簡易檢索 / 詳目顯示

研究生: 陳冠宇
Guan-Yu Chen
論文名稱: 以田口試驗設計法探討添加膨脹劑及乾縮抑制劑與乳膠改善飛灰及爐石基鹼激發複合膠體工程性質之研究
Study on Improving Engineering Properties of Fly Ash and Slag Based Alkali Activated Composite Cementitious Binder by Adding Expansion Agent and Shrinkage Reducing Agent and Latex Using Taguchi Experimental Design Method
指導教授: 張大鵬
Ta-Peng Chang
陳君弢
Chun-Tao Chen
口試委員: 王韡蒨
Wei-Chien Wang
林秉如
Ping-Ju Lin
邱建國
Chien-Kuo Chiu
楊仲家
Chung-Chia Yang
陳君弢
Chun-Tao Chen
張大鵬
Ta-Peng chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 172
中文關鍵詞: 煅燒稻殼灰氧化鎂田口試驗設計法鹼激發材料無機聚合物水玻璃模數飛灰爐石養護環境乾縮膨脹劑高分子乳膠收縮抑制劑
外文關鍵詞: calcined rice husk ash, magnesium oxide, Taguchi experimental design methods, alkali activated materials, geopolymer, waterglass modulus, fly ash, slag, curing environment, shrinkage, expansion agent, polymer emulsion, shrinkage reducing agent
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分成兩階段進行,第一階段探討以0、5、10、15、及20 %等五種不同體積之煅燒稻殼灰取代爐石粉,及添加0、0.5、1.0、1.5、及2.0 %等五種不同體積之高細度活性氧化鎂所製成爐石基鹼激發膠結漿體之工程性質,第二階段則採用田口實驗設計法,配置四因子三水準之實驗變數,各因子及水準分別為A因子(飛灰取代爐石比例)、取代比例為30 %、50 %、70 %;B因子(乳膠添加量),添加比例為被激發粉體之5 %、10 %、15 %;C因子(膨脹劑劑量),添加比例為被激發粉體之5 %、7.5 %、10 %;D因子(乾縮抑制劑劑量),添加比例為被激發粉體之1 %、2 %、3 %,採用固定液固比0.45、固定水玻璃模數0.8、鹼激發劑為氫氧化鈉及矽酸鈉溶液、鹼當量為6%,進行探討各因子及水準對鹼激發複合膠體之工程性質影響及提出最佳配比組合。
    研究結果指出:(1)添加稻殼灰及氧化鎂可縮短凝結時間;(2)不含氧化鎂僅以煅燒稻殼灰取代爐石粉之最佳取代量為10 %,硬固漿體最高抗壓強度為齡期28天之102.69 MPa;(3)添加2 %氧化鎂可提升pH值加速聚合反應及產生類水滑石,縮短凝結時間並產生體積膨脹;(4)最佳稻殼灰取代量應小於10%、氧化鎂添加量應小於1 %,可有較佳體積穩定性且具有較佳經濟性;(5)飛灰(因子A)對新拌漿體流動性及凝結時間、硬固漿體抗壓強度及吸水率之影響最大,貢獻度皆大於60 %以上。(6)抗彎強度於早期齡期(3天及7天)時,由乳膠(因子B)添加量與膨脹劑(因子C)劑量主導,貢獻度分別為31.89 %、39.59 %,28天及56天齡期則由飛灰(因子A)主導,貢獻度分別為82.44 %及42.8 2%。(7) 膨脹劑(因子C)添加量在10%時,試體吸水率最大且浸於水中時會過度膨脹。(8)乾縮抑制劑(因子D)影響早齡期(3天及7天)乾縮量最為顯著,膨脹劑(因子C)則影響晚期(28天及56天) 乾縮量最顯著,貢獻度分別為37.76 %、57.48 %、68.94 %及70.02 %。(9)乾縮抑制劑(因子D)對於早期之力學強度及體積穩定性影響較大,但隨齡期增加則影響漸小。(10)為使材料具有較佳之綜合性能,各因子最佳化的選用區間應為飛灰取代量(因子A)應介於30 % ~ 50 %取代量,乳膠添加量(因子B)介於5 % ~ 10 %、膨脹劑(因子C)介於5.0 % ~ 7.5 %、乾縮抑制劑(因子D)小於2 %。


    This research was dived into two parts to study. The first part studied the engineering properties of slag-based alkali-activated cementitious paste by using the calcined rice husk ash (RHA) with five different volumetric ratios of 0, 5, 10, 15 and 20 % to replace the slag, and adding the high-fineness reactive magnesium oxide (MgO) with five different volumetric ratios of 0,5, 1.0, 1.5 and 2.0%, respectively. The second part used the Taguchi experimental method design with four factors and three levels of experimental variables. Factor A was the proportion of fly ash replacing slag with the replacement proportions of 30 %, 50 %, and 70 %, factor B was the latex with adding proportions of 5 %, 10 %, 15 % of the bonder powder, factor C was the expansion agent dosage with the adding proportion of 5 %, 7.5 %, 10 % of the bonder powder, and factor D was the dosage of dry shrinkage reducing agent with the addition ratios of 1%, 2%, and 3% of the precusor powder, respectively. The liquid-to-solid ratio (L/S) of 0.45, waterglass modulus (Ms.) of 0.8 and alkali equivalent of 6% for the alkali-activator using solutions of sodium hydroxide and soldiun silicate were fixed%, respectively. The impacts of various factors and levels on the engineering properties of alkali-activated materials were studied and the combination of optimal ratio were proposed.
    The research results pointed out that: (1) Addition of RHA could shorten the setting times. (2) Optimum volumetric ratio of RHA to replace slag without MgO was 1.0%, which had the highest compressive strength of 102.69 MPa. (3) Addition of 2% MgO could enhance the pH value to accelerate the polymerization process and produce hydrotalcite-like compounds, which could shorten the setting time and volumetric expansion of sample. (4) Optimum volumetric replacement ratios were RHA of less than 10% and MgO of less than 1%, which had the better volume stability and economical. (5) The fly ash (factor A) had the greatest impact on flowability and setting time of fresh paste and compressive strength and water absorption of hardened paste properties with both of the contribution values higher than 60%. (6) The flexural strength was controlled by the dosages of latex (factor B) and expansion agent (factor C) in the early ages with the contribution values of 31.89% and 39.59% respectively. At ages of 28 and 56 days, it was controlled by fly ash (factor A) with the contribution values of 82.44% and 42.82% respectively. (7) At the dosage of 10% of expansion agent (factor C) was added, the specimens had the greatest water absorption and the excessive volumetric expansion. (8) The shrinkage reducing agent (factor D) had the most significant influence on the shrinkage at ages of 3 and 7 days, while the expansion agent (factor C) affected that at ages of 7 days and 56 days with the contributionvalues of 37.76%, 57.48%, 68.94% and 70.02% respectively. (9) The shrinkage reducing agent (factor D) had the greatest impact on the the mechanical strength and volumetric stability at early ages, but was gradually reduced with elapse of curing ages. (10) In order to make the material to have better comprehensive performance, the optimal selection ranges of each factor should be that the fly ash (factor A) was between 30% and 50% of substitution amount, the polymer emulsion (factor B) was between 5% and 10%, the expansion agent (factor C) was between 5.0% and 7.5%, and shrinkage reducing agent (factor D) was less than 2%

    中文摘要 i Abstract iii 致謝 v 總目錄 vii 表目錄 xi 圖目錄 xv 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程與內容 2 第二章 文獻回顧 5 2.1 鹼激發材料發展歷史 5 2.2 鹼激發反應機理 6 2.2.1. 矽鈣類(Si+Ca)或高鈣類反應過程與生成物 10 2.2.2. 矽鋁類(Si+Al)或低鈣類反應過程與生成物 12 2.2.3. 混合或中間鈣反應過程及生成物 13 2.3 鹼激發基材 16 2.3.1. 稻殼灰(RHA) 16 2.3.2. 水淬爐石粉(GGBFS) 17 2.3.3. 爐石粉粒徑的影響 19 2.3.4. 飛灰 20 2.3.5. 爐石與飛灰共同混合之影響 21 2.4 鹼激發材料之體積穩定性 23 2.4.1. 體積收縮機理 24 2.4.1.1. 毛細管應力 25 2.4.1.1. 解離壓力(disjoining pressure) 26 2.4.1.2. 表面自由能 26 2.4.1.3. 層間水的移動 27 2.5 利用膨脹劑及乾縮抑制劑改善體積穩定性方式 28 2.5.1. 氧化鎂系膨脹劑 28 2.5.2. 氧化鈣系膨脹劑 31 2.5.3. 乾縮抑制劑(shrinkage reducing agent, SRA) 34 2.5.4. 高分子乳膠(latex)改善乾縮量及機械性質 36 2.6 田口試驗設計法 38 2.6.1. 利用田口方法進行最佳化設計之研究文獻 39 2.6.2. 田口試驗法設計流程 41 2.6.2.1. 田口法品質特性分析 41 2.6.2.2. 田口法實驗結果定量分析 43 第三章 實驗計畫 67 3.1 以稻殼灰及氧化鎂改善爐石基工程性質之實驗項目 67 3.2 田口實驗設計法之矩陣配置與實驗項目 68 3.3 實驗拌製說明 69 3.4 實驗方式 69 3.4.1. 漿體新拌性質 69 3.4.2. 漿體硬固性質測試 70 3.5 實驗材料 73 3.6 實驗設備 74 第四章 實驗結果分析 84 4.1 稻殼灰及氧化鎂改善鹼激發爐石基漿體工程性質實驗結果 84 4.1.1. 漿體新拌性質 84 4.1.1.1. 流度實驗 84 4.1.1.2. 凝結時間實驗 84 4.1.2. 漿體硬固性質 85 4.1.2.1. 抗壓強度實驗 85 4.1.2.2. 超音波速 86 4.1.2.3. 乾縮量實驗 87 4.2 田口實驗設計法實驗結果 88 4.2.1. 漿體新拌性質 88 4.2.1.1. 流度實驗 88 4.2.1.2. 凝結時間實驗 90 4.2.2. 漿體硬固性質 91 4.2.2.1. 抗壓強度實驗 91 4.2.2.2. 抗彎強度實驗 93 4.2.2.3. 吸水率實驗 94 4.2.3. 乾縮量實驗 96 4.2.3.1. 室溫空氣養護環境 96 4.2.3.2. 浸水養護環境 98 4.2.3.3. 恆溫恆濕養護環境 100 第五章 結論與建議 155 5.1 稻殼灰及氧化鎂改善鹼基發爐石基漿體工程性質實驗小結 155 5.2 田口實驗設計法實驗小結 156 5.3 建議 157 參考文獻 159

    1. Abolfathi, Mehrnosh, Tarik Omur, and Nihat Kabay. 2023. "Effect of microfibers or SRA on the shrinkage and mechanical properties of alkali activated slag/fly ash-based mortars incorporating recycled fine aggregate." Construction and Building Materials 373:130883.
    2. Al Makhadmeh, W., and A. Soliman. 2022. "On the mechanisms of shrinkage reducing admixture in alkali activated slag binders." Journal of Building Engineering 56:104812.
    3. Amin, Muhammad Nasir, Jeong-Su Kim, Tran Thanh Dat, and Jin-Keun Kim. 2010. "Improving test methods to measure early age autogenous shrinkage in concrete based on air cooling." The IES Journal Part A: Civil & Structural Engineering 3 (4):244-256.
    4. Awoyera, Paul, and Adeyemi Adesina. 2019. "A critical review on application of alkali activated slag as a sustainable composite binder." Case Studies in Construction Materials 11:e00268.
    5. Bahri, Syamsul, H. B. Mahmud, and Payam Shafigh. 2018. "Effect of utilizing unground and ground normal and black rice husk ash on the mechanical and durability properties of high-strength concrete." Sādhanā 43 (2):22.
    6. Bakharev, Tatiana, Jay Gnananandan Sanjayan, and Yi-Bing Cheng. 1999. "Alkali activation of Australian slag cements." Cement and Concrete Research 29 (1):113-120.
    7. Barbosa, Valeria F. F., Kenneth J. D. MacKenzie, and Clelio Thaumaturgo. 2000. "Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers." International Journal of Inorganic Materials 2 (4):309-317.
    8. Behak, Leonardo, and Washington Peres Núñez. 2013. "Effect of burning temperature on alkaline reactivity of rice husk ash with lime." Road Materials and Pavement Design 14 (3):570-585.
    9. Ben Haha, M., G. Le Saout, F. Winnefeld, and B. Lothenbach. 2011. "Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags." Cement and Concrete Research 41 (3):301-310.
    10. Bentz, D. P. 2008. "A review of early-age properties of cement-based materials." Cement and Concrete Research 38 (2):196-204.
    11. Bernal, Susan A., Rackel San Nicolas, Rupert J. Myers, Ruby Mejía de Gutiérrez, Francisca Puertas, Jannie S. J. van Deventer, and John L. Provis. 2014. "MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders." Cement and Concrete Research 57:33-43.
    12. Bhutta, Aamer, Mohammed Farooq, and Nemkumar Banthia. 2018. "Matrix hybridization using waste fuel ash and slag in alkali-activated composites and its influence on maturity of fiber-matrix bond." Journal of Cleaner Production 177(10):857-867.
    13. Billong, Ndigui, John Kinuthia, Jonathan Oti, and Uphie Chinje Melo. 2018. "Performance of sodium silicate free geopolymers from metakaolin (MK) and Rice Husk Ash (RHA): Effect on tensile strength and microstructure." Construction and Building Materials 189:307-313.
    14. Caijun Shi, Della Roy, Pavel Krivenko. 2006. Alkali-Activated Cements and Concretes. 1 st ed. Abingdon: Taylor & Francis.
    15. Cartwright, Christopher, Farshad Rajabipour, and Aleksandra Radlińska. 2015. "Shrinkage Characteristics of Alkali-Activated Slag Cements." Journal of Materials in Civil Engineering 27 (7):B4014007.
    16. Celik, Cafer, and Nimetullah Burnak. 1998. "A systematic approach to the solution of the design optimization problem." Total Quality Management 9 (1):101-108.
    17. Chang, Jiang Jhy, Weichung Yeih, and Chi Che Hung. 2005. "Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes." Cement and Concrete Composites 27 (1):85-91.
    18. Chindaprasirt, Prinya, Pre De Silva, Kwesi Sagoe-Crentsil, and Sakonwan Hanjitsuwan. 2012. "Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems." Journal of Materials Science 47 (12):4876-4883.
    19. Collins, Frank, and J. G. Sanjayan. 2000. "Effect of pore size distribution on drying shrinking of alkali-activated slag concrete." Cement and Concrete Research 30 (9):1401-1406.
    20. Coppola, L., D. Coffetti, E. Crotti, S. Candamano, F. Crea, G. Gazzaniga, and T. Pastore. 2020. "The combined use of admixtures for shrinkage reduction in one-part alkali activated slag-based mortars and pastes." Construction and Building Materials 248:118682.
    21. Coussy, O., P. Dangla, T. Lassabatère, and V. Baroghel-Bouny. 2004. "The equivalent pore pressure and the swelling and shrinkage of cement-based materials." Materials and Structures 37 (1):15-20.
    22. Criado, M., A. Fernández-Jiménez, and A. Palomo. 2010. "Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description." Fuel 89 (11):3185-3192.
    23. Dai, Jinpeng, Qicai Wang, Chao Xie, Yanjin Xue, Yun Duan, and Xiaoning Cui. 2019. "The Effect of Fineness on the Hydration Activity Index of Ground Granulated Blast Furnace Slag." Materials 12 (18):2984.
    24. Das, Shaswat Kumar, Jyotirmoy Mishra, Saurabh Kumar Singh, Syed Mohammed Mustakim, Alok Patel, Sitansu Kumar Das, and Umakanta Behera. 2020. "Characterization and utilization of rice husk ash (RHA) in fly ash – Blast furnace slag based geopolymer concrete for sustainable future." Materials Today: Proceedings 33(8):5162-5167.
    25. Dave, Shemal V., Ankur Bhogayata, and Narendra K. Arora. 2021. "Mix design optimization for fresh, strength and durability properties of ambient cured alkali activated composite by Taguchi method." Construction and Building Materials 284:122822.
    26. Davidovits, Joseph , Geopolymere Institut, and Picardie Universite de. 1999. "Chemistry of Geopolymeric Systems Terminology (pp. 9-40)." 2nd, International conference on geopolymers, Saint-Quentin, France:.
    27. Davidovits, Joseph. 1979. "SYNTHESIS OF NEW HIGH-TEMPERATURE GEO-POLYMERS FOR REINFORCED PLASTICS/COMPOSITES." PACTEC '79 Society of Plastics Engineers, Costa Mesa, California, USA.
    28. Davidovits, Joseph. 1991. "Geopolymers: Inorganic polymeric new materials." Journal of Thermal Analysis and Calorimetry 37 (8):1633-1656.
    29. Davidovits, Joseph. 1994. "Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement." Journal of Materials education 16:91-139.
    30. Davidovits, Joseph. 2005. Geopolymer chemistry and sustainable development. The poly(sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry. Saint-Quentin, France: Geopolymer Institute.
    31. Dong, Minhao, Mohamed Elchalakani, and Ali Karrech. 2020. "Development of high strength one-part geopolymer mortar using sodium metasilicate." Construction and Building Materials 236:117611.
    32. Duran Atiş, Cengiz, Cahit Bilim, Özlem Çelik, and Okan Karahan. 2009. "Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar." Construction and Building Materials 23 (1):548-555.
    33. Duxson, P., A. Fernandez-Jimenez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer. 2007. "Geopolymer technology: The current state of the art." Journal of Materials Science 42 (9):2917-2933.
    34. Duxson, P., G. C. Lukey, F. Separovic, and J. S. J. Van Deventer. 2005. "Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels." Industrial & Engineering Chemistry Research 44 (4):832-839.
    35. Duxson, Peter, and John L. Provis. 2008. "Designing Precursors for Geopolymer Cements." Journal of the American Ceramic Society 91 (12):3864-3869.
    36. El-Yamany, Hafez E., Mona A. El-Salamawy, and Norhan T. El-Assal. 2018. "Microstructure and mechanical properties of alkali-activated slag mortar modified with latex." Construction and Building Materials 191:32-38.
    37. Elahi, Md Manjur A., Md Maruf Hossain, Md Rezaul Karim, Muhammad Fauzi Mohd Zain, and Christopher Shearer. 2020. "A review on alkali-activated binders: Materials composition and fresh properties of concrete." Construction and Building Materials 260:119788.
    38. Escalante-García, Jose I., Antonio F. Fuentes, Alexander Gorokhovsky, Pedro E. Fraire-Luna, and Guillermo Mendoza-Suarez. 2003. "Hydration Products and Reactivity of Blast-Furnace Slag Activated by Various Alkalis." Journal of the American Ceramic Society 86 (12):2148-2153.
    39. Everett, D. H. 1972. "Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry." Pure and Applied Chemistry 31 (4):577-638.
    40. Fang, Guohao, Hossein Bahrami, and Mingzhong Zhang. 2018. "Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h." Construction and Building Materials 171:377-387.
    41. Fang, Guohao, Qiang Wang, and Mingzhong Zhang. 2021. "In-situ X-ray tomographic imaging of microstructure evolution of fly ash and slag particles in alkali-activated fly ash-slag paste." Composites Part B: Engineering 224:109221.
    42. Fapohunda, Christopher, Bolatito Akinbile, and Ahmed Shittu. 2017. "Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement – A review." International Journal of Sustainable Built Environment 6 (2):675-692.
    43. Fernández-Jiménez, A., and A. Palomo. 2009. "6 - Nanostructure/microstructure of fly ash geopolymers." In Geopolymers, edited by John L. Provis and Jannie S. J. van Deventer, 89-117. Woodhead Publishing.
    44. Fernández-Jiménez, A., A. Palomo, and M. Criado. 2005. "Microstructure development of alkali-activated fly ash cement: a descriptive model." Cement and Concrete Research 35 (6):1204-1209.
    45. Fernández-Jiménez, A., A. Palomo, I. Sobrados, and J. Sanz. 2006. "The role played by the reactive alumina content in the alkaline activation of fly ashes." Microporous and Mesoporous Materials 91 (1):111-119.
    46. Fernández-Jiménez, Ana, Francisca Puertas, Isabel Sobrados, and Jesús Sanz. 2003. "Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator." Journal of the American Ceramic Society 86 (8):1389-1394.
    47. Garcia-Lodeiro, I., A. Fernandez-Jimenez, and A. Palomo. 2013. "Hydration kinetics in hybrid binders: Early reaction stages." Cement and Concrete Composites 39:82-92.
    48. Garcia-Lodeiro, I., A. Palomo, and A. Fernández-Jiménez. 2015. "2 - An overview of the chemistry of alkali-activated cement-based binders." In Handbook of Alkali-Activated Cements, Mortars and Concretes, edited by F. Pacheco-Torgal, J. A. Labrincha, C. Leonelli, A. Palomo and P. Chindaprasirt,pp. 19-47. Oxford: Woodhead Publishing.
    49. Garcia-Lodeiro, I., A. Palomo, A. Fernández-Jiménez, and D. E. Macphee. 2011. "Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O." Cement and Concrete Research 41 (9):923-931.
    50. García-Lodeiro, I., A. Fernández-Jiménez, and A. Palomo. 2013. "Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends." Cement and Concrete Research 52:112-122.
    51. García-Lodeiro, Ines, Ana Fernández-Jiménez, Angel Palomo, and Donald E. Macphee. 2010. "Effect of Calcium Additions on N-A-S-H Cementitious Gels." Journal of the American Ceramic Society. 93(7):1934-1940.
    52. García Lodeiro, I., A. Fernández-Jimenez, A. Palomo, and D. E. Macphee. 2010. "Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium." Cement and Concrete Research 40 (1):27-32.
    53. Garnier, Sébastien. 2005. "Novel amphiphilic diblock copolymers by RAFT-polymerization, their self-organization and surfactant properties." Universität Potsdam.
    54. Gawin, Dariusz, Francesco Pesavento, and Bernhard A. Schrefler. 2006. "Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: shrinkage and creep of concrete." International Journal for Numerical Methods in Engineering 67 (3):332-363.
    55. Glukhovsky, VD. 1994. "Ancient, modern and future concretes." Proceedings of the First International Conference on Alkaline Cements and Concretes:1-9
    56. Gutteridge, W. A., and L. J. Parrott. 1976. "A study of the changes in weight, length and interplanar spacing induced by drying and rewetting synthetic CSH (I)." Cement and Concrete Research 6 (3):357-366.
    57. Hadi, Muhammad N. S., Nabeel A. Farhan, and M. Neaz Sheikh. 2017. "Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method." Construction and Building Materials 140:424-431.
    58. He, Juan, Weihao Zheng, Wenbin Bai, Tingting Hu, Junhong He, and Xuefeng Song. 2021. "Effect of reactive MgO on hydration and properties of alkali-activated slag pastes with different activators." Construction and Building Materials 271:121608.
    59. Ho, Van Dac, Aliakbar Gholampour, Dusan Losic, and Togay Ozbakkaloglu. 2021. "Enhancing the performance and environmental impact of alkali-activated binder-based composites containing graphene oxide and industrial by-products." Construction and Building Materials 284:122811.
    60. Hojati, Maryam, and Aleksandra Radlińska. 2017. "Shrinkage and strength development of alkali-activated fly ash-slag binary cements." Construction and Building Materials 150:808-816.
    61. Hoseinpour-Lonbar, Mohammad, Mohammad Zia Alavi, and Massoud Palassi. 2020. "Selection of asphalt mix with optimal fracture properties at intermediate temperature using Taguchi method for design of experiment." Construction and Building Materials 262:120601.
    62. Hu, Zhangli, Mateusz Wyrzykowski, and Pietro Lura. 2020. "Estimation of reaction kinetics of geopolymers at early ages." Cement and Concrete Research 129:105971.
    63. Huang, Dunwen, Peng Chen, Hui Peng, Yiwei Yang, Qiaoming Yuan, and Miao Su. 2021. "A review and comparison study on drying shrinkage prediction between alkali-activated fly ash/slag and ordinary Portland cement." Construction and Building Materials 305:124760.
    64. Hwang, Chao-Lung, Duy-Hai Vo, Vu-An Tran, and Mitiku Damtie Yehualaw. 2018. "Effect of high MgO content on the performance of alkali-activated fine slag under water and air curing conditions." Construction and Building Materials 186:503-513.
    65. Ismail, Idawati, Susan A. Bernal, John L. Provis, Rackel San Nicolas, Sinin Hamdan, and Jannie S. J. van Deventer. 2014. "Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash." Cement and Concrete Composites 45:125-135.
    66. Jain, Vaibhav, Gaurav Sancheti, and Bhupesh Jain. 2022. "Non-destructive test analysis on concrete with rice husk ash and crushed stone additives." Materials Today: Proceedings 60:622-626..
    67. Jennings, Hamlin M. 2008. "Refinements to colloid model of C-S-H in cement: CM-II." Cement and Concrete Research 38 (3):275-289.
    68. Jia, Zijian, Yuanyuan Yang, Lingyan Yang, Yamei Zhang, and Zhengming Sun. 2018. "Hydration products, internal relative humidity and drying shrinkage of alkali activated slag mortar with expansion agents." Construction and Building Materials 158:198-207.
    69. Jin, Fei, and Abir Al-Tabbaa. 2015. "Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO." Construction and Building Materials 81:58-65.
    70. Jin, Fei, Kai Gu, Adel Abdollahzadeh, and Abir Al-Tabbaa. 2015. "Effects of Different Reactive MgOs on the Hydration of MgO-Activated GGBS Paste." Journal of Materials in Civil Engineering 27 (7):B4014001.
    71. Jin, Fei, Kai Gu, and Abir Al-Tabbaa. 2014. "Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste." Construction and Building Materials 51:395-404.
    72. Kovler, Konstantin, and Semion Zhutovsky. 2006. "Overview and Future Trends of Shrinkage Research." Materials and Structures 39 (9):827-847.
    73. Krivenko, Pavel V. 1994. "Alkaline cements." Proceedings of the 1st International Conference on Alkaline Cements and Concretes:11-129. Kiev, Ukraine, 1994.
    74. Kumar Das, Shaswat, Adeolu Adediran, Cyriaque Rodrigue Kaze, Syed Mohammed Mustakim, and Nordine Leklou. 2022. "Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties." Construction and Building Materials 345:128341.
    75. Le, Ha Thanh, Sang Thanh Nguyen, and Horst-Michael Ludwig. 2014. "A Study on High Performance Fine-Grained Concrete Containing Rice Husk Ash." International Journal of Concrete Structures and Materials 8 (4):301-307.
    76. Lee, N. K., J. G. Jang, and H. K. Lee. 2014. "Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages." Cement and Concrete Composites 53:239-248.
    77. Lee, N. K., E. M. Kim, and H. K. Lee. 2016. "Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex." Construction and Building Materials 113:264-272.
    78. Li, Chao, Henghu Sun, and Longtu Li. 2010. "A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements." Cement and Concrete Research 40 (9):1341-1349.
    79. Li, Faping, Defeng Chen, Zheming Yang, Yiyan Lu, Haojun Zhang, and Shan Li. 2022. "Effect of mixed fibers on fly ash-based geopolymer resistance against carbonation." Construction and Building Materials 322:126394.
    80. Li, Ning, Caijun Shi, Qing Wang, Zuhua Zhang, and Zhihua Ou. 2017. "Composition design and performance of alkali-activated cements." Materials and Structures 50 (3):178.
    81. Li, Ning, Caijun Shi, and Zuhua Zhang. 2019. "Understanding the roles of activators towards setting and hardening control of alkali-activated slag cement." Composites Part B: Engineering 171:34-45.
    82. Li, Shengtao, Xudong Chen, Wei Zhang, Yingjie Ning, and Joan R. Casas. 2023. "Utilization of ultra-fine dredged sand from the Yangtze River in alkali-activated slag/fly ash mortars: Mechanical properties, drying shrinkage and microstructure." Case Studies in Construction Materials 19:e02264.
    83. Li, Xuyong, Zhongping Yang, Shuang Yang, Keshan Zhang, and Jiazhuo Chang. 2023. "Synthesis process-based mechanical property optimization of alkali-activated materials from red mud: A review." Journal of Environmental Management 344:118616.
    84. Li, Yue, and Jiaqi Li. 2014. "Capillary tension theory for prediction of early autogenous shrinkage of self-consolidating concrete." Construction and Building Materials 53:511-516.
    85. Li, Zhenming, Tianshi Lu, Xuhui Liang, Hua Dong, and Guang Ye. 2020. "Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes." Cement and Concrete Research 135:106107.
    86. Liew, Yun-Ming, Cheng-Yong Heah, Al Bakri Mohd Mustafa, and Hussin Kamarudin. 2016. "Structure and properties of clay-based geopolymer cements: A review." Progress in Materials Science 83:595-629.
    87. Liu, Xiao, Shiyu Li, Yungchin Ding, Zichen Lu, Dietmar Stephan, Yichen Chen, Ziming Wang, and Suping Cui. 2023. "Investigation on admixtures applied to alkali-activated materials: A review." Journal of Building Engineering 64:105694.
    88. Lodeiro, I García, DE Macphee, A Palomo, and A Fernández-Jiménez. 2009. "Effect of alkalis on fresh C–S–H gels. FTIR analysis." Cement and Concrete Research 39:147-153.
    89. Lothenbach, B, and A Gruskovnjak. 2007. "Hydration of alkali-activated slag: thermodynamic modelling." Advances in cement research 19 (2):81-92.
    90. Lu, Cuifang, Zuhua Zhang, Caijun Shi, Ning Li, Dengwu Jiao, and Qiang Yuan. 2021. "Rheology of alkali-activated materials: A review." Cement and Concrete Composites 121:104061.
    91. LU, Duyou, Yanzeng ZHENG, Yongdao LIU, and Zhongzi XU. 2012. "Effect of light-burned magnesium oxide on deformation behavior of geopolymer and its mechanism." Journal of The Chinese Ceramic Society 40 (11):1625-1630.
    92. Luo, Ling, Wu Yao, Guangwei Liang, and Yu Luo. 2023. "Workability, autogenous shrinkage and microstructure of alkali-activated slag/fly ash slurries: Effect of precursor composition and sodium silicate modulus." Journal of Building Engineering 73:106712.
    93. Luukkonen, Tero, Zahra Abdollahnejad, Juho Yliniemi, Paivo Kinnunen, and Mirja Illikainen. 2018. "One-part alkali-activated materials: A review." Cement and Concrete Research 103:21-34.
    94. Ma, Hongqiang, Xiaomeng Li, Xuan Zheng, Xiaoyan Niu, and Youliang Fang. 2022. "Effect of active MgO on the hydration kinetics characteristics and microstructures of alkali-activated fly ash-slag materials." Construction and Building Materials 361.
    95. Ma, Hongqiang, Hongguang Zhu, Hongyu Chen, Yadong Ni, Xiaonan Xu, and Qingjie Huo. 2020. "Shrinkage-reducing measures and mechanisms analysis for alkali-activated coal gangue-slag mortar at room temperature." Construction and Building Materials 252:119001.
    96. Macphee, Donald, and Ines Garcia-Lodeiro. 2011. "Activation of aluminosilicates-some chemical considerations." Slag Valorisation Symposium:51-61.
    97. Maruyama, Ippei. 2010. "Origin of Drying Shrinkage of Hardened Cement Paste: Hydration Pressure." Journal of Advanced Concrete Technology 8 (2):187-200.
    98. Mastali, M., P. Kinnunen, A. Dalvand, R. Mohammadi Firouz, and M. Illikainen. 2018. "Drying shrinkage in alkali-activated binders – A critical review." Construction and Building Materials 190:533-550.
    99. Matalkah, Faris, Talal Salem, Mamoon Shaafaey, and Parviz Soroushian. 2019. "Drying shrinkage of alkali activated binders cured at room temperature." Construction and Building Materials 201:563-570.
    100. Mehta, Ankur, and Rafat Siddique. 2018. "Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties." Journal of Cleaner Production 205:49-57.
    101. Mendes, Beatryz C., Leonardo G. Pedroti, Carlos Maurício F. Vieira, Markssuel Marvila, Afonso R. G. Azevedo, José Maria Franco de Carvalho, and José Carlos L. Ribeiro. 2021. "Application of eco-friendly alternative activators in alkali-activated materials: A review." Journal of Building Engineering 35:102010.
    102. Mikhailova, O., A. del Campo, P. Rovnanik, J. F. Fernández, and M. Torres-Carrasco. 2019. "In situ characterization of main reaction products in alkali-activated slag materials by Confocal Raman Microscopy." Cement and Concrete Composites 99:32-39.
    103. Moghadam, Mohamad Jamali, Rassoul Ajalloeian, and Alborz Hajiannia. 2019. "Preparation and application of alkali-activated materials based on waste glass and coal gangue: A review." Construction and Building Materials 221:84-98.
    104. Mundra, Shishir, Dale P. Prentice, Susan A. Bernal, and John L. Provis. 2020. "Modelling chloride transport in alkali-activated slags." Cement and Concrete Research 130:106011.
    105. Myers, Rupert J., Susan A. Bernal, and John L. Provis. 2017. "Phase diagrams for alkali-activated slag binders." Cement and Concrete Research 95:30-38.
    106. Najm, Omar, Hilal El-Hassan, and Amr El-Dieb. 2022. "Optimization of alkali-activated ladle slag composites mix design using taguchi-based TOPSIS method." Construction and Building Materials 327:126946.
    107. Nasir, Muhammad, Megat Azmi Megat Johari, Adeyemi Adesina, Mohammed Maslehuddin, Moruf Olalekan Yusuf, M. J. A. Mijarsh, Mohammed Ibrahim, and Syed Khaja Najamuddin. 2021. "Evolution of room-cured alkali-activated silicomanganese fume-based green mortar designed using Taguchi method." Construction and Building Materials 307:124970.
    108. Ng, Connie, U. Johnson Alengaram, Leong Sing Wong, Kim Hung Mo, Mohd Zamin Jumaat, and S. Ramesh. 2018. "A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete." Construction and Building Materials 186:550-576.
    109. Nodehi, Mehrab, Togay Ozbakkaloglu, Aliakbar Gholampour, Tijani Mohammed, and Xijun Shi. 2022. "The effect of curing regimes on physico-mechanical, microstructural and durability properties of alkali-activated materials: A review." Construction and Building Materials 321:126335.
    110. Oderji, Sajjad Yousefi, Bing Chen, Chandan Shakya, Muhammad Riaz Ahmad, and Syed Farasat Ali Shah. 2019. "Influence of superplasticizers and retarders on the workability and strength of one-part alkali-activated fly ash/slag binders cured at room temperature." Construction and Building Materials 229:116891.
    111. Pacheco-Torgal, Fernando, João Castro-Gomes, and Said Jalali. 2008. "Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products." Construction and Building Materials 22 (7):1305-1314.
    112. Pal, S. C., A. Mukherjee, and S. R. Pathak. 2003. "Investigation of hydraulic activity of ground granulated blast furnace slag in concrete." Cement and Concrete Research 33 (9):1481-1486.
    113. Palacios, M., and F. Puertas. 2007. "Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes." Cement and Concrete Research 37 (5):691-702.
    114. Palomo, A, Ana Fernández-Jiménez, G Kovalchuk, LM Ordoñez, and MC Naranjo. 2007. "OPC-fly ash cementitious systems: study of gel binders produced during alkaline hydration." Journal of Materials Science 42 (9):2958-2966.
    115. Palomo, A., M. W. Grutzeck, and M. T. Blanco. 1999. "Alkali-activated fly ashes: A cement for the future." Cement and Concrete Research 29 (8):1323-1329.
    116. Palomo, Ángel, Santiago Alonso, Ana Fernandez-Jiménez, Isabel Sobrados, and Jesús Sanz. 2004. "Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products." Journal of the American Ceramic Society 87 (6):1141-1145.
    117. Panagiotopoulou, C., S. Tsivilis, and G. Kakali. 2015. "Application of the Taguchi approach for the composition optimization of alkali activated fly ash binders." Construction and Building Materials 91:17-22.
    118. Phair, J. W., and J. S. J. Van Deventer. 2002. "Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers." International Journal of Mineral Processing 66 (1):121-143.
    119. Ponomar, Vitalii, Tero Luukkonen, and Juho Yliniemi. 2023. "Revisiting alkali-activated and sodium silicate-based materials in the early works of Glukhovsky." Construction and Building Materials 398:132474.
    120. Provis, J. L., and J. S. J. van Deventer. 2007. "Geopolymerisation kinetics. 2. Reaction kinetic modelling." Chemical Engineering Science 62 (9):2318-2329.
    121. Provis, John L, and Jannie SJ Van Deventer. 2013. Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM. Vol. 13: Springer Science & Business Media.
    122. Provis, John L. 2018. "Alkali-activated materials." Cement and Concrete Research 114:40-48.
    123. Provis, John L., and Susan A. Bernal. 2014. "Geopolymers and Related Alkali-Activated Materials." Annual Review of Materials Research 44 (1):299-327.
    124. Provis, John L., Peter Duxson, Grant C. Lukey, Frances Separovic, Waltraud M. Kriven, and Jannie S. J. Van Deventer. 2005. "Modeling Speciation in Highly Concentrated Alkaline Silicate Solutions." Industrial & Engineering Chemistry Research 44 (23):8899-8908.
    125. Provis, John L., Angel Palomo, and Caijun Shi. 2015. "Advances in understanding alkali-activated materials." Cement and Concrete Research 78:110-125.
    126. Puertas, F., A. Fernández-Jiménez, and M. T. Blanco-Varela. 2004. "Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate." Cement and Concrete Research 34 (1):139-148.
    127. Puertas, F., S. Martı́nez-Ramı́rez, S. Alonso, and T. Vázquez. 2000. "Alkali-activated fly ash/slag cements: Strength behaviour and hydration products." Cement and Concrete Research 30 (10):1625-1632.
    128. Rafeet, Ali, Raffaele Vinai, Marios Soutsos, and Wei Sha. 2019. "Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs)." Cement and Concrete Research 122:118-135.
    129. Ramachandran, Vangipuram Seshachar. 1996. Concrete admixtures handbook: properties, science and technology: William Andrew.
    130. Ryu, Gum Sung, Young Bok Lee, Kyung Taek Koh, and Young Soo Chung. 2013. "The mechanical properties of fly ash-based geopolymer concrete with alkaline activators." Construction and Building Materials 47:409-418.
    131. Sata, Vanchai, Apha Sathonsaowaphak, and Prinya Chindaprasirt. 2012. "Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack." Cement and Concrete Composites 34 (5):700-708.
    132. Schade, Tim, Frank Bellmann, and Bernhard Middendorf. 2022. "Quantitative analysis of C-(K)-A-S-H-amount and hydrotalcite phase content in finely ground highly alkali-activated slag/silica fume blended cementitious material." Cement and Concrete Research 153:106706..
    133. Shehata, Nabila, Enas Taha Sayed, and Mohammad Ali Abdelkareem. 2021. "Recent progress in environmentally friendly geopolymers: A review." Science of The Total Environment 762:143166.
    134. Shen, Weiguo, Yiheng Wang, Tao Zhang, Mingkai Zhou, Jiasheng Li, and Xiaoyu Cui. 2011. "Magnesia modification of alkali-activated slag fly ash cement." Journal of Wuhan University of Technology-Mater. Sci. Ed. 26 (1):121-125.
    135. SHI, Huisheng, Ming XIA, and Xiaolu Guo. 2013. "Research development on mechanism of fly ash-based geopolymer and effect of each component." Journal of the Chinese Ceramic Society 41 (7):972-980.
    136. Siddika, Ayesha, Md Abdullah Al Mamun, Rayed Alyousef, and Hossein Mohammadhosseini. 2021. "State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete." Journal of King Saud University - Engineering Sciences 33 (5):294-307.
    137. Soumya Pradhan, Shashwati, Umesh Mishra, Sushant Kumar Biswal, and Parveen. 2023. "Mechanical and microstructural study of slag based alkali activated concrete incorporating RHA." Construction and Building Materials 400:132685.
    138. Soutsos, Marios, Alan P. Boyle, Raffaele Vinai, Anastasis Hadjierakleous, and Stephanie J. Barnett. 2016. "Factors influencing the compressive strength of fly ash based geopolymers." Construction and Building Materials 110:355-368.
    139. Sun, Beibei, Guang Ye, and Geert de Schutter. 2022. "A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials." Construction and Building Materials 326:126843.
    140. Sun, G. K., J. Francis Young, and R. James Kirkpatrick. 2006. "The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples." Cement and Concrete Research 36 (1):18-29.
    141. Sun, Wei, Yun-sheng Zhang, Wei Lin, and Zhi-yong Liu. 2004. "In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM." Cement and Concrete Research 34 (6):935-940.
    142. Türkmen, İbrahim, Rüstem Gül, and Cafer Çelik. 2008. "A Taguchi approach for investigation of some physical properties of concrete produced from mineral admixtures." Building and Environment 43 (6):1127-1137.
    143. Thomas, Jeffrey J., Andrew J. Allen, and Hamlin M. Jennings. 2012. "Density and water content of nanoscale solid C–S–H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage." Cement and Concrete Research 42 (2):377-383.
    144. Tian, Zhongnan, Xin Liu, Zhengqi Zhang, Kaiwen Zhang, and Xiuming Tang. 2021. "Potential using of water-soluble polymer latex modified greener road geopolymeric grouts: Its preparation, characterization and mechanism." Construction and Building Materials 273:121757.
    145. Topçu, İlker Bekir, Mehmet Uğur Toprak, and Tayfun Uygunoğlu. 2014. "Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement." Journal of Cleaner Production 81:211-217.
    146. Traven, Katja, Mark Češnovar, and Vilma Ducman. 2019. "Particle size manipulation as an influential parameter in the development of mechanical properties in electric arc furnace slag-based AAM." Ceramics International 45 (17, Part B):22632-22641.
    147. Van Deventer, Jannie S. J., John L. Provis, Peter Duxson, and G. C. Lukey. 2007. "Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products." Journal of Hazardous Materials 139 (3):506-513.
    148. Van Deventer, Jannie S. J., John L. Provis, Peter Duxson, and David G. Brice. 2010. "Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials." Waste and Biomass Valorization 1 (1):145-155.
    149. Van Jaarsveld, J. G. S., J. S. J. Van Deventer, and L. Lorenzen. 1997. "The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications." Minerals Engineering 10 (7):659-669.
    150. Venkatesan, R. Prasanna, and K. C. Pazhani. 2016. "Strength and durability properties of geopolymer concrete made with Ground Granulated Blast Furnace Slag and Black Rice Husk Ash." KSCE Journal of Civil Engineering 20 (6):2384-2391.
    151. Wang, Aiguo, Yi Zheng, Zuhua Zhang, Kaiwei Liu, Yan Li, Liang Shi, and Daosheng Sun. 2020. "The Durability of Alkali-Activated Materials in Comparison with Ordinary Portland Cements and Concretes: A Review." Engineering 6 (6):695-706.
    152. Wang, Shao-Dong, Karen L. Scrivener, and P. L. Pratt. 1994. "Factors affecting the strength of alkali-activated slag." Cement and Concrete Research 24 (6):1033-1043.
    153. Wang, Wei, and Takafumi Noguchi. 2020. "Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: A state-of-the-art review." Construction and Building Materials 252:119105.
    154. Weng, L., and K. Sagoe-Crentsil. 2007. "Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems." Journal of Materials Science 42 (9):2997-3006.
    155. White, Claire E., John L. Provis, Gordon J. Kearley, Daniel P. Riley, and Jannie S. J. Van Deventer. 2011. "Density functional modelling of silicate and aluminosilicate dimerisation solution chemistry." Dalton Trans. 40 (6):1348-1355.
    156. Winnefeld, Frank, Mohsen Ben Haha, Gwenn Le Saout, Mercedes Costoya, Suz-Chung Ko, and Barbara Lothenbach. 2015. "Influence of slag composition on the hydration of alkali-activated slags." Journal of Sustainable Cement-Based Materials 4 (2):85-100.
    157. Xu, H., J. S. J. Van Deventer, and G. C. Lukey. 2001. "Effect of Alkali Metals on the Preferential Geopolymerization of Stilbite/Kaolinite Mixtures." Industrial & Engineering Chemistry Research 40 (17):3749-3756.
    158. Xu, Hua, and J. S. J. Van Deventer. 2000. "The geopolymerisation of alumino-silicate minerals." International Journal of Mineral Processing 59 (3):247-266.
    159. Xu, Hua, and Jannie S. J. Van Deventer. 2002. "Microstructural characterisation of geopolymers synthesised from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM." Cement and Concrete Research 32 (11):1705-1716.
    160. Xu, Jun, Ai Hong Kang, Zheng Guang Wu, Peng Xiao, Bo Li, and Yi Miao Lu. 2021. "Research on the Formulation and Properties of a High-Performance Geopolymer Grouting Material Based on Slag and Fly Ash." KSCE Journal of Civil Engineering 25 (9):3437-3447.
    161. Xu, Rongsheng, Haoran Wang, Qingkun Zha, and Jian Lin. 2023. "Improving the carbonation resistance of alkali-activated slag mortars with different additives: experimental evaluations." Construction and Building Materials 366:130197
    162. Yang, Keun-Hyeok, Jin-Kyu Song, and Keum-Il Song. 2013. "Assessment of CO2 reduction of alkali-activated concrete." Journal of Cleaner Production 39:265-272.
    163. Yang, Yongmin, Zheng Chen, Wanhui Feng, Yumei Nong, Minhui Yao, and Yunchao Tang. 2021. "Shrinkage compensation design and mechanism of geopolymer pastes." Construction and Building Materials 299:123916.
    164. Yang, Zhiyuan, Xiewei Zhan, Hong Zhu, Bai Zhang, Pan Feng, Hubing Li, and Harn Wei Kua. 2023. "Performance-based alkali-activated seawater sea-sand concrete: Mixture optimization for mechanical, environmental, and economical objectives." Construction and Building Materials 409:134156.
    165. Ye, Hailong, Le Huang, and Zhijian Chen. 2019. "Influence of activator composition on the chloride binding capacity of alkali-activated slag." Cement and Concrete Composites 104:103368.
    166. Ye, Hailong, and Aleksandra Radlińska. 2016a. "A Review and Comparative Study of Existing Shrinkage Prediction Models for Portland and Non-Portland Cementitious Materials." Advances in Materials Science and Engineering 2016:2418219.
    167. Ye, Hailong, and Aleksandra Radlińska. 2016b. "Shrinkage mechanisms of alkali-activated slag." Cement and Concrete Research 88:126-135.
    168. Yip, C. K., G. C. Lukey, and J. S. J. van Deventer. 2005. "The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation." Cement and Concrete Research 35 (9):1688-1697.
    169. Yip, Christina K., Grant C. Lukey, John L. Provis, and Jannie S. J. van Deventer. 2008. "Effect of calcium silicate sources on geopolymerisation." Cement and Concrete Research 38 (4):554-564.
    170. Young, J. F. 1988. "Physical mechanisms and their mathematical descriptions." Mathematical Modeling of Creep and Shrinkage of Concrete:63-98.
    171. Yuan, Xiao-hui, Wei Chen, Zhe-an Lu, and Huiguo Chen. 2014. "Shrinkage compensation of alkali-activated slag concrete and microstructural analysis." Construction and Building Materials 66:422-428.
    172. Zana, Raoul. 2005. Dynamics of Surfactant Self-assemblies: Micelles, Microemulsions, Vesicles, and Lyotropic Phases. Boca Raton: Taylor & Francis/CRC Press.
    173. Zhan, Pei-min, and Zhi-hai He. 2019. "Application of shrinkage reducing admixture in concrete: A review." Construction and Building Materials 201:676-690.
    174. Zhang, Bai, Hong Zhu, Jun Chen, and Ou Yang. 2020. "Influence of specimen dimensions and reinforcement corrosion on bond performance of steel bars in concrete." Advances in Structural Engineering 23 (9):1759-1771.
    175. Zhang, Bai, Hong Zhu, Pan Feng, and Pu Zhang. 2022. "A review on shrinkage-reducing methods and mechanisms of alkali-activated/geopolymer systems: Effects of chemical additives." Journal of Building Engineering 49:104056.
    176. Zhang, Peng, Kexun Wang, Qingfu Li, Juan Wang, and Yifeng Ling. 2020. "Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders - A review." Journal of Cleaner Production 258:120896.
    177. Zhang, Wenyan, Yukio Hama, and Seung Hyun Na. 2015. "Drying shrinkage and microstructure characteristics of mortar incorporating ground granulated blast furnace slag and shrinkage reducing admixture." Construction and Building Materials 93:267-277.
    178. Zhang, Wenyan, Mengfen Xue, Huaxia Lin, Xiaohang Duan, Yuzhong Jin, and Faqiang Su. 2023. "Effect of polyether shrinkage reducing admixture on the drying shrinkage properties of alkali-activated slag." Cement and Concrete Composites 136:104865.
    179. Zheng, Weihao, Juan He, Yueping Tong, Junhong He, Xuefeng Song, and Guochen Sang. 2022. "Investigation of effects of reactive MgO on autogenous and drying shrinkage of near-neutral salt activated slag cement." Ceramics International 48 (4):5518-5526.
    180. Zheng, Weihao, Juan He, Yonghua Wu, Xuefeng Song, and Guochen Sang. 2022. "Effect of Reactive MgO on the Shrinkage Property of Alkali-activated Slag Cement MgO." Cailiao Daobao/Materials Reports 36 (10):21040175-8
    181. Zhu, Huajun, Guangwei Liang, Zuhua Zhang, Qisheng Wu, and Jianzhou Du. 2019. "Partial replacement of metakaolin with thermally treated rice husk ash in metakaolin-based geopolymer." Construction and Building Materials 221:527-538.
    182. Zhu, Yingcan, Marlon A. Longhi, Aiguo Wang, Dongshuai Hou, Hao Wang, and Zuhua Zhang. 2022. "Alkali leaching features of 3-year-old alkali activated fly ash-slag-silica fume: For a better understanding of stability." Composites Part B: Engineering 230:109469.
    183. 中國鋼鐵公司,2002,爐石利用推廣手冊。
    184. 李輝煌,2023,"田口方法品質設計的原理與實務",4th ed,高立出版社。
    185. 黃立遠,2010,"飛灰基無機聚合物工程性質及應用之研究",博士論文,營建工程系,國立臺灣科技大學。
    186. 黃兆龍,2007,"卜作嵐混凝土使用手冊",中興工程顧問社。
    187. 黃然,2014,"混凝土收縮開裂機理及防治技術之研究",內政部建築研究所委託研究報告。
    188. 鄭大偉,2020,"無機聚合材料(Geopolymer)與鹼激發材料(AAM)有何不同?"土木水利 47 (2):10-12。

    無法下載圖示
    全文公開日期 2029/02/06 (校外網路)
    全文公開日期 2029/02/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE