簡易檢索 / 詳目顯示

研究生: 林育成
Yu-cheng Lin
論文名稱: 以靜電紡絲法製備海藻酸、幾丁聚醣、羥基磷灰石及膠原蛋白之複合骨組織支架
Preparation of composite scaffolds from sodium alginate, chitosan, hydroxyapatite and collagen by electrospinning for bone tissue engineering
指導教授: 楊銘乾
Ming-chien Yang
口試委員: 蘇清淵
Ching-iuan Su
于大光
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 91
中文關鍵詞: 靜電紡絲海藻酸幾丁聚醣羥基磷灰石膠原蛋白骨組織支架
外文關鍵詞: electrospinning, alginate, chitosan, hydroxyapatite, collagen, bone tissue scaffolds
相關次數: 點閱:275下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用海藻酸(alginate, AL)與幾丁聚醣(chitosan, CS)做為材料,並運用靜電紡絲(electrospinning)製備具有芯殼結構 (core-sheath structure)之海藻酸-幾丁聚醣(AL-CS)之複合纖維,接著運用兩種方式在電紡纖維結構中添加羥基磷灰石(hydroxyapatite, HAp)無機粒子。此外透過帶正電荷特性之幾丁聚醣,與帶負電荷之海藻酸與膠原蛋白 (collagen, Col)結合形成聚電解質(polyelectrolyte),而製備出具有三層結構之複合電紡纖維 (AL-CS-Col-HAp)及海藻酸-羥基磷灰石-幾丁聚醣-膠原蛋白(AL-HAp-CS-Col)。
    我們對電紡溶液進行黏度測試。接著運用掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)以及雷射共軛焦顯微鏡(CLSM)對電紡纖維進行多種形態學的觀察。隨後,我們將芯殼結構纖維置入多種微環境下進行材料穩定度的評估,以觀察瞭解纖維的結構損失變化情形。最終,在細胞相容性部分,以骨母細胞(hFOB 1.19)和纖維母細胞(L929)做為細胞模型並進行細胞毒性、細胞增生等測試,用以評估其應用在骨材修復之可行性。
    經由實驗結果得知,我們成功製備出海藻酸-幾丁聚醣-膠原蛋白混摻羥基磷灰石 (AL-CS-Col-HAp)之複合式芯殼結構纖維及海藻酸-羥基磷灰石-幾丁聚醣-膠原蛋白(AL-HAp-CS-Col)之複合式芯殼結構纖維。運用掃描式電子顯微鏡與穿透式電子顯微鏡同時觀察到纖維的芯殼結構及HAp粒子大小分佈位置的情形。在穩定度的評估結果顯示,與帶正電荷之幾丁聚醣所形成之聚電解質層,在多種微環境下皆可使膠原蛋白的降解程度大幅降低。體外細胞相容性測試結果,顯示此骨組織支架並無細胞毒性,且細胞貼附量明顯增加。
    由以上之實驗結果得知,本實驗製備之電紡纖維可應用於骨組織工程及其相關之研究上。


    In this study, fibers with a core-shell structure were prepared via electrospinning alginate (AL) into chitosan (CS) solution. Inorganic hydroxyapatite (HAp) particles were added into the resulting fibrous mat. In addition, a third layer of collagen was coated onto the AL-CS composite fibrous mat to form a three-tier structure.
    The viscosity of the electrospinning solution was measured. The morphology of the electrospun mat was examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and laser confocal microscopy (CLSM). The stability of the structure of the fibrous mat was assessed in various media. The cytocompatibility was evaluated with osteoblasts and fibroblasts based on cytotoxicity and cell proliferation.
    Results from SEM and TEM showed that HAp particles were successfully embedded in the AL-CS-Col composite fibrous mat. Stability assessment showed that the release of collagen from the mat was significantly reduced. Cytocompatibility tests showed that the mat exhibited no cytotoxicity, and cells can proliferate on culturing with the mat.
    These results indicate that the AL-CS-Col exhibited positive potential as scaffold for bone tissue engineering.

    中文摘要I 英文摘要III 誌謝IV 目錄V 圖索引VIII 表索引X 名稱縮寫表XI 第一章 緒論1 1.1研究背景1 1.2研究目的2 第二章 文獻回顧3 2.1靜電紡絲3 2.1.1靜電紡絲之起源與原理3 2.1.2靜電紡絲裝置之架設4 2.1.3靜電紡絲之參數5 2.1.4靜電紡絲之應用8 2.2生醫材料11 2.2.1海藻酸11 2.2.2幾丁聚醣13 2.2.3羥基磷灰石15 2.2.4膠原蛋白17 2.3骨生醫材料19 2.4靜電紡絲應用於骨材20 第三章 實驗材料與方法22 3.1實驗藥品22 3.1.1配製模擬體液藥品23 3.1.2包埋藥品24 3.2實驗儀器25 3.3實驗流程27 3.4實驗方法29 3.4.1靜電紡絲架構與參數29 3.4.2靜電紡絲溶液配製30 3.4.3電紡纖維製備31 3.4.4模擬體液配製方法32 3.4.5溶液性質分析33 3.4.5.1流變學特性及黏度33 3.4.6物性分析34 3.4.6.1表面型態觀察34 3.4.6.2螢光顯微鏡35 3.4.6.3 X光繞射35 3.4.6.4降解測試36 3.4.6.5熱重損失分析36 3.4.7細胞相容性37 3.4.7.1細胞培養37 3.4.7.2細胞毒性38 3.4.7.3細胞增生40 第四章 結果與討論41 4.1第一部分AL-CS-Col-HAp41 4.1.1表面型態分析41 4.1.1.1掃描式電子顯微鏡及能量分散譜分析41 4.1.1.2穿透式電子顯微鏡43 4.1.1.3 X光繞射45 4.1.2纖維螢光結構47 4.1.3穩定度測試48 4.1.4熱重損失分析52 4.1.5細胞相容性54 4.1.5.1細胞毒性54 4.1.5.2細胞增生55 4.2第二部分AL-HAp-CS-Col56 4.2.1黏度56 4.2.2表面型態觀察60 4.2.2.1掃描式電子顯微鏡60 4.2.2.2穿透式電子顯微鏡69 4.2.2.3雷射共軛焦顯微鏡71 4.2.3 X光繞射73 4.2.4熱重損失分析75 4.2.5細胞實驗77 4.2.5.1細胞毒性77 4.2.5.2細胞增生79 第五章 結論81 第六章 文獻回顧84 作者簡介91

    [1]陳柏哲, "應用於修補骨缺損之PLGA-HAP-Silica複合支架之研發," 碩士, 化學工程與材枓工程系, 南台科技大學, 台南縣, 2008.
    [2]F. Yang, J. G. C. Wolke, and J. A. Jansen, "Biomimetic calcium phosphate coating on electrospun poly(ɛ-caprolactone) scaffolds for bone tissue engineering," Chemical Engineering Journal, vol. 137, pp. 154-161, 2008.
    [3]H. W. Kim, J. H. Song, and H. E. Kim, "Nanofiber Generation of Gelatin–Hydroxyapatite Biomimetics for Guided Tissue Regeneration," Advanced Functional Materials, vol. 15, pp. 1988-1994, 2005.
    [4]F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. L. Yang, C. Li, and P. Willis, "Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns," Advanced Materials, vol. 15, pp. 1161-1165, 2003.
    [5]M. Li, J. Zhang, H. Zhang, Y. Liu, C. Wang, X. Xu, Y. Tang, and B. Yang, "Electrospinning: A Facile Method to Disperse Fluorescent Quantum Dots in Nanofibers without Forster Resonance Energy Transfer," Advanced Functional Materials, vol. 17, pp. 3650-3656, 2007.
    [6]W. J. Morton, "Method of Dispersing Fluids," United States Patent 705,691, 1902.
    [7]J. F. Cooley, "Apparatus for Electrically Dispersing Fluids," United States Patent 692,631, 1902.
    [8]G. Taylor, "Disintegration of Water Drops in an Electric Field," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 280, pp. 383-397, 1964.
    [9]G. Taylor, "The Force Exerted by an Electric Field on a Long Cylindrical Conductor," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 291, pp. 145-158, 1966.
    [10]G. Taylor, "Electrically Driven Jets," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 313, pp. 453-475, 1969.
    [11]P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers," Journal of Colloid and Interface Science, vol. 36, pp. 71-79, 1971.
    [12]D. H. Reneker and I. Chun, "Nanometre diameter fibres of polymer produced by electrospinning.," Nanotechnology, vol. 7, pp. 216-223, 1996.
    [13]蔡晟豪, "靜電紡絲PVDF混摻F127複合膜作為生醫基材之探討," 碩士, 高分子系, 國立臺灣科技大學, 台北市, 2009.
    [14]徐其全, "靜電紡絲蠶絲蛋白/二氧化鈦奈米纖維薄膜作為生醫敷料之探討," 碩士, 高分子系, 國立臺灣科技大學, 台北市, 2010.
    [15]N. Bhardwaj and S. C. Kundu, "Electrospinning: A fascinating fiber fabrication technique," Biotechnology Advances, vol. 28, pp. 325-347, 2010.
    [16]H. Nie, A. He, J. Zheng, S. Xu, J. Li, and C. C. Han, "Effects of Chain Conformation and Entanglement on the Electrospinning of Pure Alginate," Biomacromolecules, vol. 9, pp. 1362-1365, 2008.
    [17]P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, "Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent," Polymer, vol. 46, pp. 4799-4810, 2005.
    [18]T. J. Sill and H. A. von Recum, "Electrospinning: Applications in drug delivery and tissue engineering," Biomaterials, vol. 29, pp. 1989-2006, 2008.
    [19]C. Mit-uppatham, M. Nithitanakul, and P. Supaphol, "Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter," Macromolecular Chemistry and Physics, vol. 205, pp. 2327-2338, 2004.
    [20]D. Li, Y. Wang, and Y. Xia, "Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films," Advanced Materials, vol. 16, pp. 361-366, 2004.
    [21]J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, "The effect of processing variables on the morphology of electrospun nanofibers and textiles," Polymer, vol. 42, pp. 261-272, 2001.
    [22]C. Zhang, X. Yuan, L. Wu, Y. Han, and J. Sheng, "Study on morphology of electrospun poly(vinyl alcohol) mats," European Polymer Journal, vol. 41, pp. 423-432, 2005.
    [23]O. S. Yordem, M. Papila, and Y. Z. Menceloğlu, "Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology," Materials & Design, vol. 29, pp. 34-44, 2008.
    [24]C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, and Y. H. Park, "Characterization of gelatin nanofiber prepared from gelatin–formic acid solution," Polymer, vol. 46, pp. 5094-5102, 2005.
    [25]J. S. Lee, K. H. Choi, H. D. Ghim, S. S. Kim, D. H. Chun, H. Y. Kim, and W. S. Lyoo, "Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning," Journal of Applied Polymer Science, vol. 93, pp. 1638-1646, 2004.
    [26]Q. P. Pham, U. Sharma, and A. G. Mikos, "Electrospun Poly(ε-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds:  Characterization of Scaffolds and Measurement of Cellular Infiltration," Biomacromolecules, vol. 7, pp. 2796-2805, 2006.
    [27]J. Zhou, C. Cao, and X. Ma, "A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning," International Journal of Biological Macromolecules, vol. 45, pp. 504-510, 2009.
    [28]X. Yuan, Y. Zhang, C. Dong, and J. Sheng, "Morphology of ultrafine polysulfone fibers prepared by electrospinning," Polymer International, vol. 53, pp. 1704-1710, 2004.
    [29]吳孟修, "海藻酸與幾丁聚醣之複合芯殼電紡纖維應用於傷口敷材," 碩士, 材料科學與工程學系, 國立臺灣科技大學, 台北市, 2012.
    [30]D.-H. Kim, H. Lee, Y. K. Lee, J.-M. Nam, and A. Levchenko, "Biomimetic Nanopatterns as Enabling Tools for Analysis and Control of Live Cells," Advanced Materials, vol. 22, pp. 4551-4566, 2010.
    [31]S. Agarwal, J. H. Wendorff, and A. Greiner, "Use of electrospinning technique for biomedical applications," Polymer, vol. 49, pp. 5603-5621, 2008.
    [32]L. Wu, J. Zang, L. A. Lee, Z. Niu, G. C. Horvatha, V. Braxtona, A. C. Wibowo, M. A. Bruckman, S. Ghoshroy, H.-C. zur Loye, X. Li, and Q. Wang, "Electrospinning fabrication, structural and mechanical characterization of rod-like virus-based composite nanofibers," Journal of Materials Chemistry, vol. 21, pp. 8550-8557, 2011.
    [33]A. Cooper, N. Bhattarai, F. M. Kievit, M. Rossol, and M. Zhang, "Electrospinning of chitosan derivative nanofibers with structural stability in an aqueous environment," Physical Chemistry Chemical Physics, vol. 13, pp. 9969-9972, 2011.
    [34]J. M. Holzwarth and P. X. Ma, "Biomimetic nanofibrous scaffolds for bone tissue engineering," Biomaterials, vol. 32, pp. 9622-9629, 2011.
    [35]L. Francis, J. Venugopal, M. P. Prabhakaran, V. Thavasi, E. Marsano, and S. Ramakrishna, "Simultaneous electrospin–electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration," Acta Biomaterialia, vol. 6, pp. 4100-4109, 2010.
    [36]R. G. Schweiger, "Acetylation of Alginic Acid. II. Reaction of Algin Acetates with Calcium and Other Divalent Ions," The Journal of Organic Chemistry, vol. 27, pp. 1789-1791, 1962.
    [37]W. R. Gombotz and S. Wee, "Protein release from alginate matrices," Advanced Drug Delivery Reviews, vol. 31, pp. 267-285, 1998.
    [38]K. Y. Lee and D. J. Mooney, "Alginate: Properties and biomedical applications," Progress in Polymer Science, vol. 37, pp. 106-126, 2012.
    [39]G. Orive, S. K. Tam, J. L. Pedraz, and J.-P. Halle, "Biocompatibility of alginate–poly-l-lysine microcapsules for cell therapy," Biomaterials, vol. 27, pp. 3691-3700, 2006.
    [40]S. M. Jay and W. M. Saltzman, "Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking," Journal of Controlled Release, vol. 134, pp. 26-34, 2009.
    [41]M. Davidovich-Pinhas, O. Harari, and H. Bianco-Peled, "Evaluating the mucoadhesive properties of drug delivery systems based on hydrated thiolated alginate," Journal of Controlled Release, vol. 136, pp. 38-44, 2009.
    [42]Y. Ueyama, K. Ishikawa, T. Mano, T. Koyama, H. Nagatsuka, K. Suzuki, and K. Ryoke, "Usefulness as guided bone regeneration membrane of the alginate membrane," Biomaterials, vol. 23, pp. 2027-2033, 2002.
    [43]H. Zhou and H. H. K. Xu, "The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering," Biomaterials, vol. 32, pp. 7503-7513, 2011.
    [44]I. Freeman and S. Cohen, "The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization," Biomaterials, vol. 30, pp. 2122-2131, 2009.
    [45]B. Balakrishnan, M. Mohanty, P. R. Umashankar, and A. Jayakrishnan, "Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin," Biomaterials, vol. 26, pp. 6335-6342, 2005.
    [46]L. A. Pfister, E. Alther, M. Papaloizos, H. P. Merkle, and B. Gander, "Controlled nerve growth factor release from multi-ply alginate / chitosan - based nerve conduits," European Journal of Pharmaceutics and Biopharmaceutics, vol. 69, pp. 563-572, 2008.
    [47]S. K. Tusi, L. Khalaj, G. Ashabi, M. Kiaei, and F. Khodagholi, "Alginate oligosaccharide protects against endoplasmic reticulum- and mitochondrial-mediated apoptotic cell death and oxidative stress," Biomaterials, vol. 32, pp. 5438-5458, 2011.
    [48]李遠豐, "蟹殼膠特性應用及其生產技術," 生物產業, vol. 9, pp. 27-37, 1998.
    [49]I.-Y. Kim, S.-J. Seo, H.-S. Moon, M.-K. Yoo, I.-Y. Park, B.-C. Kim, and C.-S. Cho, "Chitosan and its derivatives for tissue engineering applications," Biotechnology Advances, vol. 26, pp. 1-21, 2008.
    [50]S.-i. Aiba, "Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans," International Journal of Biological Macromolecules, vol. 14, pp. 225-228, 1992.
    [51]C. K. S. Pillai, W. Paul, and C. P. Sharma, "Chitin and chitosan polymers: Chemistry, solubility and fiber formation," Progress in Polymer Science, vol. 34, pp. 641-678, 2009.
    [52]H. Zhang and S. H. Neau, "In vitro degradation of chitosan by bacterial enzymes from rat cecal and colonic contents," Biomaterials, vol. 23, pp. 2761-2766, 2002.
    [53]L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu, and C. Han, "Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering," Biomaterials, vol. 24, pp. 4833-4841, 2003.
    [54]T. Kean and M. Thanou, "Biodegradation, biodistribution and toxicity of chitosan," Advanced Drug Delivery Reviews, vol. 62, pp. 3-11, 2010.
    [55]陳淑娟, "評估利用含有骨生長因子(rhBMP-2)之膠原蛋白/氫氧基磷灰石微粒做為骨填補材料對骨修復之能力," 碩士, 醫學工程研究所, 國立陽明大學, 台北市, 2003.
    [56]江怡雯, "生物可吸收性的多孔質聚左乳酸/氫氧基磷灰石複合材的製備及其性質之探討," 碩士, 醫學研究所, 台北醫學院, 台北市, 2000.
    [57]K. Nakamura, T. Koshino, and T. Saito, "Osteogenic response of the rabbit femur to a hydroxyapatite thermal decomposition product–fibrin glue mixture," Biomaterials, vol. 19, pp. 1901-1907, 1998.
    [58]W. K. Harvey, J. L. Pincock, V. J. Matukas, and J. E. Lemons, "Evaluation of a subcutaneously implanted hydroxylapatite-avitene mixture in rabbits," Journal of Oral and Maxillofacial Surgery, vol. 43, pp. 277-280, 1985.
    [59]M. Nagase, R.-B. Chen, Y. Asada, and T. Nakajima, "Radiographic and microscopic evaluation of subperiosteally implanted blocks of hydrated and hardened α-tricalcium phosphate in rabbits," Journal of Oral and Maxillofacial Surgery, vol. 47, pp. 582-586, 1989.
    [60]A. Sugaya, M. Minabe, T. Tamura, T. Hori, and Y. Watanabe, "Effects on wound healing of hydroxyapatite-collagen complex implants in periodontal osseous defects in the dog," Journal of Periodontal Research, vol. 24, pp. 284-288, 1989.
    [61]R. D. Harkness, "Biological functions of collagen," Biological Reviews, vol. 36, pp. 399-455, 1961.
    [62]藍正文, "膠原蛋白做為骨母細胞分離與生長基材之研究," 博士, 醫學工程研究所, 國立陽明大學, 台北市, 2003.
    [63]J. R. Deatherage and E. J. Miller, "Packaging and Delivery of Bone Induction Factors in a Collagenous Implant," Collagen and Related Research, vol. 7, pp. 225-231, 1987.
    [64]S. Boyce, "Skin substitutes from cultured cells and collagen-GAG polymers," Medical and Biological Engineering and Computing, vol. 36, pp. 791-800, 1998.
    [65]E. J. Orwin and A. Hubel, "In Vitro Culture Characteristics of Corneal Epithelial, Endothelial, and Keratocyte Cells in a Native Collagen Matrix," Tissue Engineering, vol. 6, pp. 307-319, 2000.
    [66]M. Murata, B.-Z. Huang, T. Shibata, S. Imai, N. Nagai, and M. Arisue, "Bone augmentation by recombinant human BMP-2 and collagen on adult rat parietal bone," International Journal of Oral & Maxillofacial Surgery, vol. 28, pp. 232-237, 1999.
    [67]K. Takaoka, H. Nakahara, H. Yoshikawa, K. Masuhara, T. Tsuda, and K. Ono, "Ectopic Bone Induction on and in Porous Hydroxyapatite Combined with Collagen and Bone Morphogenetic Protein," Clinical Orthopaedics and Related Research, vol. 234, pp. 250-254, 1988.
    [68]S. T. Li, "Collagen biotechnology and its medical applications," Biomed. Eng. Appl. Basis Comm., vol. 5, pp. 646-657, 1993.
    [69]洪敏雄, 林峰輝, and 王盈錦, "生醫陶瓷," 陶瓷技術手冊, vol. 31, 1994.
    [70]林倩如, "氫氧基磷灰石/膠原蛋白/透明質酸複合微粒對於間葉幹 細胞骨分化之影響," 碩士, 生物科技研究所碩博士班, 國立成功大學, 台南市, 2009.
    [71]G. Daculsi, "Biotechnology for Calcium Phosphate Bioactive Ceramics in Bone Repair," The Chinese Society for Materials, 1999.
    [72]J.-H. Jang, O. Castano, and H.-W. Kim, "Electrospun materials as potential platforms for bone tissue engineering," Advanced Drug Delivery Reviews, vol. 61, pp. 1065-1083, 2009.
    [73]F. Peng, X. Yu, and M. Wei, "In vitro cell performance on hydroxyapatite particles/poly(l-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation," Acta Biomaterialia, vol. 7, pp. 2585-2592, 2011.
    [74]R. Ravichandran, J. R. Venugopal, S. Sundarrajan, S. Mukherjee, and S. Ramakrishna, "Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage," Biomaterials, vol. 33, pp. 846-855, 2012.
    [75]Y. Zhang, J. R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, and C. T. Lim, "Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering," Biomaterials, vol. 29, pp. 4314-4322, 2008.
    [76]M. Ngiam, S. Liao, A. J. Patil, Z. Cheng, C. K. Chan, and S. Ramakrishna, "The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering," Bone, vol. 45, pp. 4-16, 2009.
    [77]A. S. Asran, S. Henning, and G. H. Michler, "Polyvinyl alcohol – collagen – hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level," Polymer, vol. 51, pp. 868-876, 2010.
    [78]S. Tamilselvi, V. Raman, and N. Rajendran, "Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy," Electrochimica Acta, vol. 52, pp. 839-846, 2006.
    [79]J.-J. Chang, Y.-H. Lee, M.-H. Wu, M.-C. Yang, and C.-T. Chien, "Preparation of electrospun alginate fibers with chitosan sheath," Carbohydrate Polymers, vol. 87, pp. 2357-2361, 2012.

    無法下載圖示 全文公開日期 2015/07/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE