簡易檢索 / 詳目顯示

研究生: 劉瑞鴻
Ruei-Hong Liou
論文名稱: 氧化鋅奈米管/超奈米鑽石薄膜複合結構製作紫外光檢測器
Bi-layer ZnO Nanotubes/Ultra-nanocrystalline Diamond Films for UV photodetectors
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyan-kay Jou
柯文政
Wen-Cheng Ke
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 140
中文關鍵詞: 超奈米結晶鑽石氧化鋅奈米管紫外光檢測器
外文關鍵詞: Ultra-nanocrystalline diamond, ZnO nanotubes, UV photodetector
相關次數: 點閱:360下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為三個部分,第一部分探討以不同氮氣濃度比例成長超奈米結晶鑽石且以氬電漿與氫電漿後處理改變其表面形貌與鑽石薄膜品質;第二部分探討氧化鋅奈米柱與不同時間成長的奈米管結構的紫外光檢測器;第三部分探討氧化鋅/超奈米結晶鑽石複合結構的紫外光檢測器,並以FE-SEM、Raman、XRD、XPS、Hall effect、PL、Photodetector 等分析判定鑽石與氧化鋅的特性與品質。
    研究發現不同氮氣濃度比例所成長的超奈米鑽石,除了鑽石的成核速度不一樣,其本身的表面形貌也會從顆粒狀變成針狀,由實驗結果可得到氮氣濃度比例佔70%所合成的超奈米鑽石的紫外光檢測器分析之亮暗響應度(Switch ratio)為55 最佳。以氬電漿後處理的超奈米結晶鑽石,使其表面變得較為粗糙,增加其對紫外光的吸收率,實驗結果可得到以氬電漿後處理1 分鐘的超奈米結晶鑽石具有最好的紫外光亮暗響應度為117;以氫電漿後處理的超奈米結晶鑽石,可以增加其表面的石墨相含量,並有效地增加其本身的載子濃度,實驗結果可得到以氫電漿後處理5 分鐘的超奈米結晶鑽石具有要好的紫外光亮暗響應度為207;之後以兩種電漿後處理的機制,得到先以氬電漿處理1 分鐘再以氫電漿處理5 分鐘的超奈米結晶鑽石具有最好的紫外光亮暗響應度為558。在氧化鋅的研究發現,氧化鋅奈米管具有較大的吸光面積與較好的材料品質,使得其紫外光亮暗響應達到1183.3 比以奈米柱結構做成的紫外光檢測器提升許多。最後將氧化鋅奈米管與超奈米結晶鑽石結合,並將其做熱退火後處理150°C 再封裝成紫外光檢測器,其紫外光亮暗響應可達到1930。


    In this study, the effect of argon and hydrogen plasma post treatment on the modification of surface morphology, electrical conductivity and photoresponse properties for nitrogen incorporated ultrananocrystalline diamond films (UNCD) were systematically investigated. Subsequently we fabricated photodetectors based on the combination of ZnO nanorods/nanotubes (ZNTs) and bilayer UNCD films as a metal-semiconductor-metal (MSM) structure. The systematic investigations have shown ultra-high photoconductive response attained from ZNTs prepared on UNCD films.
    The UNCD films mainly consist of wire-like diamond grains, which possesses the better photoresponse of IPhoto/IDark ratio (558) due to plasms post treatment of argon and hydrogen. Other hand, ZnO nanotubes are revealed better IPhoto/IDark(1183.3) than bare ZnO nanorods and UNCD films, since ZNTs contains large area of UV light adsorption and superior crystal quality. The bilayer combination of above materials such as ZNT/UNCD based photodetector exhibits a much higher photoresponse of IPhoto/IDark ratio (1930) after the annealing treatment of 150℃. The effect of annealing process might encased nanographitic phase among wire-like diamond grains, which formed conduction channels for efficient electron transport through large surface of ZNTs and hence led to excellent properties.

    目錄 中文摘要...................................................................................................................... Ⅰ 英文摘要...................................................................................................................... Ⅱ 致謝.............................................................................................................................. Ⅲ 目錄.............................................................................................................................. Ⅳ 圖目錄.......................................................................................................................... IX 表目錄.................................................................................................................... XVIII 第一章 緒論 .............................................................................................................. 1 1.1 前言................................................................................................................. 1 1.2 研究動機......................................................................................................... 2 第二章 文獻回顧 ..................................................................................................... 3 2.1 氧化鋅特性簡介............................................................................................. 3 2.2 氧化鋅螢光特性簡介...................................................................................... 4 2.3 氧化鋅奈米柱成長機制簡介.......................................................................... 6 2.3.1 水熱法成長機制.................................................................................. 6 2.3.2 電化學沉積法成長機制...................................................................... 7 2.3.3 化學氣相沉積法成長機制.................................................................. 8 2.4 氧化鋅奈米管成長機制簡介......................................................................... 9 2.4.1 低溫水熱法成長機制.......................................................................... 9 2.4.2 選擇性蝕刻法成長機制.................................................................... 10 2.4.3 有機金屬化學氣相沉積法成長機制................................................ 11 2.5 奈米結晶鑽石/超奈米結晶鑽石之簡介 ...................................................... 14 V 2.6 奈米結晶鑽石/超奈米結晶鑽石之成長機制 .............................................. 16 2.6.1 奈米結晶鑽石(Nanocrystalline diamond) ........................................ 16 2.6.2 超奈米結晶鑽石(Ultra-nanocrystalline diamond) ........................... 17 2.7 紫外光檢測器理論........................................................................................ 19 2.8 不同氧化鋅奈米結構之紫外光檢測器........................................................ 19 2.8.1 氧化鋅奈米線之紫外光檢測器......................................................... 20 2.8.2 氧化鋅奈米柱之紫外光檢測器......................................................... 22 2.8.3 氧化鋅奈米顆粒與量子點之紫外光檢測器..................................... 23 第三章 實驗方法 ................................................................................................ 24 3.1 實驗設計與流程........................................................................................... 24 3.2 製備之材料介紹............................................................................................ 27 3.3 基板清洗........................................................................................................ 28 3.4 水熱法(Hydrothermal method)成長氧化鋅奈米柱與奈米管 ..................... 29 3.5 微波電漿化學氣相沉積法成長奈米結晶鑽石............................................ 32 3.6 儀器設備與材料分析方法............................................................................ 34 3.6.1 場發射掃描式電子顯微鏡(FE-SEM) ............................................. 34 3.6.2 X 射線繞射儀 (X-ray diffraction,XRD) ........................................ 36 3.6.3 拉曼光譜儀(Raman spectrum) .......................................................... 37 3.6.4 光激發螢光光譜儀(Photoluminescence,PL) ................................. 38 3.6.5 X 光電子能譜分析儀(X-ray photoelectron spectroscopy,XPS) .... 40 3.6.6 霍爾效應量測儀................................................................................ 41 3.6.7 光檢測器製作(PD) ........................................................................... 43 VI 第四章 超奈米鑽石之紫外光檢測器元件 .................................................... 45 4.1 不同氮摻雜濃度之超奈米鑽石之特性分析................................................ 45 4.1.1 表面型態分析.................................................................................... 45 4.1.2 拉曼光譜儀分析................................................................................ 48 4.1.3 X 光電子能譜儀分析 ......................................................................... 50 4.1.4 霍爾量測儀分析................................................................................ 51 4.1.5 不同氮摻雜濃度之超奈米鑽石紫外光檢測器分析......................... 53 4.2 氬氣電漿後處理之超奈米鑽石之特性分析................................................ 56 4.2.1 表面型態分析.................................................................................... 56 4.2.2 拉曼光譜儀分析................................................................................ 58 4.2.3 X 光電子能譜儀分析 ......................................................................... 59 4.2.4 霍爾量測儀分析................................................................................ 61 4.2.5 氬氣電漿後處理後之超奈米鑽石紫外光檢測器分析.................... 63 4.3 氫氣電漿後處理之超奈米鑽石之特性分析................................................ 66 4.3.1 表面型態分析.................................................................................... 66 4.3.2 拉曼光譜儀分析................................................................................ 68 4.3.3 X 光電子能譜儀分析 ......................................................................... 69 4.3.4 霍爾量測儀分析................................................................................ 71 4.3.5 氫氣電漿後處理後之超奈米鑽石紫外光檢測器分析.................... 73 4.4 氬氣與氫氣電漿後處理之超奈米鑽石之特性分析.................................... 76 4.4.1 表面型態分析.................................................................................... 76 4.4.2 拉曼光譜儀分析................................................................................ 79 4.4.3 X 光電子能譜儀分析 ......................................................................... 80 4.4.4 霍爾量測儀分析................................................................................ 82 4.4.5 氬氣與氫氣電漿後處理後之超奈米鑽石紫外光檢測器分析........ 84 VII 第五章 氧化鋅之紫外光檢測器元件 ............................................................. 87 5.1 氧化鋅奈米柱之特性分析............................................................................ 87 5.1.1 表面型態分析.................................................................................... 87 5.1.2 拉曼光譜儀分析................................................................................ 88 5.1.3 X-ray 繞射儀分析 .............................................................................. 91 5.1.4 光激發螢光頻譜儀分析.................................................................... 92 5.1.5 氧化鋅奈米柱之紫外光檢測器分析................................................. 93 5.2 氧化鋅奈米管之特性分析............................................................................ 96 5.2.1 表面型態分析.................................................................................... 96 5.2.2 拉曼光譜儀分析................................................................................ 98 5.2.3 X-ray 繞射儀分析 ............................................................................ 100 5.2.4 光激發螢光頻譜儀分析.................................................................. 101 5.2.5 氧化鋅奈米管之紫外光檢測器分析............................................... 102 第六章 氧化鋅/超奈米鑽石之紫外光檢測器元件 .................................. 105 6.1 氧化鋅奈米柱/超奈米鑽石複合結構之特性分析 .................................... 105 6.1.1 表面型態分析.................................................................................. 105 6.1.2 拉曼光譜儀分析.............................................................................. 108 6.1.3 X 光繞射儀分析 ............................................................................... 110 6.1.4 光激發螢光頻譜儀分析.................................................................. 111 6.1.5 氧化鋅奈米柱/超奈米鑽石複合結構之紫外光檢測器分析 .................................................................................................................... 112 6.2 氧化鋅奈米管/超奈米鑽石複合結構之特性分析 .................................... 115 6.2.1 表面型態分析.................................................................................. 115 6.2.2 拉曼光譜儀分析.............................................................................. 118 VIII 6.2.3 X 光繞射儀分析 ............................................................................... 120 6.2.4 光激發螢光頻譜儀分析.................................................................. 121 6.2.5 氧化鋅奈米管/超奈米鑽石複合結構之紫外光檢測器分析 ........ 122 6.2.6 不同紫外光檢測器之時間響應與穩定度分析............................... 125 6.2.7 不同退火溫度對氧化鋅奈米管/超奈米結晶鑽石之紫外光檢測器分 析................................................................................................................ 127 第七章 結論與未來展望 .................................................................................. 131 5.1 結論............................................................................................................. 131 5.2 未來展望..................................................................................................... 133 參考文獻 ................................................................................................................. 134

    [1] Guo, Lin, et al. "Regularly shaped, single-crystalline ZnO nanorods with wurtzite
    structure." Journal of the American Chemical Society 124.50 (2002): 14864-14865.
    [2] Deng, H., et al. "Microstructure control of ZnO thin films prepared by single
    source chemical vapor deposition." Thin Solid Films 458.1 (2004): 43-46.
    [3] Yang, Peidong, et al. "Controlled growth of ZnO nanowires and their optical
    properties." Advanced Functional Materials 12.5 (2002): 323.
    [4] Lim, J‐H., et al. "UV Electroluminescence Emission from ZnO Light‐Emitting
    Diodes Grown by High‐Temperature Radiofrequency Sputtering." Advanced
    Materials 18.20 (2006): 2720-2724.
    [5] Du, Xiaolong, et al. "Controlled Growth of High‐Quality ZnO‐Based Films and
    Fabrication of Visible‐Blind and Solar‐Blind Ultra‐Violet Detectors." Advanced
    Materials 21.45 (2009): 4625-4630.
    [6] Su, Yan-Kuin, et al. "Ultraviolet ZnO nanorod photosensors." Langmuir 26.1
    (2009): 603-606.
    [7] Lupan, Oleg, Thierry Pauporte, and Bruno Viana. "Low‐Voltage UVElectroluminescence
    from ZnO‐Nanowire Array/p‐GaN Light‐Emitting
    diodes."Advanced Materials 22.30 (2010): 3298-3302.
    [8] Lai, Wei-Chih, Jiun-Ting Chen, and Ya-Yu Yang. "ZnO-SiO2 solar-blind
    photodetectors on flexible polyethersulfone substrate with organosilicon buffer
    layer." Applied Physics Letters 102.19 (2013): 191115.
    [9] Emanetoglu, Nuri W., et al. "Surface acoustic wave ultraviolet photodetectors
    using epitaxial ZnO multilayers grown on r-plane sapphire." Applied physics
    letters 85.17 (2004): 3702-3704.
    135
    [10] Wei, C. S., et al. "Partial-electroded ZnO pyroelectric sensors for responsivity
    improvement." Sensors and Actuators A: Physical 128.1 (2006): 18-24.
    [11] Wang, J. X., et al. "Hydrothermally grown oriented ZnO nanorod arrays for gas
    sensing applications." Nanotechnology 17.19 (2006): 4995.
    [12] Sahu, D. R., Shin-Yuan Lin, and Jow-Lay Huang. "ZnO/Ag/ZnO multilayer films
    for the application of a very low resistance transparent electrode." Applied Surface
    Science 252.20 (2006): 7509-7514.
    [13] Klingshirn, C. The Luminescence of ZnO under High One‐and Two‐Quantum
    Excitation. physica status solidi (b) 71.2 (1975) 547-556
    [14] Morkoç, Hadis, and Ü mit Ö zgür. General properties of ZnO. Zinc Oxide
    Fundamentals, Materials and Device Technology (2009) 1-76
    [15] Lin, Bixia, Zhuxi Fu, and Yunbo Jia. "Green luminescent center in undoped zinc
    oxide films deposited on silicon substrates." Applied Physics Letters 79.7 (2001):
    943-945.
    [16] Xu, P. S., et al. "The electronic structure and spectral properties of ZnO and its
    defects." Nuclear Instruments and Methods in Physics Research Section B: Beam
    Interactions with Materials and Atoms 199 (2003): 286-290.
    [17] Lima, S. A. M., et al. "Luminescent properties and lattice defects correlation on
    zinc oxide." International Journal of Inorganic Materials 3.7 (2001): 749-754.
    [18] Huang, Michael H., et al. "Catalytic growth of zinc oxide nanowires by vapor
    transport." Advanced Materials 13.2 (2001): 113-116.
    [19] Liu, Xiang, et al. "Growth mechanism and properties of ZnO nanorods
    synthesized by plasma-enhanced chemical vapor deposition." Journal of Applied
    Physics 95.6 (2004): 3141-3147.
    136
    [20] Vergés, M. Andrés, A. Mifsud, and C. J. Serna. "Formation of rod-like zinc oxide
    microcrystals in homogeneous solutions." Journal of the Chemical Society, Faraday
    Transactions 86.6 (1990): 959-963.
    [21] Vayssieres, Lionel, et al. "Purpose-built anisotropic metal oxide material: 3D
    highly oriented microrod array of ZnO." The Journal of Physical Chemistry B105.17
    (2001): 3350-3352.
    [22] Liu, Di, et al. "Controlled synthesis of 1D ZnO nanostructures via hydrothermal
    process." Materials Research Bulletin 49 (2014): 665-671.
    [23] Cembrero, J, et al. "Nanocolumnar ZnO films for photovoltaic applications."Thin
    Solid Films 451 (2004): 198-202.
    [24] 葉秉昀, "電鍍法治被準直排列ZnO 奈米結構陣列及其特性研究" ,碩士論文,
    化學工程與材料工程研究所, 國立中央大學, 桃園, (2010).
    [25] Wagner, R. S., and W. C. Ellis. "Vapor‐liquid‐solid mechanism of single crystal
    growth." Applied Physics Letters (1964): 89-90.
    [26] Wang, Xudong, Christopher J. Summers, and Zhong Lin Wang. "Large-scale
    hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and
    nanosensor arrays." Nano Letters 4.3 (2004): 423-426.
    [27] Song, Jinhui, et al. "Systematic study on experimental conditions for large-scale
    growth of aligned ZnO nanwires on nitrides." The Journal of Physical Chemistry
    B 109.20 (2005): 9869-9872.
    [28] Chae, Ki-Woong, et al. "Low-temperature solution growth of ZnO nanotube
    arrays." Beilstein journal of nanotechnology 1.1 (2010): 128-134.
    [29] She, Guang-Wei, et al. "Controlled synthesis of oriented single-crystal ZnO
    nanotube arrays on transparent conductive substrates." Applied physics letters92.5
    (2008): 053111-053111.
    137
    [30] Vayssieres, Lionel, et al. "Three-dimensional array of highly oriented crystalline
    ZnO microtubes." Chemistry of Materials 13.12 (2001): 4395-4398.
    [31] Xu, Feng, et al. "In situ electrochemically etching-derived ZnO nanotube arrays
    for highly efficient and facilely recyclable photocatalyst." Applied Surface
    Science 258.20 (2012): 8160-8165.
    [32] Wu, Chia Cheng, et al. "Three-step growth of well-aligned ZnO nanotube arrays
    by self-catalyzed metalorganic chemical vapor deposition method." Crystal Growth &
    Design 9.10 (2009): 4555-4561.
    [33] Ping-Yu Kuei, et al. "The Influence of Different Buffer Layers on The InN Thin
    Film Growth by Vertical Reactor MOCVD." Journal of C.C.I.T.(2009) :187-200
    [34] Mensah, Samuel L., et al. "Formation of single crystalline ZnO nanotubes
    without catalysts and templates." Applied physics letters 90.11 (2007): 113108.
    [35] Butler, James E., and Anirudha V. Sumant. "The CVD of nanodiamond
    materials." Chemical Vapor Deposition 14.7‐8 (2008): 145-160.
    [36] Stoner, B. R., et al. "Characterization of bias-enhanced nucleation of diamond on
    silicon by invacuo surface analysis and transmission electron microscopy."Physical
    Review B 45.19 (1992): 11067.
    [37] Lin, C. R., et al. "Development of high-performance UV detector using
    nanocrystalline diamond thin film." International Journal of Photoenergy 2014 (2014).
    [38] Suneet Arora, V.D. Vankar," Field emission characteristics of microcrystalline
    diamond films:Effect of surface coverage and thickness",Thin Solid Films,p.1963
    (2006).
    [39] S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park, IEEE,p.526 (1996).
    [40] Lee, Wei-Fang, et al. "The effect of nitrogen addition to Ar/CH4 gas mixture on
    microstructural characterization of nanocrystalline diamond." Journal of Polymer
    Engineering 34.3 (2014): 253-258.
    138
    [41] Sankaran, K. J., N. H. Tai, and I. N. Lin. "Microstructural evolution of diamond
    films from CH4/H2/N2 plasma and their enhanced electrical properties." Journal of
    Applied Physics 117.7 (2015): 075303.
    [42] Krauss, A. R., et al. "Ultrananocrystalline diamond thin films for MEMS and
    moving mechanical assembly devices." Diamond and Related Materials 10.11 (2001):
    1952-1961.
    [43] Sankaran, K. J., et al. "Origin of a needle-like granular structure for
    ultrananocrystalline diamond films grown in a N2/CH4 plasma." Journal of Physics D:
    Applied Physics 45.36 (2012): 365303.
    [44] Sankaran, K. J., et al. "High dose N ion implantation effects on surface treated
    UNCD films." Diamond and Related Materials 19.7 (2010): 927-931.
    [45] Zhong, X. Y., et al. "Effect of pretreatment bias on the nucleation and growth
    mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and
    growth: An approach to interfacial chemistry analysis via chemical bonding
    mapping." Journal of Applied Physics 105.3 (2009): 034311.
    [46] Su, Yan-Kuin, et al. "Ultraviolet ZnO nanorod photosensors." Langmuir 26.1
    (2009): 603-606.
    [47] Soci, Cesare, et al. "ZnO nanowire UV photodetectors with high internal
    gain."Nano letters 7.4 (2007): 1003-1009.
    [48] Kim, Kang-Pil, et al. "Effect of TiO2 nanoparticle modification on ultraviolet
    photodetection properties of Al-doped ZnO nanowire network." Japanese Journal of
    Applied Physics 50.6S (2011): 06GF07.
    [49] Ji, L. W., et al. "Ultraviolet photodetectors based on selectively grown ZnO
    nanorod arrays." Applied Physics Letters 94.20 (2009): 203106.
    [50] Jun, Jin Hyung, et al. "Ultraviolet photodetectors based on ZnO
    nanoparticles."Ceramics International 35.7 (2009): 2797-2801.
    139
    [51] Son, Dong Ick, et al. "Photoresponse mechanisms of ultraviolet photodetectors
    based on colloidal ZnO quantum dot-graphene nanocomposites." Applied Physics
    Letters 102.2 (2013): 021105.
    [52] http://www.ndl.narl.org.tw/NdlUC/Intro-NM009.aspx
    [53] http://chemlab.jlu.edu.cn/Guojiajingpinke/wuli/shyjchzhsh/xshexian.htm.
    [54] 國立台灣科技大學X 光繞射儀實驗室
    [55]http://www.twwiki.com/wiki/%E6%BF%80%E5%85%89%E6%8B%89%E6%9
    B%BC%E5%85%89%E8%AD%9C
    [56] L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng,"
    Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays",
    APPLIED PHYSICS LETTERS 94, 203106 (2009).
    [57] Sankaran, Kamatchi Jothiramalingam, et al. "Enhancement of the electron field
    emission properties of ultrananocrystalline diamond films via hydrogen
    post-treatment." ACS applied materials & interfaces 6.16 (2014): 14543-14551.
    [58] Sankaran, K. J., et al. "High dose N ion implantation effects on surface treated
    UNCD films." Diamond and Related Materials 19.7 (2010): 927-931.
    [59] Panda, Kalpataru, et al. "Direct observation and mechanism for enhanced
    electron emission in hydrogen plasma-treated diamond nanowire films." ACS applied
    materials & interfaces 6.11 (2014): 8531-8541.
    [60] C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M.
    Kaidashev, M. Lorenz, and M. Grundmann, "Raman scattering in ZnO thin films
    doped with Fr, Sb,Al,Ga, and Li", Applied Physics Letters, 83(2003) 1974-1977.
    [61] C. A. Arguello, D. L Rousseau, and S. P. Porto, "First-order Raman effect in
    wurtzite-type crystals", Physical Review, 181(1969) 1351-1363.
    [62] T.C. Damen, S.P.S. Porto, B. Tell,"Raman effect in zinc oxide",Physical Review,
    142 (1966) 570-574.
    140

    QR CODE