簡易檢索 / 詳目顯示

研究生: 何錦輝
Chin-Hui Ho
論文名稱: 壓電驅動及電磁驅動之合成噴流的流場特徵
Flow Characteristics of Piezoelectric and Electromagnetic Synthetic Jets
指導教授: 黃榮芳
Rong-fang Huang
口試委員: 林怡均
Yi-Chun Lin
孫珍理
Chen-li Sun
張家和
Chir-ho Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 224
中文關鍵詞: 合成噴流的流場特徵
外文關鍵詞: Synthetic Jets
相關次數: 點閱:178下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對電磁驅動及壓電驅動之合成噴流,以實驗方法研究合成噴流出口的速度震盪特性、流場特徵衍化及速度場。電磁驅動的合成噴流的出口型式分別為圓噴流、槽噴流及矩陣噴流,每一種出口型式的電磁驅動的合成噴流均有三種不同的出口面積。利用雷射輔助流場可視化技術觀察動態流動模態;藉由熱線風速儀量測合成噴流出口處以及中心線的軸向速度變化以及震盪頻率。結果顯示,在共振頻率時,噴流出口會產生最大的速度震盪。在相同出口截面積以及震盪頻率時,速度震盪的振幅,以圓噴流型式之電磁驅動的合成噴流最大,槽噴流居中,矩陣噴流最小。對同一種出口型式的電磁驅動的合成噴流而言,出口截面積越小,速度震盪的振幅值越大。合成噴流的出口產生速度震盪,因此噴流出口流場為持續性的渦漩結構。當渦漩結構往下游移動時,捲入週圍的靜止空氣,因此渦漩結構尺寸變大並且變形。另外,應用質點影像測速儀(PIV)取出合成噴流出口流場結構的全域速度場,分析與探討合成噴流出口處的速度向量場、流線圖及等速度分佈輪廓。


    The instantaneous and averaged flow patterns and velocity fields of the electromagnetically and piezoelectrically driven synthetic jets were experimentally investigated. The exit configurations of the electromagnetic synthetic jets were circule, slot, and multi-circle. For each exit configuration, three exit areas, 3.14, 7.07, and 12.56 mm2, were used. The hot-wire anemometer was employed to measure the time-varying velocities at the jet exits and along the centerline. Jet oscillation frequencies were obtained by using the fast Fourier Transform (FFT) analysis technique. The laser-light shhet assisted flow visualization technique was used to understand the evolution proves of the flow patterns. The results of hotwie measurement showed that the oscillation amplitudes at the resonance frequency attained the maximum values. At the same exit cross-section areas and driven frequency, the velocity oscillation amplitudes at the circular-jet and the multijet exits presented the highest and the lowest values, respectively, among the three configurations. The vortical strucures evolved periodically because of velocity oscillation at exit of the synthetic jets. The vertical structures entrained the environment fluid as it travels downstream so that the vertical structure enlarged and deformed. Adittionally, the velocity fields around the jet exit of the synthetic jets were quantified by employing the particle image velocimeter. The velocity vectors, streamline patterns, and velocity contours of various synthetic jets were presented and

    摘要 ...i Abstract ...ii 致謝 ...iii 目錄 ...iv 符號索引 ...vii 圖表索引 ...viii 第一章 緒論 ...1 1.1 研究動機 ...1 1.2 文獻回顧 ...1 1.3 研究目標 ...5 第二章 實驗設備、儀器與方法 ...6 2.1 實驗設備 ...6 2.1.1 壓電驅動的合成噴流模型 ...6 2.1.2 電磁驅動的合成噴流模型 ...6 2.2 實驗儀器與方法 ...7 2.2.1 自由流速的偵測 ...7 2.2.2噴流速度震盪量測 ...8 2.2.3時序速度訊號的偵測 ...9 2.2.4 煙霧流場可視化 ...9 2.2.5 質點影像速度儀(Particle Image Velocimetry, PIV)...12 第三章 壓電驅動的合成噴流之速度特性與流場特徵 ...17 3.1 速度特性 ...17 3.2流場特徵行為 ...18 3.3 速度場 ...19 第四章 電磁驅動的合成噴流之速度特性與流場特徵 ...21 4.1 速度特性 ...21 4.1.1激擾頻率對速度特性的影響 ...21 4.1.2軸向距離對速度特性的影響 ...25 4.2流場特徵行為 ...28 4.2.1圓噴流的流場特徵行為 ...29 4.2.2槽噴流的流場特徵行為 ...31 4.2.3矩陣噴流的流場特徵行為 ...35 4. 3 速度場 ...37 4.3.1 圓噴流之速度流線圖及等速度圖 ...37 4.3.2槽噴流之速度流線圖及等速度圖 ...39 4.3.3矩陣噴流之速度流線圖及等速度圖 ...40 第五章 合成噴流在兩平行板之間的流場特徵與速度特性 ...43 5.1 壓電驅動的合成噴流在兩平板之間的流場特徵 ...44 5.2壓電驅動的合成噴流在兩平板之間的速度場 ...45 5.3電磁驅動的合成噴流在兩平板之間的流場特徵 ...46 5.3.1在兩平行板間之圓噴流的流場特徵行為 ...46 5.3.2在兩平行板間之槽噴流的流場特徵行為 ...48 5.2.3在兩平行板間之矩陣噴流的流場特徵行為 ...49 5.4電磁驅動的合成噴流在兩平板之間的速度場 ...50 5.4.1 在兩平行板間之圓噴流的速度流線圖及等速度分佈圖 ...50 5.4.2在兩平行板間之槽噴流的速度流線圖及等速度分佈圖 ...51 5.4.3在兩平行板間之矩陣噴流的速度流線圖及等速度分佈圖 ...53 第六章 ...55 6.1 結論 ...55 6.2 建議 ...57 參考文獻 ...58

    [1] Smith, B. L. and Glezer, A., “The formation and evolution of synthetic jets,” Physics of Fluids, Vol. 10, No. 9, 1998, pp. 2281-2297.
    [2] Krishnan, G. and Mohseni, K., “An experimental study of a radial wall jet formed by the normal impingement of a round synthetic jet,” European Journal of Mechanics B/Fluids, Vol. 29, 2010, pp. 269-277.
    [3] Smith, B. L. and Swift, G. W., “A comparison between synthetic jets and continuous jets,” Experiments in Fluids, Vol. 34, 2003, pp. 467-472.
    [4] McGuinn, A., Farrelly, R., Persoons, T., and Murray, D. B., “Flow regime characterization of an impinging axisymmetric synthetic jet,” Experimental Thermal and Fluid Science, Vol. 47, 2013, pp. 241-251.
    [5] Cater, J. E. and Soria, J., “The evolution of round zero-net-mass-flux jets,” Journal of Fluid Mechanics, Vol. 472, 2002, pp. 167-200.
    [6] Al-Atabi, M., “Experimental investigation of the use of synthetic jets for mixing in vessels,” Journal of Fluids Engineering (ASME Transactions), Vol. 133, 2011, 094503.
    [7] Santhanakrishnan, A. and Jacob, J. D., “Flow control with plasma synthetic jet actuators,” Journal of Physics D: Applied Physics, Vol. 40, 2007, pp. 637-651.
    [8] Santhanakrishnan, A., Reasor, J., and Lebeau, R., “Characterization of linear plasma synthetic jet actuators in an initially quiescent medium,” Physics of Fluids, Vol. 21, 2009. 043602.
    [9] Pavlova, A. and Amitay, M., “Electronic cooling with synthetic jet impingement,” Journal of Heat Transfer, Vol. 128, 2006, pp. 897-907.
    [10] Arik, M., “Local heat transfer coefficients of a high frequency synthetic jets during impingement cooling over flat surfaces,” Heat transfer Engineering, Vol. 29, 2008, pp. 763-773.
    [11] Chaudhari, M. B., Puranik, B., and Agrawal, A., “Heat transfer characteristics of synthetic jet impingement cooling,” International Journal of Heat and Mass Transfer, Vol. 53, 2010, pp. 1057-1069.
    [12] Chaudhari, M. B., Puranik, B., and Agrawal, A., “Effect of orifice shap in synthetic jet based impingement cooling,” Experimental Thermal and Fluid Science, Vol. 34, 2010, pp. 246-256.
    [13] Lee, C., Hong, G., Ha, Q. P., and Mallinson, S. G., “A piezoelectrically actuated micro synthetic jet for active flow control,” Sensors and Actuators A, Vol. 108, 2003, pp. 168-174.
    [14] Zhang, S. and Zhong, S., “Turbulent flow separation control over a two-dimensional ramp using synthetic jets,” AIAA Journal, Vol. 49, No. 12, 2011, pp. 2637-2649.
    [15] Jukes, T. N. and Choi K. -S., “Dielectric-barrier-discharge vortex generators: characterization and optimization for flow separation control,” Experiments in Fluids, Vol. 52, 2012, pp. 329-345.
    [16] Amitay, M., Smith, D. R., Kibens, V., Parekh, D. E., and Glezer, A., “Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators,” AIAA Journal, Vol. 39, No. 3, 2001, pp. 361-370.
    [17] Buchmann, N. A., Atkinson, C., and Soria, J., “Influence of ZNMF jet flow control on the spatio-temporal flow structure over a NACA-0015 airfoil,” Experiments in Fluids, Vol. 54, 2013, 1458.
    [18] Tamburello, D. A. and Amitay, M., “Three-dimensional interactions of a free jet with a perpendicular synthetic jet,” Journal of Turbulence, Vol. 8, No. 38, 2007, pp. 1-21.
    [19] Flagan, R. C. and Seinfeld J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, pp. 295-307.

    無法下載圖示 全文公開日期 2019/06/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE