簡易檢索 / 詳目顯示

研究生: 陳駙潾
Fu-Lin Chen
論文名稱: 設計製造核殼式析出硬化不鏽鋼粉末用於半導體雷射積層製造研究
Design and Manufacture of Core-Shell Precipitation Hardened Stainless Steel Powder Used in Semiconductor Laser Additive Manufacturing
指導教授: 鄭正元
Jeng, Jeng-Ywan
口試委員: 林上智
Shang-Chih Lin
許啟彬
Chi-Pin Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 109
中文關鍵詞: 金屬積層製造複合粉末材料收縮
外文關鍵詞: Metal Additive Manufacturing, Composite Materials Powder, Shrinkage
相關次數: 點閱:366下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用密鍊機將17-4 PH不鏽鋼粉末與塑基黏結劑混合後會形成複合金屬粉末,相較於原始粉末有較低之反射率與較大粒徑。使用Sinterit Lisa SLS 3D Pinter商用列印機進行,該設備具有5 W 808 nm波長之高功率半導體雷射,可給予複合粉末能量,使複合粉末上的黏結劑熔融成形,將其層層堆疊,最終獲得立體物件。並使用梳形鋪粉輔具可有效改善列印槽硬化結塊問題,且梳形鋪粉輔具高度在0.4 mm之下,具有最佳鋪粉之效果。列印參數在140 ℃ 雷射功率35.87 mJ/mm2列印層厚100 μm下,可獲得最高密度3.61 g/cm3且形狀完整之生坯。
    後製程使用草酸脫脂在140 ℃時重量損失率可達4.39 %。收縮試片經由1310 ℃持溫180 分鐘燒結過後, X軸向收縮率為21.20 %~22.03 %;Y軸向收縮率為21.46 % ~22.12 %;Z軸向收縮率為21.61 % ~21.85 %。使用三種收縮補正方法中,當中最理想補正方法為最小二法補正,大部分誤差值小於0.1 mm。塑基坯體拉伸強度為605.64 MPa,相比蠟基坯體提高78.52 %;硬度為HRC 14.80,相比蠟基坯體提高56.50 %。並經由H900時效處理拉伸強度提升至931.89 MPa,相比本論文銀坯提高了35.01 %;硬度為HRC 30.76,本論文銀坯提高了87.86 %。
    有別於選擇性雷射熔融技術(SLM),需要惰性或真空環境下與需要大功率雷射,本研究所使用之選擇性雷射燒結技術(SLS),可在大氣下進行列印,且可用較低功率成型,可以安全且有效率獲得所要之形貌。


    In this study, the 17-4 PH stainless steel powder was mixed with a plastic-based binder using a chain sealer to form a composite metal powder, which had lower reflectivity and larger particle size than the original powder. Using a Sinterit Lisa SLS 3D Pinter commercial printer, the device has a high-power semiconductor laser with a wavelength of 5 W 808 nm, which can give energy to the composite powder, melt the binder on the composite powder, and stack them layer by layer. Get 3D objects. And the use of comb-shaped powder coating aids can effectively improve the problem of hardening and agglomeration of the printing tank, and the height of the comb-shaped powder coating aids is less than 0.4 mm, which has the best powder coating effect. Printing parameters At 140 ℃, the laser power is 35.87 mJ/mm2 and the printing layer thickness is 100 μm, the green body with the highest density of 3.61 g/cm3 and complete shape can be obtained.
    After degreasing with oxalic acid, the weight loss rate can reach 4.39 % at 140 ℃. After the shrinkage test piece was sintered at 1310 °C for 180 minutes, the shrinkage rate in the X-axis direction was 21.20%-22.03%; the shrinkage rate in the Y-axis direction was 21.46 %-22.12 %, and the shrinkage rate in the Z-axis direction was 21.61 %-21.85%. Among the three shrinkage correction methods, the most ideal correction method is the least square correction, and most of the error values are less than 0.1 mm. The tensile strength of the plastic-based blank is 605.64 MPa, which is 78.52 % higher than that of the wax-based blank; the hardness is HRC 14.80, which is 56.50 % higher than that of the wax-based blank. And after the H900 aging treatment, the tensile strength increased to 931.89 MPa, an increase of 35.01%; the hardness was HRC 30.76, an increase of 87.86%.
    Different from selective laser melting (SLM), which requires an inert or vacuum environment and a high-power laser, the selective laser sintering (SLS) used in this study can print in the atmosphere, and Multiple lasers can be used to form a page-wide laser system for high-speed printing, and the desired appearance can be obtained safely and efficiently.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 式目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究流程 2 1.4 論文架構 4 第二章 文獻回顧 5 2.1 金屬積層製造(Metal Additive Manufacturing , MAM) 5 2.1.1 粉床熔融技術(Powder Bed Fusion, PBF) 6 2.1.2 指向能量沉積(Directed Energy Deposition, DED) 8 2.1.3 黏著劑噴射(Binder Jetting, BJ) 8 2.1.4 材料擠製成型(Material Extrusion, MEX) 9 2.1.5 主流金屬粉末的製造方法 9 2.1.6 粉末與黏結劑複合材料 10 2.2 脫脂技術(Debinding) 12 2.2.1 熱脫脂(Thermal Debinding) 14 2.2.2 溶劑脫脂(Solvent Debinding) 14 2.2.3 催化脫脂(Catalytic Debinding) 16 2.3 燒結(Sintering) 16 2.3.1 液相燒結(Liquid Phase Sintering) 16 2.3.2 固相燒結(Solid Phase Sintering) 17 2.4 材料背景 18 2.4.1 17-4PH 18 2.4.1 黏結劑 20 第三章 研究架構與設備 22 3.1 使用材料 22 3.1.1 金屬粉末材料 22 3.1.2 黏結劑材料 24 3.2 黏結劑材料熱性質分析 24 3.2.1 熱重分析 24 3.2.2 差示掃描量熱分析 25 3.2.3 分光光譜儀分析 27 3.3 複合粉末製備 28 3.3.1 密鍊機 29 3.3.2 材料混合 31 3.4 成型設備 35 3.4.1 粉床系統 36 3.4.2 鋪粉系統 37 3.4.3 雷射系統 38 3.4.4 預熱系統 41 3.4.5 列印流程 42 第四章 實驗結果與討論 44 4.1 材料性質分析 45 4.1.1 粉末型貌分析 45 4.1.2 複合粉末粒徑分析 47 4.1.3 差示掃描量熱法 DSC 48 4.1.4 分光光譜儀分析 49 4.2 成型列印測試 49 4.2.1 鋪粉輔具調整實驗 50 4.2.2 列印層厚實驗 55 4.2.3 列印溫度與雷射能量密度實驗 59 4.3 脫脂棕坯測試 65 4.4 燒結物件測試 69 4.4.1 燒結物件收縮分析 69 4.4.2 燒結物件收縮補償 73 4.4.3 燒結物件強度與硬度 80 4.4.4 生坯、棕坯與銀坯之較 84 4.4.5 蠟基與塑基燒結銀坯之比較 85 4.4.6 3D物件實踐 86 第五章 結論與未來展望 88 5.1 結論 88 5.2 未來展望 89 參考文獻 90

    [1] “The EOS Story.” https://www.eos.info/en/about-us/history (accessed Jun.02, 2022).
    [2] “ASTM 52900.” https://compass.astm.org/document/?contentcode=UNE%7CUNE-EN ISO%2FASTM 52900%3A2017%7Cen-US (accessed Jun.04, 2022).
    [3] K.Moeinfar, F.Khodabakhshi, S. F.Kashani-bozorg, M.Mohammadi, andA. P.Gerlich, “A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys,” J. Mater. Res. Technol., vol. 16, pp. 1029–1068, Jan.2022, doi: 10.1016/J.JMRT.2021.12.039.
    [4] A. H.Maamoun, Y. F.Xue, M. A.Elbestawi, andS. C.Veldhuis, “Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy,” Mater. 2018, Vol. 11, Page 2343, vol. 11, no. 12, p. 2343, Nov.2018, doi: 10.3390/MA11122343.
    [5] R.Rashid, S. H.Masood, D.Ruan, S.Palanisamy, R. A.Rahman Rashid, andM.Brandt, “Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM),” J. Mater. Process. Technol., vol. 249, pp. 502–511, Nov.2017, doi: 10.1016/J.JMATPROTEC.2017.06.023.
    [6] H. R.Lashgari, Y.Xue, C.Onggowarsito, C.Kong, andS.Li, “Microstructure, Tribological Properties and Corrosion Behaviour of Additively Manufactured 17-4PH Stainless Steel: Effects of Scanning Pattern, Build Orientation, and Single vs. Double scan,” Mater. Today Commun., vol. 25, p. 101535, Dec.2020, doi: 10.1016/J.MTCOMM.2020.101535.
    [7] X.Xu, S.Meteyer, N.Perry, andY. F.Zhao, “Energy consumption model of Binder-jetting additive manufacturing processes,” http://dx.doi.org/10.1080/00207543.2014.937013, vol. 53, no. 23, pp. 7005–7015, Dec.2014, doi: 10.1080/00207543.2014.937013.
    [8] S. M.Nazemosadat, E.Foroozmehr, andM.Badrossamay, “Preparation of alumina/polystyrene core-shell composite powder via phase inversion process for indirect selective laser sintering applications,” Ceram. Int., vol. 44, no. 1, pp. 596–604, Jan.2018, doi: 10.1016/J.CERAMINT.2017.09.218.
    [9] “ Desktop Metal.” https://www.desktopmetal.com/products/production (accessed May31, 2022).
    [10] S. M.Gaytan et al., “Fabrication of barium titanate by binder jetting additive manufacturing technology,” Ceram. Int., vol. 41, no. 5, pp. 6610–6619, Jun.2015, doi: 10.1016/J.CERAMINT.2015.01.108.
    [11] J.Gonzalez-Gutierrez, F.Arbeiter, T.Schlauf, C.Kukla, andC.Holzer, “Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing,” Mater. Lett., vol. 248, pp. 165–168, Aug.2019, doi: 10.1016/J.MATLET.2019.04.024.
    [12] G.Singh, J. M.Missiaen, D.Bouvard, andJ. M.Chaix, “Additive manufacturing of 17–4 PH steel using metal injection molding feedstock: Analysis of 3D extrusion printing, debinding and sintering,” Addit. Manuf., vol. 47, p. 102287, Nov.2021, doi: 10.1016/J.ADDMA.2021.102287.
    [13] Y.Thompson, J.Gonzalez-Gutierrez, C.Kukla, andP.Felfer, “Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel,” Addit. Manuf., vol. 30, p. 100861, Dec.2019, doi: 10.1016/J.ADDMA.2019.100861.
    [14] B.Liu, Y.Wang, Z.Lin, andT.Zhang, “Creating metal parts by Fused Deposition Modeling and Sintering,” Mater. Lett., vol. 263, p. 127252, Mar.2020, doi: 10.1016/J.MATLET.2019.127252.
    [15] Y.Zhang, S.Bai, M.Riede, E.Garratt, andA.Roch, “A comprehensive study on fused filament fabrication of Ti-6Al-4V structures,” Addit. Manuf., vol. 34, p. 101256, Aug.2020, doi: 10.1016/J.ADDMA.2020.101256.
    [16] J.Gu et al., “Effects of heating rate in thermal debinding on the microstructure and property of sintered NiCuZn ferrite prepared by powder injection molding,” J. Magn. Magn. Mater., vol. 530, p. 167931, Jul.2021, doi: 10.1016/J.JMMM.2021.167931.
    [17] J. H.Liu, Y. S.Shi, Z. L.Lu, Y.Xu, K. H.Chen, andS. H.Huang, “Manufacturing metal parts via indirect SLS of composite elemental powders,” Mater. Sci. Eng. A, vol. 444, no. 1–2, pp. 146–152, Jan.2007, doi: 10.1016/J.MSEA.2006.08.070.
    [18] F.Xie, X.He, S.Cao, andX.Qu, “Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering,” J. Mater. Process. Technol., vol. 213, no. 6, pp. 838–843, Jun.2013, doi: 10.1016/J.JMATPROTEC.2012.12.014.
    [19] O. D.Jucan, R.V.Gădălean, H. F.Chicinaş, M.Hering, N.Bâlc, andC. O.Popa, “Study on the indirect selective laser sintering (SLS) of WC-Co/PA12 powders for the manufacturing of cemented carbide parts,” Int. J. Refract. Met. Hard Mater., vol. 96, p. 105498, Apr.2021, doi: 10.1016/J.IJRMHM.2021.105498.
    [20] L.Zhang et al., “Effects of debinding condition on microstructure and densification of alumina ceramics shaped with photopolymerization-based additive manufacturing technology,” Ceram. Int., vol. 48, no. 10, pp. 14026–14038, May2022, doi: 10.1016/j.ceramint.2022.01.288.
    [21] “US2939199A - Formation of ceramic mouldings - Google Patents.” https://patents.google.com/patent/US2939199A/en (accessed May31, 2022).
    [22] 王奕軒, “高功率半導體雷射金屬粉末燒結積層製造研究”.
    [23] K.Rane, K.Castelli, andM.Strano, “Rapid surface quality assessment of green 3D printed metal-binder parts,” J. Manuf. Process., vol. 38, pp. 290–297, Feb.2019, doi: 10.1016/J.JMAPRO.2019.01.032.
    [24] W. W.Yang, K. Y.Yang, M. C.Wang, andM. H.Hon, “Solvent debinding mechanism for alumina injection molded compacts with water-soluble binders,” Ceram. Int., vol. 29, no. 7, pp. 745–756, Jan.2003, doi: 10.1016/S0272-8842(02)00226-2.
    [25] R. V. B.Oliveira, V.Soldi, M. C.Fredel, andA. T. N.Pires, “Ceramic injection moulding: influence of specimen dimensions and temperature on solvent debinding kinetics,” J. Mater. Process. Technol., vol. 160, no. 2, pp. 213–220, Mar.2005, doi: 10.1016/J.JMATPROTEC.2004.06.008.
    [26] “史密斯金屬製品 | 設計指南:脫脂.” https://smithmetals.com/design-guide/process-options/debinding/ (accessed May31, 2022).
    [27] 劉書丞, “國立臺灣科技大學 機械工程系 碩士學位論文 於高功率半導體雷射積層製造 Design and Fabrication of Composite Material of Metal and Polymer and Its Application on High-Power Semiconductor Laser Additive Manufacturing System”.
    [28] O.Diegel, A.Nordin, andD.Motte, Additive Manufacturing Technologies. 2019. doi: 10.1007/978-981-13-8281-9_2.
    [29] D.Huber, L.Vogel, andA.Fischer, “The effects of sintering temperature and hold time on densification, mechanical properties and microstructural characteristics of binder jet 3D printed 17-4 PH stainless steel,” Addit. Manuf., vol. 46, p. 102114, Oct.2021, doi: 10.1016/J.ADDMA.2021.102114.
    [30] “New MPIF Standard 35— Materials Standards for PM Structural Parts Released.” https://www.mpif.org/News/PressReleases/TabId/166/ArtMID/1129/ArticleID/409/New-MPIF-Standard-35—-Materials-Standards-for-PM-Structural-Parts-Released.aspx (accessed Jun.06, 2022).
    [31] “嘉暉光電股份有限公司.” http://www.jahui.com.tw/product_description.php?PNo=47 (accessed Jun.11, 2022).
    [32] Z.Chen, W.Chen, L.Chen, D.Zhu, Q.Chen, andZ.Fu, “Influence of initial relative densities on the sintering behavior and mechanical behavior of 316 L stainless steel fabricated by binder jet 3D printing,” Mater. Today Commun., vol. 31, p. 103369, Jun.2022, doi: 10.1016/J.MTCOMM.2022.103369.

    無法下載圖示 全文公開日期 2027/07/22 (校內網路)
    全文公開日期 2027/07/22 (校外網路)
    全文公開日期 2027/07/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE