簡易檢索 / 詳目顯示

研究生: 張榮志
Jung-Jhih Chang
論文名稱: 靜電紡絲製備海藻酸-幾丁聚醣芯殼結構纖維之探討及其在抗組織沾黏之應用
Electrospinning of alginate/chitosan sheath-core fibers and the application as anti-adhesion barrier
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 李振綱
none
鄭劍廷
none
簡雄飛
none
徐世平
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 184
中文關鍵詞: 靜電紡絲幾丁聚醣海藻酸芯殼結構抗組織沾黏
外文關鍵詞: Electrospinning, chitosan, alginate, sheath-core structure, anti-tissue adhesion
相關次數: 點閱:242下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 手術後沾黏的產生長久以來便嚴重困擾著醫病雙方,近期以抗沾黏膜預防與減少沾黏組織的產生,已成為外科領域之重要議題。但現有的抗沾黏膜價格昂貴、操作不便與降解過快等缺點也困擾其廣泛運用。所以,我們利用價格較低廉之天然素材結合新穎之靜電紡絲技術以開發新奈米級抗沾黏纖維膜。本研究將分為製備靜電紡絲抗沾黏膜與評估抗沾黏膜功效等兩個部份加以探討。
    首先,我們以海藻酸 (Alginate)和幾丁聚醣 (Chitosan)作為材料運用靜電紡絲技術 (Electrospinning)製作芯殼結構 (Core-sheath structure)電紡纖維膜,並對其電紡溶液進行黏度、表面張力、導電度與比重性質的測試。接著探討不同比例的幾丁聚醣凝固液對電紡纖維外觀成型的影響。同時在海藻酸與幾丁聚醣分子鏈上以螢光分子進行修飾並運用雷射共軛焦顯微鏡觀察各組成成分在單根芯殼結構纖維的分佈情況。在靜電紡絲製成參數條件部分針對海藻酸濃度、工作電壓與流速等進行深入探討,並統計分析。隨後,評估芯殼結構纖維在生理環境下的崩解行為。
    在評估抗沾黏膜功效部份,我們運用掃描式電子顯微鏡觀察其表面型態,並評估其質量損失及吸水性質。然後進行血液相容性與抗氧化性等評估。在細胞相容性的部份包含細胞行為分析儀、細胞毒性、細胞增生與細胞凋亡等數項分析。最後進行動物植入試驗並觀察其受傷部位沾黏情形,同時取下其組織進行病理組織學的觀察。
    結果顯示,我們成功製備海藻酸-幾丁聚醣芯殼結構纖維。並可藉由調控靜電紡絲參數包括濃度、工作電壓以及流速等,得到不同纖維尺寸 (587-935 nm)的電紡纖維。同時成功運用掃描式電子顯微鏡觀察到纖維表面型態。同時,以雷射共軛焦顯微鏡成功觀察單根芯殼纖維,其殼層分佈紅色訊號的幾丁聚醣與芯層綠色訊號的海藻酸。海藻酸-氯化鈣 (AL-CaCl2)和海藻酸-幾丁聚醣 (AL-ChS)都具有良好的吸水性質 (1800 %和990 %),可以提供較柔軟的水膠層。在體外崩解評估結果發現,海藻酸-幾丁聚醣具有比海藻酸-氯化鈣更緩慢長效的崩解特性。此外,海藻酸-幾丁聚醣對血球細胞成份包括白血球、紅血球、血小板、血紅素與血比容數值等並不會造成影響。抗氧化的部份,海藻酸-氯化鈣會增加腹腔灌洗液與沾黏組織的活性氧數量,而海藻酸-幾丁聚醣則會降低腹腔灌洗液與沾黏組織所增加的活性氧數量。在細胞相容性的評估,我們藉由細胞行為分析儀與MTT的結果發現以海藻酸-氯化鈣會增加纖維母細胞增生,而幾丁聚醣為殼層的海藻酸-幾丁聚醣具有減緩纖維母細胞增生的能力。細胞凋亡的測試結果顯示,與海藻酸-氯化鈣共培養的纖維母細胞在細胞凋亡的比例為1.7 %。而,海藻酸-幾丁聚醣共培養的纖維母細胞之細胞凋亡的比例為12.4 %。在動物實驗的結果發現,觀察沾黏程度高分群 (2分和3分加總區)的比例發現,未處理組別和海藻酸-氯化鈣組別分別為90 %和80 %,而海藻酸-幾丁聚醣組別則降低到30 %,同時有40 %的動物沒有發生沾黏現象。在腹腔中植入海藻酸-幾丁聚醣抗沾黏膜後,沾黏的程度顯著改善。病理組織的觀察也發現海藻酸-幾丁聚醣組別處理的沾黏組織與結締組織的厚度較未處理組別與海藻酸-氯化鈣組別薄。海藻酸-幾丁聚醣組別處理的沾黏組織內之浸潤白血球數量也比未處理組別與海藻酸-氯化鈣組別少。歸納上述的實驗結果後,我們認為此海藻酸-幾丁聚醣芯殼結構抗組織沾黏纖維膜確實具有成為抗手術後沾黏的醫學應用潛力。


    In this study, novel anti-adhesion mat made of chitosan (ChS) and alginate (AL) were fabricated via electrospinning. The electrospinning parameters were varied to investigate the effect of each parameter on the performance of the mats. The viscosity, electrical conductivity, surface tension, and specific gravity of the spinning dope were measured. These fibers exhibited a sheath-core structure that was revealed using a confocal laser scanning microscope (CLSM) and fluorescence-labeled polymers. The morphology of electrospun mat was examined using a field-emission scanning electron microscope (FE-SEM) for the fiber size. The average diameter of the fibers ranged from 600 to 900 nm depending on the electrospinning parameters.
    To mimic the stability of alginate fibers in physiological fluids, the release of alginate from these fibers in normal saline and DMEM solution was also tested. The results demonstrated that the sheath-core structure of alginate fiber can greatly reduce the degradation by 40% for 3 days in physiological environment. In addition, the degree of disintegration in DMEM for chitosan alginate (AL-ChS) mat was 64% of that of conventional calcium alginate (AL-CaCl2) mat after 5 days. The swelling ratio, complete blood count (CBC), and reactive oxygen species (ROS) were evaluated against the anti-adhesion barrier. The results of CBC and ROS tests showed that no adverse effect was observed for these anti-adhesion barriers. Tissue anti-adhesion potential was evaluated with in vitro cell adhesion model and in vivo rat model. About 40% of the animals treated with chitosan alginate exhibited no tissue adhesion between injured peritoneum and cecum. Both macroscopic and histological observations showed that chitosan alginate mat was highly effective in reducing the formation of postoperative abdominal adhesions in vivo. Therefore, electrospun chitosan alginate mat could be a tissue anti-adhesion barrier owing to its efficient tissue anti-adhesion performance.

    中文摘要 I Abstract III 目錄 V 圖索引 XIV 第一章 緒論 (Introduction) 1 1.1. 研究背景 (Background) 1 1.2. 研究目的 (Purpose) 2 第二章 文獻回顧 (Literature review) 3 2.1. 靜電紡絲 (Electrospinning) 3 2.1.1. 歷史起源 (History) 3 2.1.2. 靜電紡絲原理 (Theory) 4 2.1.3. 靜電紡絲設備種類 (Type of electrospinning) 5 2.1.4. 製程參數對靜電紡絲纖維之影響 (Effect of process parameters on the electrospinning fibers) 9 2.1.5. 溶劑選擇 (Selection of solvents ) 17 2.2. 靜電紡絲應用範疇 (Application of electrospinning) 18 2.3. 海藻酸 (Alginate, AL) 31 2.3.1. 簡介 (Introduction) 31 2.3.2. 生物特性與應用領域 (Biological properties and application field) 33 2.3.3. 海藻酸:靜電紡絲纖維 (Electrospinning of alginate) 33 2.4. 幾丁聚醣 (Chitosan, ChS) 37 2.4.1. 簡介 (Introduction) 37 2.4.2. 生物特性與生物降解 (Biological properties and biodegradable) 38 2.4.3. 生物分佈 (Biodistribution) 39 2.4.4. 生物毒性 (Biological toxicity) 42 2.4.5. 製備與應用領域 (Preparation and application) 43 2.4.6. 幾丁聚醣:靜電紡絲纖維 (Electrospinning of chitosan) 46 2.5. 組織沾黏 (Tissue adhesion) 50 2.5.1. 歷史與發生率 (History and incidence) 50 2.5.2. 腹膜結構與功能 (Structure and function of peritoneum) 51 2.5.3. 腹膜癒合與沾黏形成的發病機制 (Peritoneal healing and adhesion formation) 52 2.5.4. 氧化壓力對組織沾黏的影響 (Effect of oxidative stress in the tissue adhesion) 55 2.5.5. 組織沾黏的治療策略 (Weapons of a surgeon to prevent peritoneal adhesions) 57 第三章 靜電紡絲製備芯殼結構纖維 68 3.1. 實驗與方法 (Materials and methods) 68 3.1.1. 實驗材料 (Materials) 68 3.1.2. 實驗設備 (Equipments) 68 3.1.3. 實驗流程圖 70 3.1.4. 實驗方法 (Methods) 71 3.1.4.1. 靜電紡絲模型建立 (Electrospinning model) 71 3.1.4.2.靜電紡絲溶液與特性分析 (Preparation and properties of solutions) 72 3.1.4.3. 製備芯殼結構纖維 (Preparation of sheath-core structure fibers) 73 3.1.4.4. 螢光分子修飾高分子步驟 (Fluorescence staining of polymers) 74 3.1.4.5. 芯殼纖維結構與表面型態觀察 (Fluorescence microscopic and scanning emission microscope observation of sheath-core structure fiber) 75 3.1.4.6. 結構穩定度試驗 (Stability test) 75 3-2 實驗結果與討論 (Results and discussion) 77 3.2.1. 溶液性質分析 (Properties of electrospinning solution) 77 3.2.2. 凝固液成分對靜電紡絲纖維成絲性之效應 (Effect of coagulating solution on fiber morphology) 78 3.2.3. 螢光觀察靜電紡絲纖維之微觀結構 (Fluorescence microscopic observation of sheath-core structure fiber) 81 3.2.4. 靜電紡絲參數差異對纖維外觀之影響(Effect of process parameters on the electrospinning fibers) 84 3.2.5. 穩定度評估 (Stability test) 90 第四章 海藻酸與幾丁聚醣抗沾黏膜運用於腹腔沾黏之探討 92 4.1. 實驗與方法 (Materials and methods) 92 4.1.1. 實驗材料 (Materials) 92 4.1.2. 實驗設備 (Equipments) 94 4.1.3. 實驗流程圖 95 4.1.4. 實驗方法 (Methods) 96 4.1.4.1. 抗沾黏膜製備 (Preparation of anti-adhesion barrier) 96 4.1.4.2. 結構型態分析 (Characterization) 97 4.1.4.3. 電紡纖維的吸水性質 (Swelling behavior of electrospinning mats) 97 4.1.4.4. 體外電紡膜崩解測試 (In vitro disintegration of ES mat) 98 4.1.4.5. 血液常規檢測 (complete blood count, CBC) 98 4.1.4.6. 抗氧化能力之評估 (Antioxidant ability of measurement) 99 4.1.4.7. 細胞試驗 (Cell culture) 101 4.1.4.8. 動物植入測試 (Animal study) 104 4.1.4.9. 組織學觀察 (Histological analysis) 105 4.2. 實驗結果與討論 (Results and discussion) 107 4.2.1. 抗沾黏膜的結構型態 (Morphology of ES mats) 107 4.2.2. 吸水性質 (Swelling ratio of electrospinning mats) 109 4.2.3. 體外崩解測試 (In vitro disintegration test) 110 4.2.4. 血液常規檢測與血小板吸附 (The complete blood cell count assay and platelet adsorption) 112 4.2.5. 抗氧化能力評估 (Antioxidant ability of electrospinning mats) 114 4.2.6. 細胞相容性評估 (Evaluation of cytocompatibility) 118 4.2.6.1. 細胞行為分析儀 (Electric cell-substrate impedance sensing , ECISTM) 118 4.2.6.2. 細胞毒性 (In vitro cytotoxicity of ES mats) 120 4.2.6.3. 細胞增生 (Cell proliferation tset) 121 4.2.6.4. 細胞凋亡評估 ( Cell apoptosis evaluation) 123 4.2.7. 體內動物實驗 (In vivo application and evaluation of peritoneal adhesion prevention efficacy) 127 4.2.8. 病理組織學觀察 (Histological analysis) 129 第五章 結論 131 第六章 參考文獻 133 作者簡介 165

    [1] Huang, Z. M., Zhang, Y. Z., Kotaki, M., and Ramakrishna, S., “A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites” , Composites Science and Technology, Vol. 63, pp. 2223-2253 (2003)
    [2] Agarwal, S., Wendorff, J. H., and Greiner, A., “Use of Electrospinning Technique for Biomedical Applications” , Polymer, Vol. 49, pp. 5603-5621 (2008)
    [3] Rutledge, G. C., and Fridrikh, S. V., “Formation of Fibers by Electrospinning” , Advanced Drug Delivery Reviews, Vol. 59, pp. 1384-1391 (2007)
    [4] Sill,T. J., and von Recum, H. A., “Electrospinning: Applications In Drug Delivery and Tissue Engineering” , Biomaterials, Vol. 29, pp. 1989-2006 (2008)
    [5] Cooley, J. F., “Apparatus for Electrically Dispersing Fluids” , U. S. Pat. No. 692,631 (1902)
    [6] Morton, W. J., “Method of Dispersing Fluids” , U. S. Pat. No. 705,691, (1902)
    [7] Anton, F., “Process and Apparatus for Preparing Artificial Threads” , U. S. Pat. No. 1,975,504, (1934)
    [8] Anton, F., “Method and Apparatus for Spinning” , U. S. Pat. No. 2,160,962, (1939)
    [9] Anton, F., “Artificial Thread and Method of Producing Same” , U. S. Pat. No. 2,187,306, (1940)
    [10] Anton, F., “Production of Artificial Fibers from Fiber Forming Liquids” , U. S. Pat. No. 2,323,025, (1943)
    [11] Anton, F., “Method and Apparatus for Spinning” , U. S. Pat. No. 2,349,950, (1944)
    [12] Taylor, G., “Disintegration of Water Drops in an Electric Field” , Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 280, pp. 383-397 (1964)
    [13] Taylor, G.,. “The Force Exerted by an Electric Field on a Long Cylindrical Conductor” , Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 291, pp. 145-158 (1966)
    [14] Taylor, G.,. “Electrically Driven Jets” , Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 313, pp. 453-475 (1969)
    [15] Baumgarten, P. K., “Electrostatic Spinning of Acrylic Microfibers” , Journal of Colloid and Interface Science, Vol. 36, pp. 71-79 (1971)
    [16] Ramakrishna, S., Fujuhara, K., Teo, W. E., Yong, T., Ma, Z., and Ramaseshan, R., “Electrospun Nanofibers: Solving Global Issues” , Materials Today, Vol. 9, pp. 40-50 (2006)
    [17] Bhardwaj, N., and Kundu, S. C., ”Electrospinning: a Fascinating Fiber Fabrication Technique” , Biotechnology Advances, Vol. 28, pp. 325-347 (2010)
    [18] Deitzel, J. M., Kleinmeyer, J. D., Hirvonen, J. K., and Beck Tan, N. C., “Controlled Deposition of Electrospun Poly(ethylene oxide) Fibers” , Polymer, Vol. 42, pp. 8163-8170 (2001)
    [19] Qi, H., Hu, P., Xu, J., and Wang, A., “Encapsulation of Drug reservoirs in Fibers by Emulsion Electrospinning: Morphology Characterization and Preliminary Release Assessment” , Biomacromolecules, Vol. 7, pp. 2327-2330 (2006)
    [20] Chang, G., and Shen, J., “Fabrication of Microropes via Bi-electrospinning with a Rotating Needle Collector” , Macromolecular Rapid Communications, Vol. 31, pp. 2151-2154 (2010)
    [21] Agarwal, S., Wendorff, J. H., and Greiner, A., “Progress in the Field of Electrospinning for Tissue Engineering Applications” , Advanced Materials, Vol. 21, pp. 3343-3351 (2009)
    [22] Jeong, S. I., Krebs, M. D., Bonino, C. A., Samorezov, J. E., Khan, S. A., and Alsberg, E., “Electrospun Chitosan-Alginate Nanofiers with in situ Polyelectrolyte Complexation for Use as Tissue Engineering Scaffolds” , Tissue Engineering: Part A, Vol. 1&2, pp. 59-70 (2011)
    [23] Wang, N., Chen, H., Lin, L., Zhao, Y., Cao, X., Song, Y., and Jiang, L., “Multicomponent Phase Change Microfibers Prepared by Temperature Control Multifluidic Electrospinning” , Macromolecular Rapid Communications, Vol. 31, pp. 1622-1627 (2010)
    [24] Xie, J., Li, X., and Xia, Y., “Putting Electrospun Nanofibers to Work for Biomedical Research” , Macromolecular Rapid Communications, Vol. 29, pp. 1775-1792 (2008)
    [25] Zhang, Y. Z., Venugopal, J., Huang, Z. M., Lim, C. T., and Ramakrishna, S., “Characterization of the Surface Biocompatibility of the Electrospun PCL-collagen Nanofibers Using Fibroblasts” , Biomacromolecules, Vol. 6, pp. 2583-2589 (2005)
    [26] Lu, B., Wang, Y., Liu, Y., Duan, H., Zhou, J., Zhang, Z., Wang, Y., Li, X., Wang, W., Lan, W., and Xie, E., “Superhigh-Throughput Needleless Electrospinning Using a Rotary Cone as Spinneret” , Small, Vol. 6, pp. 1612-1616 (2010)
    [27] Nie, H., He, A., Zheng, J., Xu, S., Li, J., and Han, C. C., “Effects of Chain Conformation and Entanglement on the Electrospinning of Pure Alginate” , Biomacromolecules, Vol. 9, pp. 1362-1365 (2008)
    [28] Xie, J., MacEwan, M. R., Ray, W. Z., Liu, W., Siewe, D. Y., and Xia, Y., “Radially Aligned, Electrospun Nanofibers as Dural Substitutes for Wound Closure and Tissue Regeneration Applocations” , ACS Nano, Vol. 4, pp. 5027-5036 (2010)
    [29] Liu, Y., Ma, G., Fang, D., Xu, J., Zhang, H., and Nie, J., “Effects of Solution Properties and Electric Field on the Electrospinning of Hyaluronic Acid” , Carbohydrate Polymers, Vol. 83, pp. 1011-1015 (2011)
    [30] Thorvaldsson, A., Stenhamre, H., Gatenholm, P., and Walkenstrom, P., “Electrospinning of High Poros Scaffolds for Cartilage Regeneration” , Biomacromolecules, Vol. 9, pp. 1044-1049 (2008)
    [31] Mattherws, J. A., Wnek, G. E., Simpson, D. G., and Bowlin, G. L., “Electrospinning of Collagen Nanofibers” , Biomacromolecules, Vol. 3, pp. 232-238 (2002)
    [32] Son, W. K., Youk, J. H., and Park, W. H., “Preparation of Ultrafine Oxidized Cellulose Mats via Electrospinning” , Biomacromolecules, Vol. 5, pp. 197-201 (2004)
    [33] Boland, E. D., Coleman, B. D., Barnes, C. P., Simpson, D. G., Wnek, G. E., Bowlin, G. L., “Electrospinning Polydioxanone for Biomedical Applications” , Acta Biomaterialia, Vol. 1, pp. 115-123 (2005)
    [34] Zhu, X., Cui, W., Li, X., and Jin, Y., “Electrospun Fibrous Mats with High Porosity as Potential Scaffolds for Skin Tissue Engineering” , Biomacromolecules, Vol. 9, pp. 1795-1801 (2008)
    [35] Theron, A., Zussman, E., and Yarin, A. L., “Electrostatic Field-assisted Alignment of Electrospun Nanofibres” , Nanotechnology, Vol. 12, pp. 384-390 (2001)
    [36] Wang, F., Li, Z., Tamama, K., Sen, C. K., and Guan, J., “Fabrication and Characterization of Prosurvival Growth Factor Releasing, Anisotropic Scaffolds for Enhanced Mesenchymal Stem Cell Survival/growth and Orientation” , Biomacromolecules, Vol. 10, pp. 2609-2618 (2009)
    [37] Hong, Y., Fujimoto, K., Hashizume, R., Guan, J., Stankus, J. J., Tobita, K., and Wagner, W. R., “Generating Elastic, Biodegradable Polyurethane/poly(lactide-co-glycolide) Fibrous Sheets with Controlled Antibiotic Release via Two-stram Electrospinning” , Biomacromolecules, Vol. 9, pp. 1200-1207 (2008)
    [38] Sundararaghavan, H. G., and Burdick, J. A., “Gradients with Depth in Electrospun Fibrous Scffolds for Directed Cell Behavior” , Biomacromolecules, Vol. 12, pp. 2344-2350 (2011)
    [39] Kim, C. W., Kim, D. S., Kang, S. Y., Marquez, M., and Joo, Y. L., “Structural Studies of Electrospun Cellulose Nanofibers” , Polymer, Vol. 47, pp. 5097-5107 (2006)
    [40] Beachley, V., Wen X., “Effect of Electrospinning Parameters on the Nanofiber Diameter and Length” , Materials Science and Engineering C, Vol. 29, pp. 663-668 (2009)
    [41] Liu, Y., Dong, L., Fan, J., Wang, R., Yu, J. Y., “Effect of Applied Voltage on Diameter and Morphology of Ultrafine Fibers in Bubble Electrospinning” , Journal of Applied Polymer Science, Vol. 120, pp. 592-598 (2011)
    [42] Megelski, S., Stephens, J. S., Chase, D. B., and Rabolt, J. F., “Micro- and Nanostructured Surface Norphology on Electrospun Polymer Fibers” , Macromolecules, Vol. 35, pp. 8456-8466 (2002)
    [43] Ki, C. S., Beak, D. H., Gang, K. D., Lee, K. H., Um, I. C., and Park, Y. H., “Characterization of Gelatin Nanofiber Pepared from Gelatin-formic Acid Solution” , Polymer, Vol. 46, pp. 5094-5102 (2005)
    [44] Gupta, P., Elkins, C., Long, T. E., and Wilkes, G. L., “Electrospinning of Linear Homopolymers of Poly (methylmethacrylate): Exploring Relationships Between Fiber Frmation, Viscosity, Molecular Weight and Concentration in a Good Solvent” , Polymer, Vol. 46, pp. 4799-4810 (2005)
    [45] McKee, M. G., Layman, J. M., Cashion, M. P., Long, T. E., “Phospholipid Nonwoven Electrospun Membranes” , Science, Vol. 311, pp. 353-355 (2006)
    [46] Doshi, J., and Reneker, D. H., “Electrospinning Process and Applications of Electrospun Fbers” , Journal of Electrostatics, Vol. 35, pp. 151-156 (1995)
    [47] Deitzel, J. M., Kosik, W., McKnight, S. H., and Ten, N. C. B., Desimone, J. M., Crette, S., “Electrospinning of Polymer Nanofibers with Specific Surface Chemistry” , Polymer, Vol. 43, pp. 1025-1029 (2002)
    [48] Ohkawa, K., Minato, K. I., Kumagai, G., Hayashi, S., and Yamamoto, H., “Chitosan Nanofiber” , Biomacromolecules, Vol. 7, pp. 3291-3294 (2006)
    [49] Chen, C., Chuanbao, C., Xilan, M., Yin, T., and Hesun, Z., “Preparation of Non-woven Mats From All-aqueous Silk Fibroin Solution with Electrospinning Method” , Polymer, Vol. 47, pp. 6322-6327 (2006)
    [50] Lu, J. W., Zhu, L. Y., Guo, Z. X., Hu, P., and Yu, J., “Electrospinning of Sodium Alginate with Poly(ethylene oxide)” , Polymer, Vol. 47, pp. 8026-8031 (2006)
    [51] Hohman, M. M., Shin, M., Rutledge, G., and Brenner, M. P., “Electrospinning and Electrically Forced Jets II Applications” , Physics Fluids, Vol. 13, pp. 2221-2236 (2001)
    [52] Bonino, C. A., Krebs, M. D., Saquing, C. D., Jeong, S. I., Shearer, K. L., Alsberg, E., Khan and, S. A., “Electrospinning Alginate-based Nanofibers: From Blends to Crosslinked Low Molecular Weight Alginate-only Systems” , Carbohydrate Polymers, Vol. 85, pp. 111-119 (2011)
    [53] Hayati, I., Bailey, A. I., and Tadros, T. F., “Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids. I. Effect of Electric-field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and Atomization” , Journal of Colloid and Interface Science, Vol. 117, pp. 205-221 (1987)
    [54] Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., and Chu, B., “Structure and Process Relationship of Electrospun Bioadsorbable Nanofiber Membrane” , Polymer, Vol. 439, pp. 4403-4412 (2002)
    [55] Reneker, D. H., and Chun, L., “Nanometre Diameters of Polymer, Produced by Electrospinning” , Nanotechnology, Vol. 7, pp. 216-223 (1996)
    [56] Zhang, C., Yuan, X., Wu, L., Han, Y., andSheng, J., “Study on Morphology of Electrospun Poly(vinyl alcohol) Mats” , European Polymer Journal, Vol. 41, pp. 423-432 (2005)
    [57] Deitzel, J. M., Kleinmeyer, J., Harris, D., and Tan, N. C. B., “The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles” , Polymer, Vol. 42, pp. 261-272 (2001)
    [58] Yordem, O. S., Papila, M., and Menceloğlu, Y. Z., “Effects of Electrospinning Parameters on Polyacrylonitrile Nanofiber Diameter: an Investigation by Response Surface Methodology” , Materials & Design, Vol. 29, pp. 34-44 (2008)
    [59] Yuan, X. Y., Zhang, Y. Y., Dong, C. H., and Sheng, J., “Morphology of Ultrafine Polysulfone Fibers Prepared by Electrospinning” , Polymer International, Vol. 53, pp. 1704-1710 (2004)
    [60] Zhou, J., Cao, C., Ma, X., “A novel Three-dimensional Tubular Scaffold Prepared From Silk Fibroin by Electrospinning” , International Journal of Biological Macromolecules, Vol. 45, pp. 504-510 (2009)
    [61] Lee, J. S., Choi, K. H., Ghim, H. D., Kim, S. S., Chun, D. H., and Kim, H. Y., “Role of Molecular Weight of a Tactic Poly(vinyl alcohol) (PVA) in the Structure and Properties of PVA Nanofabric Prepared by Electrospinning” , Journal of Applied Polymer Science, Vol. 93, pp. 1638-1646 (2004)
    [62] Pham, Q. P., Sharma, U., and Mikos, A. G., “Electrospun Poly(ε-caprolactone) Microfiber and Multilayer Nanofiber/microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration” , Biomacromolecules, Vol. 7, pp. 2796-2805 (2006)
    [63] Mit-uppatham, C., Nithitanakul, M., and Supaphol, P., “Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter” , Macromolecular Chemistry and Physics, Vol. 205, pp. 2327-2338 (2004)
    [64] Li, D., Wang, Y., and Xia, Y., “Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layerby-layer Stacked Films” , Advanced Materials, Vol. 16, pp. 361-366 (2004)
    [65] Luo, C. J., Nangrejo, M., and Edirisinghe, M., “A Novel Method of Selecting Solvents for Polymer Electrospinning” , Polymer, Vol. 51, pp. 1654-1662 (2010)
    [66] Powell, H. M., Supp, D. M., and Boyce, S. T., “Influence of Electrospun Collagen on Wound Contraction of Engineered Skin Substitutes” , Biomaterials, Vol. 29, pp. 834-843 (2008)
    [67] Jeong, S. I., Krebs, M. D., Bonino, C. A., Khan, S. A., and Alsberg, E., “Electrospun Alginate Nanofibers with Controlled Cell Adhesion for Tissue Engineering” , Macromolecular Bioscience, Vol. 10, pp. 934-943 (2010)
    [68] Xu, X., Chen, X., Ma, P., Wang, X., Jing, X., “The Release Behavior of Doxorubicin Hydrochloride from Medicated Fibers Prepared by Emulsion-electrospinning” , European Journal of Pharmaceutics and Biopharmaceutics, Vol. 70, pp. 165-170 (2008)
    [69] Luu, Y. K., Kim, K., Hsiao, B. S., Chu, B., and Hadjiargyrou, M., “Development of a Nanostructured DNA Delivery Scaffold via Electrospinning of PLGA and PLA-PEG Block Copolymers” , Journal of Controlled Release, Vol. 89, pp. 341-353 (2003)
    [70] Yoo, H. S., Kim, T. G., and Park, T. G., “Surface-functionalized Electrospun Nanofibers for Tissue Engineering and Drug Delivery” , Advanced Drug Delivery Reviews, Vol. 61, pp. 1033-1042 (2009)
    [71] Park, C. G., Kim, E., Park, M., Park, J. H., and Choy, Y. B., “A Nanofibrous Sheet-based System for Linear Delivery of Nifedipine” , Journal of Controlled Release, Vol. 149, pp. 250-257 (2011)
    [72] Park, Y., Kang, E., Kwon, O., Hwang, T., Park, H., Lee, J. M., Kim, J. H., and Yun, C., “Ionically Crosslinked Ad/chitosan Nanocomplexes Processed by Electrospinning for Targeted Cancer Gene Therapy” , Journal of Controlled Release, Vol. 148, pp. 75-82 (2010)
    [73] Kim, D. H., Lee, H., Lee, Y. K., Nam, J. M., and Levchenko, A., “Biomimetic Nanopatterns as Enabling Tools for Analysis and Control of Live Cells” , Advanced Materials, Vol. 22, pp. 4551-4566 (2010)
    [74] Cooper, A., Bhattarai, N., Kievit, F. M., Rossol, M., andZhang, M., “Electrospinning of Chitosan Derivative Nanofibers with Structural Stability in an Aqueous Environment” , Physical Chemistry Chemical Physics, Vol. 13, pp. 9969-9972 (2011)
    [75] Wu, L., Zang, J., Lee, L. A., Niu, Z., Horvatha, G. C., Braxtona, V., Wibowo, A. C., Bruckman, M. A., Ghoshroy, S., zur Loye, H., Li, X., and Wang, Q., “Electrospinning Fabrication, Structural and Mechanical Characterization of Rod-like Virus-based Composite Nanofibers” , Journal of Materials Chemistry, Vol. 21, pp. 8550-8557 (2011)
    [76] Lee, J. Y., Bashur, C. A., Goldstein, A. S., and Schmidt, C. E., “Polypyrrole-coated Electrospin PLGA Nanofibers for Neural Tissue Applications” , Biomaterials, Vol. 30, pp. 4325-4335 (2009)
    [77] Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A. P., Rofail, F., Smith, H., Wu, B. M., Shemin, R., Beygui, R. E., and MacLellan, W. R., “Three-dimensional Electrospun ECM-based Hybrid Scaffolds for Cardiovascular Tissue Engineering” , Biomaterials, Vol. 29, pp. 2907-2914 (2008)
    [78] Merdrignac-Conanec, O., and Moseley, P. T., “Gas Sensing Properties of the Mixed Molybdenum Tungsten Oxide, W0.9Mo0.1O3” , Journal of Materials Chemistry, Vol. 12, pp. 1779-1781 (2002)
    [79] Gibson, P. W., Schreuder-Gibson, H. L., and Pentheny, C., “Electrospinning Technology: Direct Application of Tailorable Ultrathin Membranes” , Journal of Coated Fabrics, Vol. 28, pp. 63-72 (1998)
    [80] Huang, J., Wang, D., Hou, H., and You, T., “Electrospun Palladium Nanoparticle-loaded Carbon Nanofibers and Their Electrocatalytic Activities Towards Hydrogen Peroxide and NADH” , Advance Functional Materials, Vol. 18, pp. 441-448 (2008)
    [81] Chronakis, I. S., Grapenson, S., Jakob, A., “Conductive Polypyrrole Nanofibers via Electrospinning: Electrical and Morphological Properties” , Polymer, Vol. 47, pp. 1597-1603 (2006)
    [82] Thavasi, V., Singh, G., Ramakrishna, S., “Electrospun Nanofibers in Energy and Environment Applications” , Energy and Environmental Science, Vol. 1, pp. 205-221 (2008)
    [83] Suryamas, A. B., Munir, M. M., Ogi, T., Khairurrijal, and Okuyama, K., “Intense Green and Yellow Emissions from Eectrospun BCNO Phosphor Nanofibers” , Journal of Materials Chemistry, Vol. 21, pp. 12629-12631 (2001)
    [84] Li, J. M., Zeng, X. L., Mo, A. D., and Xu, Z. A., “Fabrication of Cuprate Superconducting La1.85Sr0.15CuO4 Nanofibers by Electrospinning and Subsequent Calcination in Oxygen” , CrystEngComm, Vol. 13, pp. 6964-8967 (2011)
    [85] Ye, P., Xu, Z., Wu, J., Innocent, C., and Seta, P., “Nanofibrous Membranes Containing Reactive Groups: Electrospinning from Poly(acrylonitrile-co-maleic acid) for Lipase Immobilization” , Macromolecules, Vol. 39, pp. 1041-1045 (2006)
    [86] Ma, Z., Kotaki, M., and Ramakrishna, S., “Surface Modified Nonwoven Polysulphone (PSU) Fiber Mesh by Electrospinning: a Novel Affinity Membrane” , Journal of Membrane Science, Vol. 272, pp. 179-187 (2006)
    [87] Lee, K. Y., and Yuk, S. H., “Polymeric Protein Delivery Systems” , Progress In Polymer Science, Vol. 32, pp. 669-697 (2007)
    [88] George, M., and Abraham, T. E., “Polyionic Hydrocolloids for the Intestinal Delivery of Protein Drugs: Alginate and Chitosan-a review” , Journal of Controlled Release, Vol. 114, pp. 1-14 (2006)
    [89] Gombotz, W. R., and Wee, S. F., “Protein Release from Alginate Matrices” , Advanced Drug Delivery Reviews, Vol. 31, pp. 267-285 (1998)
    [90] Shi, J., Liu, X., Shang, Y., and Cao, S., “Biomineralized Polysaccharide Alginate Membrane for Multi-responsice Controlled Drug Delivery” , Jourmal of Membrane Science, Vol. 352, pp. 262-270 (2010)
    [91] Ueyama, Y., Ishikawa, K., Mano, T., Koyama, T., Nagatsuka, H., Suzuki, K., and Ryoke, K., “Usefulness as Guided Bone Regeneration Membrane of the Alginate Membrane” , Biomaterials, Vol. 23, pp. 2027-2033 (2003)
    [92] de Moura, MR., Guilherme, M. R., Campese, G. M., Radovanovic, E., Rubira, A. F., and Muniz, E. C., “Porous Alginate-Ca2+ Hydrogels Interpenetrated with PNIPAAm Networks: Interrelationship between Compressive Stress and Pore Morphology” , European Polymer Journal, Vol. 41, pp. 2845-2852 (2005)
    [93] Augst, A. D., Kong, H. J., and Mooney, D. J., “Alginate Hydrogels as Biomaterials” , Macromolecular Bioscience, Vol. 6, pp. 623-633 (2006)
    [94] Sriamornsak, P., and Kennedy, R. A., “Effect of Sodium Fluorescein on Release Characteristics of a Macromolecule from Calcium Alginate Gel Beads” , Carbohydrate Polymers, Vol. 84, pp. 1208-1212 (2011)
    [95] Almeida, P. F., and Almeida, A. J., “Cross-linked Alginate-gelatine Beads: a new Matrix for Controlled Release of Pindolol” , Journal of Controlled Release, Vol. 97, pp. 431-439 (2004)
    [96] Wang, Q., Hu, X., Du, Y., and Kennedy, J. F., “Alginate/Starch Blend Fibers and Their Properties for Drug Controlled Release” , Carbohydrate Polymers, Vol. 82, pp. 842-847 (2010)
    [97] Lee, K. Y., and Mooney, D. J., “Alginate: Properties and Biomedical Applications” , Progress in Polymer Science, Vol. 37, pp. 106-126 (2012)
    [98] Otterlei, M., Ostgaard, K., Skjakbraek, G., Smidsrod, O., Soonshiong, P., and Espevik, T., “Induction of Cytokine Production from Human Monocytes Stimulated with Alginate” , Jounral of Immunotherapy, Vol. 10, pp. 286-291 (1991)
    [99] Balakrishnan, B., Mohanty, M., Umashankar, P. R., and Jayakrishnan, A., “Evaluation of an in situ Forming Hydrogel Wound Dressing Based on Oxidized Alginate and Gelatin” , Biomaterials, Vol. 26, pp. 6335-6342 (2005)
    [100] Zhou, H., and Xu, H. H., ”The Fast Release of Stem Cells from Alginate-fibrin Microbeads in Injectable Scaffolds for Bone Tissue Engineering” , Biomaterials, Vol. 32, pp. 7503-7513 (2011)
    [101] Orive, G., Tam, S. K., Pedraz, J. L., and Halle, J. P., “Biocompatibility of Alginate-poly-L-lysine Microcapsules for Cell Therapy” , Biomaterials, Vol. 27, pp. 3691-3700 (2006)
    [102] Jay, S. M., and Saltzman, W. M., “Controlled Delivery of VEGF via Modulation of Alginate Microparticle Ionic Crosslinking” , Journal of Controlled Release, Vol. 134, pp. 26-34 (2009)
    [103] Davidovich-Pinhas, M., Harari, O., and Bianco-Peled, H., “Evaluating the Mucoadhesive Properties of Drug Delivery Systems Based on Hydroated Thiolated Alginate” , Journal of Controlled Release, Vol. 136, pp. 38-44 (2009)
    [104] Freeman, I., and Cohen, S., “The Influence of the Sequential Delivery of Angiogenic Fctors from Affinity-binding Alginate Scaffolds on Vascularization” , Biomaterials, Vol. 30, pp. 2122-2131 (2009)
    [105] Pfister, L. A., Alther, E., Papaloizos, M., Merkle, H. P., and Gander, B., “Controlled Nerve Growth Factor Release From Multi-ply Alginate/Chitosan-based Nerve Conduits” , European Journal of Pharmaceutics and Biopharmaceutics, Vol. 69, pp. 563-572 (2008)
    [106] Tusi, S. K., Khalaj, L., Ashabi, G., Kiaei, M., and Khodagholi, F., “Alginate Oligosaccharide Protects Against Endoplasmic Reticulum- and Mitochondrial-mediated Apoptotic Cell Death and Oxidative Stress” , Biomaterials, Vol. 32, pp. 5438-5458 (2011)
    [107] Lee, K. Y., Jeong, L., Kang, Y. O., Lee, S. J., and Park, W. H., “Electrospinning of Polysaccharides for Regenerative Medicine” , Advanced Drug Delivery Reviews, Vol. 61, pp. 1020-1032 (2009)
    [108] Bhattarai, N., Li, Z., Edmondson, D., and Zhang, M., “Alginate-Based Nanofibrous Scaffolds: Structural, Mechanical, and Biological Properties” , Advanced Materials, Vol. 18, pp. 1463-1467 (2006)
    [109] Bhattarai, N., and Zhang, M., “Controlled Synthesis and Structural Stability of Alginate-based Nanofibers” , Nanotechnology, Vol. 18, pp. 455601 (2007)
    [110] Lu, J. W., Zhu, L. Y., Guo, Z. X., Hu, P., and Yu, J., “Electrospinning of Sodium Alginate with Poly(ethylene oxide)” , Polymer, Vol. 47, pp. 8026-8031 (2006)
    [111] Nie, H., He, A., Wu, W., Zheng, J., Xu, S., Li, J., and Han, C. C., “Effect of Poly(ethylene oxide) with Different Molecular Weights on the Electrospinnability of Sodium Alginate” , Polymer, Vol. 50, pp. 4926-4934 (2009)
    [112] Bonino, C. A., Krebs, M. D., Saquing, C. D., Jeong, S. I., Shearer, K. L., Alsberg, E., and Khan and, S. A., “Electrospinning Alginate-based Nanofibers: From Blends to Crosslinked Low Molecular Weight Alginate-only Systems” , Carbohydrate Polymers, Vol. 85, pp. 111-119 (2011)
    [113] Fang, D., Liu, Y., Jiang, S., Nie, J., and Ma, G., “Effect of Intermolecular Interaction on Electrospinning of Sodium Alginate” , Carbohydrate Polymers, Vol. 85, pp. 276-279 (2011)
    [114] Ma, G., Fang, D., Liu, Y., Zhu, X., and Nie, J., “Electrospun Sodium Alginate/Poly(ethylene oxide) Core-shell Nanofibers Scaffolds Potential for Tissue Engineering Applications” , Carbohydrate Polymers, Vol. 87, pp. 737-743 (2012)
    [115] Jeong, S. I., Krebs, M. D., Bonino, C. A., Khan, S. A., and Alsberg, E., “Electrospun Alginate Nanofibers with Controlled Cell Adhesion for Tissue Engineering” , Macromolecular Bioscience, Vol. 10, pp. 934-943 (2010)
    [116] Dash, M., Chiellini, F., Ottenbrite, R. M., and Chiellini, E., “Chitosan-A Versatile Semi-synthetic Polymer in Biomedical Applications” , Progress in Polymers Science, Vol. 36, pp. 981-1014 (2011)
    [117] Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., and Cho, C. S., “Chitosan and Its Derivatives for Tissue Engineering Applications” , Biotechnology Advances, Vol. 26, pp. 1-21 (2008)
    [118] Aiba, S., “Studies on Chitosan: IV. Lysozymic Hydrolysis of Partially N-acetylated Chitosans” , International Journal of Biological Macromolecules, Vol. 14, pp. 225-228 (1992)
    [119] Pillai, C. K. S., Paul, W., Sharma, C. P., “Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation” , Progress in Polymer Science, Vol. 34, pp. 641-678 (2009)
    [120] Muzzarelli, R. A. A., Rocchetti, R., “Determination of the Degree of Acetylation of Chitosans by First Derivative Ultraviolet Spectrophotometry” , Carbohydrate Polymers, Vol. 5, pp. 461-472 (1985)
    [121] Kean, T., and Thanou, M., “Biodegradation, Biodistribution and Toxicity of Chitosan” , Advanced Drug Delivery Reviews, Vol. 62, pp. 3-11 (2010)
    [122] Onishi, H., and Machida, Y., “Biodegradation and Distribution of Water-soluble Chitosan in Mice” , Biomaterials, Vol. 20, pp. 175-182 (1999)
    [123] Rao, S. B., and Sharma, C. P., “Use of Chitosan as Biomaterials: Study on Its Safety and Hemostatic Potential” , Journal of Biomedical Materials Research, Vol. 34, pp. 21-28 (1997)
    [124] Zhang, H., Neau, S. H., „In vireo Degradation of Chitosan by Bacterial Enzymes from Rat Cecal and Colonic Contents” , Biomaterials, Vol. 23, pp. 2761-2766 (2003)
    [125] Ma, L., Gao, C., Mao, Z., Zhou, J., Shen, J., Hu, X., and Han, C., “Collagen/Chitosan Porous Scaffolds with Improved Biostability for Skin Tissue Engineering” , Biomaterials, Vol. 24, pp. 4833-4841 (2003)
    [126] Kato, Y., Onishi, H., and Machida, Y., “Evaluation of n-succinyl-chitosan as a Systemic Long-circulating Polymer” , Biomaterials, Vol. 21, pp. 1579-1585 (2000)
    [127] Tommeraas, K., Strand, S. P., Tian, W., Kenne, L., and Varum, K. M., “Preparation and Characterisation of Fluorescent Chitosans Using 9-anthraldehyde as Fluorophore” , Carbohydrate Research, Vol. 336, pp. 291-296 (2001)
    [128] Suzuki, Y. S., Momose, Y., Higashi, N., Shigematsu, A., Park, K. B., Kim, Y. M., Kim, J. R., and Ryu, J. M., “Biodistribution and Kinetics of Holmium-166-chitosan Complex (dw-166hc) in Rats and Mice” , Journal of Nuclear Medicine, Vol. 39, pp. 2161-2166 (1998)
    [129] Banerjee, T., Singh, A. K., Sharma, R. K., and Maitra, A. N., “Labeling Efficiency and Biodistribution of Technetium-99m Labeled Nanoparticles: Interference by Colloidal Tin Oxide Particles” , International Journal of Pharmaceutics, Vol. 289, pp. 189-195 (2005)
    [130] Zhang, C., Qu, G., Sun, Y., Yang, T., Yao, Z., Shen, W., Ding, Q., Zhou, H., and Ping, Q., “Biological Evaluation of n-octyl-o-sulfate Chitosan as A New Nano-carrier of Intravenous Drugs” , European Journal of Pharmaceutical Sciences, Vol. 33, pp. 415-423 (2008)
    [131] Kumar, R. M. N. V., “A Review of Chitin and Chitosan Applications” , Reactive and Functional Polymers, Vol. 46, pp. 1-27 (2000)
    [132] Xu, G., Huang, X., Qiu, L., Wu, J., and Hu, Y., “Mechanism Study of Chitosan on Lpid Metabolism in Hyperlipidemic Rats” , Asia Pacific Journal of Clinical Nutrition, Vol. 16, pp. 313-317 (2007)
    [133] Chae, S. Y., Jang, M. K., and Nah, J. W., “Influence of Molecular Weight on Oral Absorption of Water Soluble Chitosans” , Journal of Controlled Release, Vol. 102, pp. 383-394 (2005)
    [134] Park, I. K., Kim, T. H., Kim, S. I., Park, Y. H., Kim, W. J., Akaile, T., and Cho, C. S., “Visualization of Transfection of Hepatocytes by Galactosylated Chitosan-graft-poly(ethylene glycol)/DNA Complexes by Confocal Laser Scanning Microscopy” , International Journal of Pharmaceutics, Vol. 257, pp. 103-110 (2003)
    [135] Nam, H. Y., Kwon, S. M., Chung, H., Lee, S. Y., Kwon, S. H., Jeon, H., Kim, Y., Park, J. H., Kim, J., Her, S., Oh, Y. K., Kwon, I. C., Kim, K., and Jeong, S. Y., “Cellular Uptake Mechanism and Intracellular Fate of Hydrophobically Modified Glycol Chitosan Nanoparticles” , Journal of Controlled Release, Vol. 135, pp. 259-267 (2009)
    [136] Dodane, V., and Vilivalam, V. D., “Pharmaceutical Applications of Chitosan” , Pharmaceutical Science & Technology Today, Vol. 1, pp. 246-253 (1998)
    [137] Nicolaas, G. M., Schipper, K. M., and Varum, P. A., “Chitosans as Absorption Enhancers for Poorly Absorbable Drugs. 1: Influence of Molecular Weight and Degree of Acetylation on Drug Transport Across Human Intestinal Epithelial (CaCo-2) Cells” , Pharmaceutical Research, Vol. 13, pp. 1686-1692 (1996)
    [138] Guo, Z., Chen, R., Xing, R., Liu, S., Yu, H., Wang, P., Li, C., and Li, P., “Novel Derivatives of Chitosan and Their Antifungal Activities in Vitro” , Carbohydrate Research, Vol. 341, pp. 351-354 (2006)
    [139] Jumaa, M., Furkert, F. H., and Muller, B. W., “A New Lipid Emulsion Formulation with High Antimicrobial Efficacy Using Chitosan” , European Journal of Pharmaceutics and Biopharmaceutics, Vol. 53, pp. 115-123 (2002)
    [140] Hirano, S., Iwata, M., Yamanaka, K., Tanaka, H., Toda, T., and Inui, H., “Enhancement of Serum Lysozyme Activity by Injecting a Mixture of Chitosan Oligosaccharides Intravenously in Rabbits” , Agricultural and Biological Chemistry, Vol. 55, pp. 2623-2625 (1991)
    [141] Gades, M. D., Stern, J. S., “Chitosan Supplementation and Fecal Fat Excretion in Men” , Obesity Research, Vol. 11, pp. 683-688 (2003)
    [142] Liu, T. Y., and Lin, Y. L., “Novel pH-sensitive Chitosan-based Hydrogel for Encapsulating Poorly Water-soluble Drugs” , Acta Biomaterialia, Vol. 6, pp. 1423-1429 (2010)
    [143] Suh, J. K., and Matthew, H. W., “Application of Chitosan-based Polysaccharide Biomaterials in Cartilage Tissue Engineering: A Review” , Biomaterials, Vol. 21, pp. 2589-2598 (2000)
    [144] Yan, W. L., and Bai, R., “Adsorption of Lead and Humic Acid on Chitosan Hydrogel Beads” , Water Research, Vol. 39, pp. 688-698 (2005)
    [145] Geng, X., Kwon, O. H., Jang, J., “Electrospinning of Chitosan Dissolved in Concentrated Acetic Acid Solution” , Biomaterials, Vol. 26, pp. 5427-5432 (2005)
    [146] Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F. A., and Zhang, M., “Electrospun Chitosan-based Nanofibers and Their Cellular Compatibility” , Biomaterials, Vol. 26, pp. 6176-6184 (2005)
    [147] Dash, B. C., Rethore, G., Monaghan, M., Fitzgerald, K., Gallagher, W., and Pandit, A., “The Influence of Size and Charge of Chitosan/polyglutamic Acid Hollow Spheres on Cellular Internalization, Viability and Blood Compatibility” , Biomaterials, Vol. 31, pp. 8188-8197 (2010)
    [148] Kim, M. S., Park, S. J., Gu, B. K., and Kim, C. H., “Inter-Connecting Pores of Chitosan Scaffold with Basic Fibroblast Growth Factor Modulate Biological Activity on Human Mesenchymal Stem Cells” , Carbohydrate Polymers, Vol. 87, pp. 2683-2689 (2012)
    [149] Gu, R., Sun, W., Zhou, H., Wu, Z., Meng, Z., Zhu, X., Tang, Q., Dong, J., and Dou, G., ”The Performance of a Fly-larva Shell-derived Chitosan Sponge as an Absorbable Surgical Hemostatic Agent” , Biomaterials, Vol. 31, pp. 1270-1277 (2010)
    [150] Bhattarai, N., Guan, J., Zhang, M., ” Chitosan-based Hydrogels for Controlled, Localized Drug Delivery” , Advanced Drug Delivery Reviews, Vol. 62, pp. 83-89 (2010)
    [151] Mao, S., Sun, W., and Kissel, T., “Chitosan-based Formulations for Delivery of DNA and siRNA” , Advanced Drug Delivery Reviews, Vol. 62, pp. 12-27 (2010)
    [152] Jayakumar, R., Prabaharan, M., Sudheesh Kumar, P. T., Nair, S. V., Tamura, H., “Biomaterials Based on Chitin and Chitosan in Wound Dressing Applications” Biotechnology Advances, Vol. 29, pp. 322-337 (2011)
    [153] Park, I. K., Yang, J., Jeong, H. J., Bom, H. S., Harada, I., Akaike, T., Kim, S. I., and Cho, C. S., “Galactosylated Chitosan as a Synthetic Extracellular Matrix for Hepatocytes Attachment” , Biomaterials, Vol. 24, 2331-2337 (2003)
    [154] Kim, T. H., Nah, J. W., Cho, M. H., Park, T. G., and Cho, C. S., “Receptor-mediated Gene Delivery into Antigen Presenting Cells Using Mannosylated Chitosan/DNA Nanoparticles” , Journal of Nanoscience and Nanotechonology, Vol. 6, pp. 2796-2803 (2006)
    [155] Gamian, A., Chomik, M., Laferriere, C. A., and Roy, R., “Inhibition of Influenza A Virus Hemagglutinin and Induction of Interferon by Synthetic Sialylated Glycoconjugates” , Canadian Journal of Microbiology, Vol. 37, pp. 233-237 (1991)
    [156] Muzzarelli, R. A. A., “Chitins and Chitosans for the Repair of Wounded Skin, Nerve, Cartilage and Bone” , Carbohydrate Polymers, Vol. 76, pp. 167-182 (2009)
    [157] Yuan, Y., Zhang, P., Yang, Y., Wang, X., and Gu, X., “The Interaction of Schwann Cells with Chitosan Membranes and Fibers in Vitro” , Biomaterials, Vol. 25, pp. 4273-4278 (2004)
    [158] Lee, E. J., Shin, D. S., Kim, H. E., Kim, H. W., Koh, Y. H., and Jang, J. H., “Membrane of Hybrid Chitosan-silica Xerogel for Guided Bone Regeneration” , Biomaterials, Vol. 30, pp. 743-750 (2009)
    [159] Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., and Zhang, M., “Chitosan-Alginate Hybrid Scaffolds for Bone Tissue Engineering” , Biomaterials, Vol. 26, pp. 3919-3928 (2005)
    [160] Wang, X. H., Li, D. P., Wang, W. J., Feng, Q. L., Cui, F. Z., Xu, Y. X., Song, X. H., and van der Werf, M., „Crosslinked Collagen/Chitosan Matrix for Artificial Livers“ , Biomaterials, Vol. 24, pp. 3213-3220 (2004)
    [161] Feng, Z. Q., Chu, X., Huang, N. P., Wang, T., Wang, Y., Shi, X., Ding, Y., and Gu, Z. Z., „The Effect of Nanofibrous Galactosylated Chitosan Scaffolds on the Formation of Rat Primary Hepatocyte Aggregates and the Maintenance of Liver Function” , Biomaterials, Vol. 30, pp. 2753-2763 (2009)
    [162] Muzzarelli, R. A. A., Morganti, P., Morganti, G., Palombo, P., Palombo, M., Biagini, G., Belmonte, M. M., Giantomassi, F., Orlandi, F., and Muzzarelli, C., “Chitin Nanofibrils/chitosan Glycolate Composites as Wound Medicaments” , Carbohydrate Polymers, Vol. 70, pp. 274-284 (2007)
    [163] Min, B. M., Lee, S. W., Lim, J. N., You Y., Lee, T. S., Kang, P. H., and Park W. H., “Chitin and Chitosan Nanofibers: Electrospinning of Chitin and Deacetylation of Citin Nanofibers” , Polymer, Vol. 45, pp. 7137-7142 (2004)
    [164] Ohkawa, K., Cha, D., Kim, H., Nishida, A., and Yamamoto, H., “Electrospinning of Chitosan” , Macromolecular Rapid Communications, Vol. 25, pp. 1600-1605 (2004)
    [165] Kriegel, C., Kit, K. M., McClements, D. J., and Weiss, J., “Electrospinning of Chitosan-poly(ethylene oxide) Blend Nanofibers in the Presence of Micellar Surfactant Solutions” , Polymer, Vol. 50, pp. 189-200 (2009)
    [166] Park, W. H., Jeong, L., Yoo, D., and Hidson, S., “Effect of Chitosan on Morphology and Conformation of Electrospun Silk Fibroin Nanofibers” , Polymer, Vol. 45, pp. 7151-7157 (2004)
    [167] Desai, K., and Kit, K., „Effect of Spinning Temperature and Blend Ratios on Electrospun Chitosan/poly(acrylamide) Blends Fibers” , Polymer, Vol. 49, pp. 4046-4050 (2008)
    [168] Su, P., Wang, C., Yang, X., Chen, X., Gao, C., Feng, X. X., Chen, J. Y., Ye, J., Gou, Z., “Electrospinning of Chitosan Nanofibers: The Favorable Effect of Metal Ions” , Carbohydrate Polymers, Vol. 84, pp. 239-246 (2011)
    [169] Ward, B. C., and Panitch, A., “Abdominal Adhesions: Current and Novel Therapies” , Journal of Surgical Research, Vol. 165, pp. 91-111 (2011)
    [170] Ellis, H., “The Clinical Significance of Adhesions: Focus on Intestinal Obstruction” , The European Journal of Surgery Supplement, Vol. 577, pp. 5-9 (1997)
    [171] Gago, L. A., Saed, G. M., Chauhan, S., Elhammady, E. F., and Diamond, M. P., “Seprafilm (Modified Hyaluronic Scid and Carboxymethylcellulose) Acts as a Physical Barrier” , Fertility and Sterility, Vol. 80, pp. 612-616 (2003)
    [172] Zhang, Z., Ni, J., Chen, L., Yu, L., Xu, J., and Ding, J., “Biodergradable and Thermoreversible PCLA-PEG-PCLA Hydrogel as a Barrier for Prevention of Post-operative Adhesion” , Biomaterials, Vol. 32, pp. 4725-4736 (2011)
    [173] Ergul, E., and Korukluoglu, B., “Peritoneal Adhesions: Facing the Enemy” , International Journal of Surgery, Vol. 6, pp. 253-260 (2008)
    [174] Bryant, T., “Clinical lectures on intestinal obstructions” , Medical Times Gazette, Vol. 1, pp. 363-365 (1872)
    [175] Gibson, C. L., “A Study of 1000 Operations for Acute Intestinal Obstruction” , Annals of Surgery, Vol. 32, pp. 486-490 (1900)
    [176] Vick, R. M., “Statistics of Acute Intestinal Obstruction” , The British Medical Journal, Vol. 2, pp. 546-547 (1932)
    [177] McEntee, G., Pender, D., Mulvin, D., McCullough, M., Naeeder, S., and Farah, S., “Current Spectrum of Intestinal Obstruction” , The British Journal of Surgery, Vol. 74, pp. 976-980 (1987)
    [178] Menzies, D., and Ellis, H., “Intestinal Obstruction from Adhesion: How Big is the Problem?” , Annals of The Royal College of Surgeons of England, Vol. 72, pp. 60-63 (1990)
    [179] Cox, M. R., Gunn, I. F., Eastman, M. C., Hun,t R. F., and Heinz, A. W., “The Operative Aetiology and Types of Adhesions Causing Small Bowel Obstruction” , Australian and New Zealand Journal of Surgery, Vol. 63, pp. 848-852 (1993)
    [180] Wilkins, B. M., and Spitz, L., “Incidence of Postoperative Adhesion Obstruction Following Neonatal Laparotomy” , The British Journal of Surgery, Vol. 73, pp. 762-764 (1986)
    [181] Ray, N. F., Denton, W. G., and Thamer, M., “Abdominal Adhesiolysis: Inpatient Care and Expenditures in the United States in 1994” , Journal of the American College Surgeons, Vol. 186, pp. 1-9 (1998)
    [182] Kamel, R. M., “Prevention of Postoperative Peritoneal Adhesions” , European Journal of Obstetrics & Gynecology and Reproductive Biology, Vol. 150, pp. 111-118 (2010)
    [183] Mutsaers, S. E., Whitaker, D., and Papadimitriou, J. M., “Mesothelium Regeneration is not Dependant on Subserosal Cells” , The Journal of Pathology, Vol. 190, pp. 86-92 (2000)
    [184] Heydrick, S. J., Reed, K. L., Cohen, P. A., Aarons, C. B., Gower, A. C., Becker, J. M., and Stucchi, A. F., “Intraperitoneal Administration of Methylene Blue Attenuates Oxidative Stress, Increases Peritoneal Fibrinolysis, and Inhibits Intraabdominal Adhesion Formation” , Journal of Surgical Research, Vol. 143, pp. 311-319 (2007)
    [185] Holmdahl, L., Eriksson, E., Jabreen, M., and Risberg, B., “Fibrinolysis in Human Peritoneum During Operation” , Surgery, Vol. 119, pp. 701-705 (1996)
    [186] David, J., “Sticky Situations:Surgical Adhesions and Adhesives” , Lancet, Vol. 351, pp. 118 (1998)
    [187] Hellebrekers, B. W., Trimbos-Kemper, T. C., Trimbos, J. B., Emeis, J. J., and Kooistra, T., “Use of Fibrinolytic Agents in the Prevention of Postoperative Adhesion Formation” , Fertility and Sterility, Vol. 74, pp. 203-212 (2000)
    [188] Imai, A., and Suzuki, N., „Topical Non-barrier Agents for Postoperative Adhesion Prevention in Animal Models” , European Journal of Obstetrics & Gynecology and Reproductive Biology, Vol. 149, pp. 131-135 (2010)
    [189] Kalfarentzos, F., Spiliotis, J., Kaklamanis, L., Tsolakis, J., and Androulakis, J., “Prevention of Peritoneal Adhesion Formation in Mice by Vitamin E” , Journal of the Royal College of Surgeons of Edinburgh, Vol. 32, pp. 288-290 (1987)
    [190] Portz, D. M., Elkins, T. E., White, R., Adadevoh, S., and Randolph, J., “Oxygen Free Radicals and Pelvic Adhesion Formation: I. Blocking Oxygen Free Radical Toxicity to Prevent Adhesion Formation in an Endometriosis Model” , International Journal of Fertility, Vol. 36, pp. 39-42 (1991)
    [191] Rijhwani, A., Sen, S., Gunasekaran, S., Ponnaiya, J., Balasubramanian, K. A., and Mammen, K. E., “Allopurinol Reduces the Severity of Peritoneal Adhesions in Mice” , Journal of Pediatric Surger, Vol. 30, pp. 533-537 (1995)
    [192] Saed, G. M., Jiang, Z. L., Fletcher, N. M., Arab, A. A., Diamond, M. P., and Abu-Soud, H. M., “Exposure to Polychlorinated Biphenyls Enhances Lipid Peroxidation in Human Normal Peritoneal and Adhesion Fibroblasts: A Potential Role for Myeloperoxidase” , Free Radical Biology and Medicine, Vol. 48, pp. 845-850 (2010)
    [193] Cushing, H., “Concerning the Poisonous Effect of Pure Sodium Chloride Solutions Upon the Nerve-Muscle Preparation” , American Journal of Physiology, Vol. 6, pp. 77-90 (1901)
    [194] Li, N., Zhang, G., Yi F. X., Zou, A. P., and Li, P. L., “Activation of NAD(P)H Oxidase by Outeard Movements of H+ Ions in Renal Medullary Thick Ascending Limb of Henle” , American Journal of Physiol Renal Physiology, Vol. 289, pp. F1048-F1056 (2005)
    [195] Polubinska, A., Winckiewicz, M., Staniszewski, R., Breborowicz, A., and Oreopoulos, D. G., “Time to Reconsider Saline as the Ideal Rinsing Solution During Abdominal Surgery” , American Journal of Surgery, Vol. 192, pp. 281-285 (2006)
    [196] Ryan, G. B., Grobety, J., and Majno, G., “Postoperative Peritoneal Adhesions: a Study of the Mechanisms” , American Journal of Pathology, Vol. 65, pp. 117-148 (1971)
    [197] Sanfillippo, J. S., Barrows, G. H., and Yussman, M. A., “Comparison of Avitene, Topical Thrombin, and Gelfoam as Sole Hemostatic Sgent in Tuboplasties” , Fertility and Sterility, Vol. 33, pp. 311-316 (1980)
    [198] Tingstedt, B., Nehez, L., Lindman, B., and Andersson, R., “Efficacy of Bioactive Polypeptides on Bleeding and Intra-abdominal Adhesions” , European Surgical Research, Vol. 39, pp. 35-40 (2007)
    [199] Sutton, C., and MacDonald, R., ”Laser Laparosscopic Adhesiolysis” , Journal of Gynecologic Surgery, Vol. 6, pp. 155-159 (1990)
    [200] Buckenmaier, C. C., Pusateri, A. E., Harris, R. A., and Hetz, S. P., “Comparison of Antiadhesive Treatments Using an Objective Rat Model” , The American Surgeon, Vol. 65, pp. 274-282 (1999)
    [201] Lucas, P. A., Warejcka, D. J., Young, H. E., and Lee, B. Y., “Formation of Abdominal Adhesions in Inhibited by Antibodies to Transforming Growth Factor-beta1” , The Journal of Surgical Research, Vol. 65, pp. 135-138 (1996)
    [202] Avsae, F., Sahin, M., Aksoy, F., Avsar, A., Akoz, M., Hengirmen, S., and Bilici, S., “Effects of Diphenhydramine HCl and Methylprednisolone in the Prevention of Abdominal Adhesions” , The American Journal of Surgery, Vol. 181, pp. 512-515 (2001)
    [203] Cubukcu, A., Alponat, A., Gonullu, N. N., Ozkan, S. , and Ercin, C., “An Experimental Study Evaluating the Effect of Mitomycin C on the Prevention of Postoperative Intraabdominal Adhesions” , Journal of Surgical Research, Vol. 96, pp. 163-166 (2001)
    [204] Leondires, M. P., Stubblefield, P. G., Tarraza, H. M., and Jones, M. A., “A Pilot Study of Cyclosporine for the Prevention of Postsurgical Adhesion Formation in Rats” , American Journal of Obstetrics and Gynecology, Vol. 172, pp. 1537-1539 (1995)
    [205] Ozcelik, B., Serin, I. S., Basbug, M., Uludag, S., Narin, F., and Tayyar, M., “Effect of Melatonin in the Prevention of Post-operative Adhesion Formation in a Rat Uterine Horn Adhesion Model” , Human Reproduction, Vol. 18, pp. 1703-1706 (2003)
    [206] Binda, M. M., Molinas, C. R., and Koninckx, P. R., “Reactive Oxygen Species and Adhesion Formation: Clinical Implications in Adhesion Prevention” , Human Reproduction, Vol. 18, pp. 2503-2507 (2003)
    [207] van den Tol, P., ten Raa, S., van Grevenstein, H., Marquet, R., van Eijck, C., and Jeekel, H., “Icodextrin Reduces Postoperative Adhesion Formation in Rats Wthout Affecting Peritoneal Metastasis” , Surgery, Vol. 137, pp. 348-354 (2005)
    [208] Wallwiener, M., Brucker, S., Hierlemann, H., Brochhausen, C., Solomayer, E., and Wallwiener, C., “Innovative Barriers for Peritoneal Adhesion Prevention: Liquid or Solid? A Rat Uterine Horn Model” , Fertility and Sterility, Vol. 86, pp. 1266-1276 (2006)
    [209] Liu, Y., Shu, X. Z., and Prestwich, G. D., “Reduced Postoperative Intra-abdominal Adhesions Using Carbylan-SX, A Aemisynthetic Glycosaminoglycan Hydrogel” , Fertility and Sterility, Vol. 87, pp. 940-948 (2007)
    [210] Cetin, M., Ak, D., Duran, B., Cetin, A., Guvenal, T., and Tanar, O., “Use of Methylene Blut and N,O-carboxymethylchitosan to Prevent Postoperative Adhesions in a Rat Uterine Horn Model” , Fertility and Sterility, Vol. 80, pp. 698-701 (2003)
    [211] Diamond, M. P., Luciano, A., Johns, D. A., Dunn, R., Young, P., and Bieber, E., “Reduction of Postoperative Adhesions by N,O-carboxymethylchitosan: A Pilot Study” , Fertility and Sterility, Vol. 80, pp. 631-636 (2003)
    [212] Hills, B. A., “Role of Surfactant in Peritoneal Dialysis” , Peritoneal Dialysis International, Vol. 20, pp. 503-515 (2000)
    [213] Oh, S. H., Kim, J. K., Song, K. S., Noh, S. M., Ghil, S. H., Yuk, S. H., and Lee, J. H., “Prevention of Postsurgical Tissue Adhesion by Anti-inflammatory Drug-loaded Pluronic Mixtures with Sol-gel Transition Behavior” , Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 72A, pp. 306-316 (2005)
    [214] Weis, C., Odermatt, E. K., Kressler, J., Funke, Z., Wehner, T., and Freytag, D., “Poly(vinyl alcohol) Membrane for Adhesion Prevention” , Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 70B, pp. 191-202 (2004)
    [215] Yeo, Y., Burdick, J. A., Highley, C. B., Marini, R., Langer, R., and Kohane, D. S., “Peritoneal Application of Chitosan and UV-cross-linkable Chitosan” , Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 78A, pp. 668-675 (2006)
    [216] Yeo, Y., Bellas E., Highley, C. B., Langer, R., and Kohane, D. S., “Peritoneal Adhesion Prevention with an in Situ Cross-linkable Hyaluronan Gel Containing Tissue-type Plasminogen Activator in a Rabbit Repeated-injuri Model” , Biomaterials, Vol. 28, pp. 3704-3713 (2007)
    [217] Ito, T., Yeo, Y., Highley, C. B., Bellas, E., and Kohane, D. S., “Dextran-based in situ Cross-linked Injectable Hydrogels to Prevent Peritoneal Adhesions” , Biomaterials, Vol. 28, pp. 3418-3426 (2007)
    [218] Ito, T., Yeo, Y., Highley, C. B., Bellas, E., Benitez, C. A., and Kohane, D. S., “The Prevention of Peritoneal Adhesions by in situ Cross-linking Hydrogels of Hyaluronic Acid and Cellulose Derivatives” , Biomaterials, Vol. 28, pp. 975-983 (2007)
    [219] Wei, C. Z., Hou, C. L., Gu, Q. S., Jiang, L. X., Zhu, B., and Sheng, A. L., “A Thermosensitive Chitosan-based Hydrogel Barrier for Post-operative Adhesions prevention” , Biomaterials, Vol. 30, pp. 5534-5540 (2009)
    [220] Haneym A. F., “Removal of Surgical Barriers of Expanded Polytetrafluotoethylene at Second-look Laparoscopy was not Associated with Adhesion Formation” , Fertility and Sterility, Vol. 68, pp. 721-723 (1997)
    [221] Diamond, M. P. “Reduction of Adhesions After Uterine Myomectomy by Seprafilm Membrane (HAL-F): A Blinded, Prospective, Randomized, Multicenter Clinical Study. Seprafilm Adhesion Study Group” , Fertility and Sterility, Vol. 66, pp. 904-910 (1996)
    [222] Zong, X., Li, S., Chen, E., Garlick, B., Kim, K. S., Fang, D., Chiu, J., Zimmerman, T., Brathwaite, C., Hsiao, B. S., and Chu, B., “Prevention of Postsurgery-induced Abdominal Adhesions by Electrospun Bioabsorbable Nanofibrous Poly(lactide-co-glycolide)-based Membranes” , Annals of Surgery, Vol. 240, pp. 910-915 (2004)
    [223] Bolgen, N., Vargel, I., Korkusuz, P., Menceloglu, Y. Z., and Piskin, E., “In Vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions” , Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 81B, pp. 530-543 (2007)
    [224] Paulo, N. M., de Brito, e Silva, M. S., Moraes, A. M., Rodrigues, A. P., de Menezes, L. B., Miguel, M. P., de Lima, F. G., de Morais, Faria, A., and Lima, L. M., “Use of Chitosan Membrane Associated with Polypropylene Mesh to Prevent Peritoneal Adhesion in Rats” , Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 91B, pp. 221-227 (2009)
    [225] Yang, D. J., Chen, F., Xiong, Z. C., Xiong, C. D., and Wang, Y. Z., “Tissue Anti-adhesion Potential of Biodegradable PELA Electrospun Membranes” , Acta Biomaterialia, Vol. 5, pp. 2467-2474 (2009)
    [226] Yeo, Y., Ito, T., Bellas, E., Highley, C. B., Marini, R., and Kohane, D. S., “In situ Cross-linkable Hyaluronic Hydrogels Containing Polymeric Nanoparticles for Preventing Postsurgical Adhesions” , Annals of Surgery, Vol. 245, pp. 819-824 (2007)
    [227] Lee, Y. H., Chang, J. J., Lai, W. F., Yang, M. C., and Chien, C. T., “Layered Hydrogel of Poly(γ-glutamic acid), Sodium Alginate, and Chitosan: Fluorescence Observation of Structure and Cytocompatiblity” , Colloids and Surfaces B: Biointerfaces, Vol. 86, pp. 409-413 (2011)
    [228] Wongsasulak, S., Kit, K. M., McClements, D. J., Yoovidhya, T., and Weiss, J., “The Effect of Solution Properties on the Morphology of Ultrafine Electrospun Egg Albumen-PEO Composite Cibers” , Polymer, Vol. 48, pp. 448-457 (2007)
    [229] Kikuchi, A., Kawabuchi, M., Watanabe, A., Sugihara, M., Sakurai, Y., and Okano, T., “Effect of Ca2+-alginate Gel Dissolution On Release of Dextran with Different Molecular Weights” , Journal of Controlled Release, Vol. 58, pp. 21-28 (1999)
    [230] Taqieddin, E., and Amiji, M., “Enzyme Immobilitzation in Novel Alginate-chitosan Core-shell Microcapsules” , Biomaterials, Vol. 25, pp. 1937-1945 (2004)
    [231] Saraf, A., Lozier, G., Haesslein, A., Kasper, F. K., Raphael, R. M., Baggett, L. S., and Mikos, A. G., “Fabrication of Nonwoven Coaxial Fiber Meshes by Electrospinning” , Tissue Engineering: Part C, Vol. 15, pp. 333-344 (2009)
    [232] Drexler, J. W., and Powell, H. M., “Regulation of Electrospun Scaffold Stiffness via Coaxial Core Diameter” , Acta Biomaterialia, Vol. 7, pp. 1133-1139 (2011)
    [233] Sill,T. J., and von Recum, H. A., “Electrospinning: Applications In Drug Delivery and Tissue Engineering” , Biomaterials, Vol. 29, pp. 1989-2006 (2008)
    [234] Pham, Q. P., Sharma, U., and Mikos, A. G., “Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review” , Tissue Engineering, Vol. 12, pp. 1197-1211 (2006)
    [235] Chang, J. J., Lin, P. J., Lee, Y. H., Yang, M. C., and Chien C. T., “The Effect of Covalent Immobilization of Sialic Acid on the Removal of Lipopolysaccharide and Reactive Oxygen Species for Polyethylene” , Polymers for Advanced Technologies, Vol. 22, pp. 1872-1878 (2011)
    [236] Lee, Y. H., Chang, J. J., Yang, M. C., Chien, C. T., and Lai, W. F., “Acceleration of Wound Healing in Diabetic Rats by Layered Hydrogel Dressing” Carbohydrate Polymers, Vol. 88, pp. 809-819 (2012)
    [237] Giaever, I., and Keese, C. R., “Monitoring Fibroblast Behavior in Tissue Culture with an Applied Electric Field” , Proceeding of the National Academy of Sciences, Vol. 81, pp. 3761-3764 (1984)
    [238] Chang, J. J., Lee, Y. H., Wu, M. H., Yang, M. C., and Chien C. T., “Electrospun Anti-adhesion Barrier Made of Chitosan Alginate for Reducing Peritoneal Adhesions” , Carbohydrate Polymers, Vol. 88, pp. 1304-1312 (2012)
    [239] Bajpai, S. K., and Sharma, S., “Investigation of Swelling/Degradation Behaviour of Alginate Beads Crosslinked with Ca2+ and Ba2+ Ions” , Reactive and Functional Polymer, Vol. 59, pp. 129-140 (2004)
    [240] Tomida, H., Yasufuku, T., Fujii, T., Kondo, Y., Kai, T., and Anraku, M., “Polysaccharides as Potential Antioxidative Compounds for Extended-Release Matrix Tablets” , Carbohydrate Research, Vol. 345, pp. 82-86 (2010)
    [241] Yang, S., Guo, Z., Miao, F., Xue, Q., and Qin, S., “The Hydroxyl Radical Scavenging Activity of Chitosan, Hyaluronan, Starch, and Their O-carboxymethylated Derivatives” , Carbohydrate Polymers, Vol. 82, pp. 1043-1045 (2010)
    [242] Chatelet, C., Damour, O., and Domard, A., “Influence of the Degree of Acetylation on Some Biological Properties of Chitosan Films” , Biomaterials, Vol. 22, pp. 261-268 (2001)
    [243] Sangsanoh, P., Suwantong, O., Neamnark, A., Cheepsunthorn, P., Pavasant, P., and Supaphol, P., “In Vitro Biocompatibility of Electrospun and Solvent-Cast Chitosan Substrata Towards Schwann, Osteoblast, Keratinocyte and Fibroblast Cells” , European Polymer Journal, Vol. 46, pp. 428-440 (2010)
    [244] Muzzarelli, R. A. A., Guerrieri, M., Goteri, G., Muzzarelli, C., Armeni, T., Ghiselli, R., and Cornelissen, M., “The Biocompatibility of Dibutyryl Chitin in the Context of Wound Dressings” , Biomaterials, Vol. 26, pp. 5844-5854 (2005)
    [245] Saed, G. M., and Diamond, M. P., “Apoptosis and Proliferation of Human Peritoneal Fibroblasts in Response to Hypoxia” , Fertility and sterility, Vol. 78, pp. 137-143 (2002)
    [246] Engeland, M., Nieland, L. J. W., Ramaekers, F. C. S., and Schutte Bert Reutelingsperger, C. P.M., “Annexin V-Affinity Assay: A Review on an Apoptosis Detection System Based on Phosphatidlserine Exposute” , Cytometry, Vol. 31, pp.1-9 (1998)
    [247] Mao, J. S., Cui, Y. L., Wang, X. H., Sun, Y., Yin, Y. J., Zhao, H. M., and Yao, K. D., “A Preliminary Study on Chitosan and Gelatin Polyelectrolyte Complex Cytocompatibility by Cell Cycle and Apoptosis Analysis” , Biomaterials, Vol. 25, pp. 3973-3981 (2004)
    [248] Je, J. Y., Cho, Y. S., and Kim, S. K., “Cytotoxic Activities of Water-Soluble Chitosan Derivatives with Different Degree of Deacetylation” , Bioorganic & Medicinal Chemistry Letters, Vol. 16, pp. 2122-2126 (2006)
    [249] Lansdown, A. B., “Calcium: A Potential Central Regulator in Wound Healing in the Skin” , Wound Repair and Regeneration, Vol. 10, pp. 271-285 (2002)

    無法下載圖示 全文公開日期 2017/05/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE