次數、網頁觀看次數,學習者組別在心流的部分維度有達到顯著差異。
    另外,本研究也初步分析心流狀態、接受度、學習成效與行為歷程各維度間彼此的關聯,並提出相關的研究與教學實務的建議。


    Augmented reality provides learners with immediate scaffolding and guided information, which may help chemistry instruction. Integrating augmented reality and board games can provide scaffolding and interaction simultaneously as a collaborative problem solving task. This may help assist learners’ chemistry learning and promote their attention and motivation in learning. This study developed an augmented reality board game “AR Chemistry History©,” a mobile learning system that integrated augmented reality, scaffolding theories, and collaborative problem solving contexts. In this game, the students needed to complete missions in collaborative problem solving activities based on the clues from game cards and augmented reality as scaffolding. This empirical study analyzed learners’ learning effectiveness, flow, acceptance, and frequency of their critical learning behaviors. Thirty-five senior high school students in northern Taiwan participated in this study. The results showed that the students’ learning effectiveness improved after using the game. The score of each dimension of their flow and acceptance was above the median, showing a certain degree of involvement. Moreover, no significant difference was found between male and female learners in their flow, effectiveness, and acceptance. As for the frequency of behaviors, the study analyzed AR users’ behaviors of card scanning and website viewing. The results showed that some dimensions of flow indicated significant differences between high/low viewing frequency learner groups.
    In addition, the study preliminarily analyzed the correlation among flow, acceptance, and learning effectiveness.

    目錄 摘要 I Abstract II 目錄 III 圖次 VI 表次 VII 第一章 緒論 第一節 研究背景與動機 第二節 研究目的與研究問題 第貳章 文獻探討 第一節 擴增實境 一、擴增實境 二、擴增實境輔助學習案例 第二節 桌上遊戲 一、桌上遊戲 二、桌遊應用於教學 第三節 合作問題解決 第四節 認知鷹架理論 一、 鷹架理論 二、 鷹架理論應用於學習案例 第五節 遊戲式學習 一、遊戲式學習 二、遊戲輔助學習 第六節 小結 第参章 研究方法 第一節 研究設計 第二節 研究對象 第三節 研究工具 一、遊戲系統 二、參與遊戲同意書、基本資料問卷與遊戲經驗問卷 三、學習成效評量(前後測) 四、心流問卷 五、接受度問卷 第四節 研究程序 第五節 資料蒐集與分析 第肆章 研究結果 第一節 高中生對於「AR化學史」之學習成效、心流程度與接受度 一、學習成效 二、心流狀態 三、接受度 第二節 不同性別的學習者在心流狀態、接受度與學習成效的差異 第三節 高、低學習成效組的學習者在學習成效、接受度與心流狀態的差異 第四節 高、低小組在AR化學史的解題行為次數組別在心流、接受度與學習成效上的差異 一、掃描卡牌次數對於學習成效、接受度與心流狀態的差異 二、查看網頁訊息次數對於學習成效、接受度與心流狀態的差異 第五節 相關分析 第伍章 討論 第一節 高中生對於「AR化學史」之學習成效、心流程度與接受度 第二節 不同性別的學習者在心流狀態、接受度與學習成效的差異 第三節 高、低學習成效組的學習者在學習成效、接受度與心流狀態的差異 第四節 高、低解題行為次數組別在心流、接受度與學習成效上的差異 一、掃描卡牌次數對於學習成效、接受度與心流狀態的差異 二、查看網頁訊息次數對於學習成效、接受度與心流狀態的差異 第五節 心流、接受度之相關 第陸章 結論與建議 第一節 結論 第二節 建議 一、遊戲系統發展方面 二、教學實務用方面 三、未來研究上的建議 參考文獻 附錄一:施測同意書 附錄二:背景資料問卷 附錄三:學習成效評量 附錄四:心流評量 附錄五:科技接受度評量

    林映辰(2016)。結合擴增實境、錨定式情境與虛擬實驗室之化學實驗室教學遊戲的發展與評估: 成效、心流與行為之分析。國立臺灣科技大學應用科技研究所,未出版,台北市。
    Al-Washmi, R., Baines, M., Organ, S., Hopkins, G., & Blanchfield, P. (2014, October). Mathematics problem solving through collaboration: Game design and adventure. In European Conference on Games Based Learning (Vol. 1, p. 1). Academic Conferences International Limited.
    Amaro, S., Viggiano, A., Di Costanzo, A., Madeo, I., Viggiano, A., Baccari, M. E., ... & Monda, M. (2006). Kaledo, a new educational board-game, gives nutritional rudiments and encourages healthy eating in children: a pilot cluster randomized trial. European journal of pediatrics, 165(9), 630-635.
    Andersen, T. L., Kristensen, S., Nielsen, B. W., & Grønbæk, K. (2004, June). Designing an augmented reality board game with children: the battleboard 3D experience. In Proceedings of the 2004 conference on Interaction design and children: building a community (pp. 137-138). ACM.
    Anderson, J. R. (1990). Cognitive psychology and its implications. WH Freeman/Times Books/Henry Holt & Co.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and virtual environments, 6(4), 355-385.
    Bayir, E. (2014). Developing and playing chemistry games to learn about elements, compounds, and the periodic table: Elemental Periodica, Compoundica, and Groupica. Journal of Chemical Education, 91(4), 531-535.
    Chen, C. H., & Law, V. (2016). Scaffolding individual and collaborative game-based learning in learning performance and intrinsic motivation. Computers in Human Behavior, 55, 1201-1212.
    Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449-462.
    Cruz, S., Carvalho, A. A. A., & Araújo, I. (2017). A game for learning history on mobile devices. Education and Information Technologies, 22(2), 515-531.
    Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper Perennial.
    Gilpin, C. S., & Gilpin, R. K. (2014). Studies of the Affect of Custom Developed Interactive Software on Student Learning in a First Term General Chemistry for Majors Class. International Journal of Science, Commerce and Humanities, 2(3).
    González, C. S. G., Collazos, C. A., Guerrero, L. A., & Moreno, L. (2017). Game-based learning environments: designing the collaborative learning processes. Acta Scientiae, 18(4).
    Griffin, P. (2017). Assessing and Teaching 21st Century Skills: Collaborative Problem Solving as a Case Study. In Innovative Assessment of Collaboration (pp. 113-134). Springer International Publishing.
    Hogle, J. G. (1996). Considering games as cognitive tools: In search of effective.
    Huang, T. C., Chen, C. C., & Chou, Y. W. (2016). Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Computers & Education, 96, 72-82.
    Hwang, G. J., Wu, P. H., Chen, C. C., & Tu, N. T. (2016). Effects of an augmented reality-based educational game on students' learning achievements and attitudes in real-world observations. Interactive Learning Environments, 24(8), 1895-1906.
    Khirwadkar, A. R. (2015). Development of Computer software for learning chemistry at standard XI.
    Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming model. The Internet and higher education, 8(1), 13-24.
    Kiili, K. (2006). Evaluations of an experiential gaming model. An Interdisciplinary Journal on Humans in ICT Environments, 2(2), 187-201
    Kiili, K. (2007). Foundation for problem‐based gaming. British journal of educational technology, 38(3), 394-404.
    Kim, M. C., & Hannafin, M. J. (2011). Scaffolding problem solving in technology-enhanced learning environments (TELEs): Bridging research and theory with practice. Computers & Education, 56(2), 403-417.
    Lin, C. Y., Chai, H. C., Wang, J. Y., Chen, C. J., Liu, Y. H., Chen, C. W., ... & Huang, Y. M. (2016). Augmented reality in educational activities for children with disabilities. Displays, 42, 51-54.
    Lin, P. C., Hou, H. T., Wu, S. Y., & Chang, K. E. (2014). Exploring college students' cognitive processing patterns during a collaborative problem-solving teaching activity integrating Facebook discussion and simulation tools. The Internet and Higher Education, 22, 51-56.
    Lowe, J. S., & Holton III, E. F. (2005). A theory of effective computer-based instruction for adults. Human Resource Development Review, 4(2), 159-188.
    Markusiewicz, J., & Słyk, J. (2015). From Shaping to Information Modeling in Architectural Education: Implementation of Augmented Reality Technology in Computer-Aided Modeling. In Real Time-Proceedings of the 33rd eCAADe Conference. Vienna: Vienna University of Technology (pp. 83-9).
    McLaren, B. M., Adams, D. M., Mayer, R. E., & Forlizzi, J. (2017). A Computer-based Game that Promotes Mathematics Learning More than a Conventional Approach. International Journal of Game-Based Learning (IJGBL), 7(1), 36-56.
    Nelson, L. M. (1999). Collaborative problem solving. Instructional design theories and models: A new paradigm of instructional theory, 2, 241-267.
    Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. The journal of the learning sciences, 13(3), 423-451.
    Piaget, J. (1972). Intellectual evolution from adolescence to adulthood. Human development, 15(1), 1-12.
    Prensky, M. (2001). Fun, play and games: What makes games engaging. Digital game-based learning, 5, 1-05.
    Prensky, M. (2003). Digital game-based learning. Computers in Entertainment (CIE), 1(1), 21-21.
    Prensky, M., & Prensky, M. (2007). Digital game-based learning (Vol. 1). St. Paul, MN: Paragon house.
    Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13(3), 273-304.
    Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in collaborative problem solving. In Computer supported collaborative learning (pp. 69-97). Springer Berlin Heidelberg.
    Shiue, Y. M., Hsu, Y. C., & Liang, Y. C. (2016, November). Investigating elementary students' epistemological beliefs, game preference by applying game-based learning to a history course. In Advanced Materials for Science and Engineering (ICAMSE), International Conference on (pp. 460-462). IEEE.
    Shute, V. J. (2008). Focus on formative feedback. Review of educational research, 78(1), 153-189.
    Steinkuehler, C., Squire, K., & Sawyer, K. (2014). Videogames and learning. Cambridge handbook of the learning sciences, 377-396.
    Steinkuehler, C., Squire, K., & Sawyer, K. (2014). Videogames and learning. Cambridge handbook of the learning sciences, 377-396.
    Tobar-Muñoz, H., Baldiris, S., & Fabregat, R. Augmented Reality Game-Based Learning: Enriching Students’ Experience During Reading Comprehension Activities. Journal of Educational Computing Research, 0735633116689789.
    Tosun, N. (2017). Augmented Reality Implementations, Requirements, and Limitations in the Flipped-Learning Approach. In Mobile Technologies and Augmented Reality in Open Education (pp. 262-280). IGI Global.
    Tsai, M. J., Huang, L. J., Hou, H. T., Hsu, C. Y., & Chiou, G. L. (2016). Visual behavior, flow and achievement in game-based learning. Computers & Education, 98, 115-129.
    Utsumi, A., Milgram, P., Takemura, H., & Kishino, F. (1994, October). Investigation of errors in perception of stereoscopically presented virtual object locations in real display space. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 38, No. 4, pp. 250-254). SAGE Publications.
    Van Krevelen, D., & Poelman, R. (2007). Augmented reality: Technologies, applications, and limitations. Vrije Universiteit Amsterdam, Department of Computer Science.
    Vygotsky, L. (1978). Interaction between learning and development. Readings on the development of children, 23(3), 34-41.
    Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.
    Yang, J. C., Quadir, B., & Chen, N. S. (2016). Effects of the Badge Mechanism on Self-Efficacy and Learning Performance in a Game-Based English Learning Environment. Journal of Educational Computing Research, 54(3), 371-394.
    Zagal, J. P., Rick, J., & Hsi, I. (2006). Collaborative games: Lessons learned from board games. Simulation & Gaming, 37(1), 24-40.
    Zainuddin, N., Sahrir, M. S., Idrus, R. M., & Jaffar, M. N. (2017). Scaffolding a Conceptual Support for Personalized Arabic Vocabulary Learning Using Augmented Reality (AR) Enhanced Flashcards. Journal of Personalized Learning, 2(1), 95-103.

    無法下載圖示 全文公開日期 2022/07/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE