簡易檢索 / 詳目顯示

研究生: 陳彥良
Yen-liang Chen
論文名稱: 不銹鋼表面固定生物高分子之血液相容性探討
Hemocompability of biopolymer immobilizing stainless steel
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 邱顯堂
Hsien-Tang Chiu
王賢達
Hsin-Ta Wang
洪伯達
Po-Da Hong
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 69
中文關鍵詞: 電鍍聚離胺酸硫酸葡聚醣幾丁聚醣聚電解質層接式自我組裝血液相容性
外文關鍵詞: Stainless steel, electroplate, poly-lysine, chitosan, dextran sulfate, polyelectrolyte complex, layer-by-layer self-assembly, hemocompatibility
相關次數: 點閱:361下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將以電鍍及濺鍍的方式於不銹鋼(Stainless-steel)表面進行鍍金。再使用DMSA,進行硫醇基表面接枝,於不銹鋼表面產生-COOH基團,然後利用層接式自我組裝方法形成多層聚集。第一部分利用硫酸葡聚醣 (dextran sulfate,DS)與聚離胺酸(Poly-Lysine);第二部分則利用硫酸葡聚醣 (dextran sulfate,DS)與幾丁聚醣(chitosan)以層接式自我組裝方法形成多層聚集,分別探討其表面改質後血液相容性,並且分析血液凝固性,以作為心臟支架生醫材料之應用。
    層接式(Layer-by-layer, LBL)自我組裝改質方式係利用物種帶正、負電荷的性質,經由靜電力互相吸引而自組合,形成多層聚電解質的結構。由FE-SEM觀察可知聚電解質多層結構厚度隨改質次數增加而增加。由XPS及染料確認可得知Poly-lysine、chitosan 及 dextran sulfate 量隨固化層增加有線性增加趨勢,如此更使親水性提高。而且由於硫酸化葡聚糖量增加更降低不銹鋼片血小板吸附進而增長血液凝血時間。整體而言,層接式自我組裝改質方式具有方便性、經濟性、可控制性更是無毒性之表面改質方法,改質後不銹鋼片在血液接觸性生醫材用途深具潛力。


    In this study, a thin layer of gold was deposited onto stainless steel surface via either electroplating or sputtering. Afterwards, graft-polymerization of DMSA, followed by alternatively assembling of positively charged polymer and negatively charged polymer in a layer-by-layer assembly manner.
    In Part1, dextran sulfate (DS) (as an anti-clotting agent) and polylysine (PL) (as an antibacterial agent). In Part2, dextran sulfate (DS) (as an anti-clotting agent) and chitosan (CS) (as an antibacterial agent) were alternatively deposited onto the aminolyzed stainless steel in a layer-by-layer assembly manner. Thereby anti-adhesive and antibacterial polyelectrolyte complex (PEC) multilayer structure was assembled on the stainless steel surface. The progressive buildup of the multilayer film was verified by dye staining and XPS. These multilayer films were characterized by contact-angle. The in-vitro evaluation of hemocompatibility was performed by measuring the adsorption of human serum albumin (HSA) and platelet adhesion as well as the blood coagulation time. The results from FE-SEM show that the thickness increased with the deposition of PEC layers. The hydrophilicity was improved with the increase of the number of PEC layers. Furthermore, the coagulation time prolonged with the number of PEC layers. Thus this demonstrated an easy process to prepare an anti-clotting and antibacterial surface, and will be useful for surface modification of cardiovascular devices.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖表索引 VI 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 第二章 文獻回顧 2 2.1 實驗材料簡介 2 2.1.1不銹鋼(Stainless steel , S.S.) 2 2.1.2 雙硫醇丁二酸(meso-2,3-dimercaptosuccinic acid , DMSA) 3 2.1.3 幾丁聚醣(chitosan) 4 2.1.4 硫酸葡聚醣(Dextran sulfate , DS) 7 2.1.5聚離胺酸(Polylysine ,PL) 8 2.2 生物相容性 10 2.3 血液相容性 11 2.4 血小板與凝血作用 11 2.5 血液學凝固(Blood coagulation) 14 2.6 活化部分凝血活酶時間(APTT) 18 2.7 凝血酶原時間(PT) 19 2.8 高分子生醫材料 20 2.9 高分子材料表面改質(Surface Modification) 22 2.10 層接式自我組裝(Layer-By-Layer Self-assembly) 23 第三章 實驗材料與方法 26 3.1實驗項目流程圖 26 3.2 實驗原理 27 3.3 實驗材料 28 3.4 實驗設備 29 3.5 實驗步驟 30 3.5.1 不銹鋼前處理 30 3.5.2 不銹鋼鍍金(S.S.-Au) 第一部份 電化學電鍍法 30 3.5.2.1 DMSA之接枝(S.S.-Au-DMSA) 30 3.5.2.2 Poly-lysine之接枝(S.S.-Au-DMSA-PL) 30 3.5.2.3 Dextran sulfate之接枝(S.S.-Au-DMSA-PL-DS) 31 3.5.2.4 多層結構S.S.-Au-DMSA- PL (DS- PL)n 31 3.5.3 不銹鋼鍍金(S.S.-Au) 第二部份 真空濺鍍法 31 3.5.3.1 DMSA之接枝(S.S.-Au-DMSA) 31 3.5.3.2 Chitosan之接枝(S.S.-Au-DMSA-CS) 31 3.5.3.3 Dextran sulfate 之接枝(S.S.-Au-DMSA-CS-DS) 32 3.5.3.4 多層結構S.S.-Au-DMSA-CS(DS-CS)n 32 3.6 表面接枝密度(Surface Graft Density) 34 3.6.1 硫酸根(sulfate)接枝率的染色測驗 34 3.6.2 胺基(amino)接枝率的染色測驗 34 3.7 血液測試 35 3.7.1 活化部分凝血活酶時間(Activated Partial Thromboplastin Time, APTT) 35 3.7.2 凝血酶原時間(Prothrombin Time, PT) 36 第四章 結果與討論 37 4.1 LBL self-assembly of S.S grafted CS,DS and PL,DS 37 4.1.1 Polylysine(PL)與Dextran sulfate(DS)多層結構的接枝密度 37 4.1.1.2 硫酸根(sulfate)接枝率的染色測驗 40 4.1.1.3 胺基(amino)接枝率的染色測驗 41 4.1.2 接觸角(contact angle) 43 4.1.3 高解析度場發射掃瞄式電子顯微鏡 (FE-SEM) 44 4.1.4 化學分析電子譜(XPS) 48 4.2 活化部分凝血活酶時間(APTT) 55 4.3 凝血酶原時間(Prothrombin Time, PT) 57 4.4 血小板吸附 59 第五章 結論(Conclusions) 61 參考文獻 63 作者簡介 69

    1. T. Yoshioka, K. Tsuru, S. Hayakawa, A. Osaka, Preparation of alginic acid layers on stainless-steel substrates forbiomedical applications, Biomaterials 2003;24: 2889-2894.
    2. F. Zhang, E.T. Kang, K.G. Neoh, P. Wang, K.L.Tan , Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption, Biomaterials 2001;22: 1541-1548.
    3. L.-Y. Huang , M.-C. Yang, Hemocompatibility of layer by layer hyaluronic acid / heparin nanostructure coating on stainless steel for cardiovascular stents and its use for drug delivery, J Nanoscience and Nanotechnology 2006; 6:3163-3170.
    4. L.-Y. Huang , M.-C. Yang, Surface immobilization of chondroitin 6-sulfate / heparin multilayer on stainless steel for developing drug-eluting coronary stents, Colloids and Surface B: Biointerfaces 2008;61: 43-52
    5. A. Murua, M. d. Castro, G. Orive, R. M Hernndez ,and J. L. Pedraz, In Vitro Characterization and In Vivo Functionality of Erythropoietin-Secreting Cells Immobilized in Alginate-Poly-L-Lysine-Alginate Microcapsules, J. Am. Chem. Soc. : Biomacromolecule:2007; 8 (11): 3302-3307
    7. I. Pelsoczi, K. Turzó, C. Gergely, A. Fazekas, I. D. kány, and F. Cuisinier, Structural Characterization of Self-Assembled Polypeptide Films on Titanium and Glass Surfaces by Atomic Force Microscopy, Biomacromolecules: 2005; 6: 3345-3350
    8. D. Zhou, A. Bruckbauer, M. Batchelor, D. J. Kang, C. Abell, and D. Klenerman, Influence of the foundation Layer on the layer-by-layer assembly of poly-l-lysine and poly(styrenesulfonate) and its usage in the fbrication of 3D mcroscale fatures, Langmuir: 2004; 20: 9089-9094
    9. V. Subr, C. Konak, R. Laga, and K. Ulbrich, Coating of DNA/Poly(L-lysine) Complexes by Covalent Attachment of Poly[N-(2-hydroxypropyl)methacrylamide], Biomacromolecules: 2006; 7: 122-130
    10. Y. Shirosakia, K. Tsurua, S. Hayakawaa, A.Osaka, M. A. Lopes, J.D. Santos, M.H. Fernandes, In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes, Biomaterials 2005; 26: 485 493
    11. S. Takemotoa, T. Yamamotoa, K. Tsurua, S. Hayakawaa, A.Osaka, S. Takashima, Platelet adhesion on titanium oxide gels: effect of surface oxidation, Biomaterials 2004; 25: 3485 3492
    12. I. Yamaguchi, S. Itoh, M. Suzuki, M. Sakane, A.Osaka, J. Tanaka, The chitosan prepared from crab tendon I: the characterization and the mechanical properties, Biomaterials 2003; 24: 2031 2036
    13. D. G. Yu, W. C. Lin, C.H. Lin, Y.-H. Yeh, M.-C. Yang, Construction of Antithrombogenic Polyelectrolyte Multilayer on Thermoplastic Polyurethane via Layer-By-Layer Self-Assembly Technique, Journal of Biomedical Materials Research B: Applied Biomaterials 2007;
    83B:105-113
    14. M. Díaz , P. Sevilla , A. M. Galán , G. Escolar , E. Engel , F. J. Gil , Evaluation of ion release, cytotoxicity, and platelet adhesion of electrochemical anodized 316 L stainless steel cardiovascular stents, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2008
    15. D.M. Johnson, A. Mahapatro, D. N. Patel, M. D. Feldman, A. A. Ayon, C. M. Agrawal , Drug Delivery from Therapeutic Self-Assembled Monolayers (T-SAMs) on 316L Stainless Steel, Current Topics in Medicinal Chemistry Volume 8 Issue 4 :281-289
    16. R.A. Silva , M .Walls , B. Rondot , Da Cunha Belo M, R.Guidoin , Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery. Journal Materials Science Materials in Medicine. 2002 ; 13(5):495-500
    17. H .Zhao , J.Van Humbeeck , J. Sohier , I. De Scheerder, Electrochemical polishing of 316L stainless steel slotted tube coronary stents., Journal Materials Science Materials in Medicine. 2002; 13(10):911-916.
    18. M.Unverdorben , B .Sippel , R. Degenhardt , K .Sattler , R.Fries , B.Abt , E .Wagner , H .Koehler , G .Daemgen , M .Scholz, H. Ibrahim , KH Tews , B.Hennen , HK Berthold , C.Vallbracht ; Tenax versus Nir Stent Study, Comparison of a silicon carbide-coated stent versus a noncoated stent in human beings: the Tenax versus Nir Stent Study's long-term outcome, American Heart Journal, 2003; Volume 145, Issue 4 :Page E17
    19. M.Haïdopoulos , S .Turgeon , C.Sarra-Bournet , G.Laroche , D. Mantovani, Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications. Journal Materials Science Materials in Medicine. 2006;17(7):647-57.
    20. CJ Pan , JJ Tang, Y.J. Weng , J.Wang , N.Huang, Preparation, characterization and anticoagulation of curcumin-eluting controlled biodegradable coating stents. J Control Release. 2006 ;116(1):42-9.
    21.林東堯,電鍍黃金的技術,傳勝出版社。
    22.陳美瑾, 膠原蛋白包覆Sirolimus之藥物釋放型血管支架研究 ,國立清華大學化學工程研究所碩士論文(2004)
    23.林建宏, 利用層接式自我組裝方法製備聚電解質層固定化於PBAT膜 ,國立台灣科技大學高分子工程研究所碩士論文(2006)
    24.陳明宗, 316低碳不銹鋼在冠狀動脈金屬支架應用之微結構與電化學分析 ,國立清華大學材料科學工程研究所碩士論文(2001)
    25. 馬虹任, 利用磁式濺鍍機成長高品質ITO薄膜於顯示器之應用 ,國立中山大學機械與機電工程學研究所碩士論文(2005)
    26. 方昱超, 金屬摻雜對SDC 導氧材料的影響及其在氧氣感測器中應用的研究 ,國立台灣科技大學化學工程研究所碩士論文(2005)
    27. 吳亦德, 利用真空濕式反應式進行即時就地膠原蛋白固定之研究 ,私立中原大學醫學工程研究所碩士論文(2002)
    28. 蔡美儀, 混合單分子薄膜應用於生物分子固定研究 ,國立中央大學化學研究所碩士論文(2004)
    29. 張峻領, 氟化物混合薄膜於紫外光區之研究 ,國立中央大學光電科學研究所碩士論文(2006)
    30. 林裕萍, 四氯對苯二酚誘發細胞凋亡的作用機轉及抗氧化劑在四氯對苯二酚誘發基因毒性及細胞傷害過程中扮演角色之探討 ,國立成功大學環境醫學研究所碩士論文(2002)
    31. 張志銘, 熱機械處理對Ti-7.5Mo-2Fe 合金結構及性質的影響 ,國立成功大學材料科學及工程研究所碩士論文(2002)
    32. 施俊明, 醫用不銹鋼材質表面氧化物膜之特質及其在體內之反應與血栓影響以及塗藥功能分析 ,台北醫學大學醫學研究所碩士論文(2005)
    33. 姜雅齡, 交聯硫酸化軟骨素在藥物釋放上的探討 ,高雄醫學大學化學研究所碩士論文(2003)
    34. 陳儀梅, 醋酸纖維素中空纖維透析器接枝肝素對血液相容性之影響 ,國立台灣科技大學高分子工程研究所碩士論文(2003)
    35. 任伊賓,楊柯,張炳春,楊慧賓, 新型醫用不銹鋼研究 ,生物醫學工程學雜誌,2006;23(5):1101-1103
    36. 尹鐵英, 藥物塗層支架的研究進展 ,生物醫學工程學雜誌,2005;22(2):389-391
    37. 黃徳清, 血管組織工程的研究及應用進展 ,生物醫學工程學雜誌,2002;19(4):688-691
    38. 朱爱萍, 血管內支架的研究進展 ,生物醫學工程學雜誌,2003;20(3):537-540
    39. 丁珊,李立華, 新型組織工程支架材料 ,生物醫學工程學雜誌,2002;19(1):122-126

    QR CODE