簡易檢索 / 詳目顯示

研究生: 莊傳宗
Chuan-Chung Chuang
論文名稱: 新功能性蠶絲絲膠蛋白基底材料製備與應用之研究
Studies on fabrication and application of novel functional materials based on silk-sericin protein
指導教授: 洪伯達
Po-Da Hong
口試委員: 洪伯達
Po-Da Hong
蔡協致
Hsieh-Chih Tsai
白孟宜
Meng-Yi Bai
朱紀洪
Chi-Hong Chu
李忠興
Chueng-Hsieng Li
季麟揚
Lin-Yang Chi
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 106
中文關鍵詞: 絲膠蛋白生物成像幹細胞氧化鋅光反應紫外光偵測器氫氣氣體感應器絲膠包覆氧化鋅奈米桿金奈米微粒鍍金螢光蠶絲布光熱療法
外文關鍵詞: Sericin, Bio-imaging, Stem cell, ZnO photoresponse, UV photodetector, Hydrogen gas sensor, Sericin capped ZNR, gold nanoparticle, fluorescent golden silk fabric, photo thermal therapy
相關次數: 點閱:473下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文提要內容:
    本論文研究主要聚焦在生物和環境系統中有潛在應用的新功能性蠶絲絲膠蛋白基底材料的製備、特徵分析和應用。第一章緒論首先描述蠶絲與蠶絲蛋白的特性、結構與目前應用,同時也包括文獻所提到的蠶絲蛋白基底複合材料及螢光性碳奈米微粒,作為開發新型蠶絲絲膠蛋白基底材料與設計相關實驗的重要參考,最後給予本論文研究的動機與目的。第二章實驗部分,首先提到實驗材料的製備。其次為樣品特性分析時,所採用的多種分析技術。接著進行材料螢光特性、細胞毒性、氣體與紫外線感測性能和光熱效應的評估。
    本研究因涉及不同材料的製備與應用,故將分三個章節來進行討論:第三章介紹將含蠶絲-絲膠蛋白脫膠廢水做為材料的前驅物,並於180℃下進行水熱法,用來製備可應用於口腔脂肪幹細胞生物成像的高度螢光性絲膠基底碳奈米片(SCN)。第四章描述使用環保及低成本的材料來製作感應器裝置的新方法。當結合絲膠和氧化鋅而形成的複合材料如絲膠包覆氧化鋅奈米桿(Sericin capped ZNR),可被用於製造具有更靈敏H2感測特性和光反應性的H2氣體感測器和UV光電探測器。第五章顯示我們透過蠶絲蛋白和奈米金前體之間的氧化還原反應,來進行螢光鍍金蠶絲織物的製備。研究結果證實透過原位化學改質是大量生產新型蠶絲基底醫用紡織材料達工業規模的有效方法。同時蠶絲基底醫用紡織材料如鍍金蠶絲織物還可以有多方面的應用,不僅可應用於光熱療法及紫外線抑制,而且也可用於組織工程細胞支架和醫療級紡織品的製造。


    Abstract
    This dissertation mainly focuses on the fabrication, characterization and application of some novel silk-sericin protein based materials for various application in both biological and environmental systems, which are the main goal of this PhD work.
    In the first chapter, the introduction describes the characteristics, structure and current application of silk and silk protein, as well as silk protein-based composite materials and fluorescent carbonaceous nanoparticles (FCN) mentioned in the literature that serve as the basis for developing novel silk–sericin based materials and designing related experiments, and finally gives the aim and objective of this study.
    The second chapter is experimental section that first mentions the preparation of experimental materials, such as sericin isolation, sericin-capped zinc oxide nanorod H2 gas and UV sensors, golden silk fabrics and oral fat stem cells. Afterward, there are a variety of analytical techniques such as HRTEM, EDX, FT-IR, UV-Visible, Fluorescence, Raman, 13C-NMR, XRD, XPS, CD used in the analysis of the sample. Finally, various evaluations of fluorescent material properties, cytotoxicity, gas and UV Sensing performance and photothermal effect were executed.
    The third chapter introduces that valuable raw materials like silk-sericin can be recovered from Silk-Sericin degummed wastewater for the production of novel functional nanomaterials. Highly fluorescent sericin based carbon nanosheets (SCN) were produced from industrial wastewater containing silk-sericin as a precursor, and was applied as bio-imaging application for oral fat stem cells. A simple one-pot, hydrothermal carbonization method was used to produce SCN at 180 °C. The obtained hydrothermal carbons exhibited strong fluorescence property due to the presence of strong polar groups, such as carboxyl, amino and amide groups in the surface. Heteroatom functionalization of the SCN leads to the property of fluorescence due to enriched nitrogen and was confirmed by X-ray photoelectron and Fourier transform infrared spectroscopy(FT-IR). The plate-like morphology of SCN about 35 nm in size was obtained by transmission electron microscopy. The carbon 13 nuclear magnetic resonance results revealed that fluorescent SCN formed during carbonization and functionalization occurred through dehydration of the sericin protein. Moreover, the prepared SCNs with low toxicity and their suitability for bio-imaging application to the oral fat stem cells were demonstrated. Overall, sericin degumming wastewater from the silk textile industry can be utilized for the production of SCNs for bio-imaging applications of stem cells.
    The fourth chapter describes that investigation for the eco-friendly, low cost material based new approach was used for sensor device fabrication through the composite formation between sericin and zinc oxide. Sericin capped zinc oxide nanorods (ZNR) based H2 gas sensors and UV photodetector, which are proposed to higher sensitivity of H2 sensing property and photo-responsivity, were fabricated by incorporating silk-sericin with ZnO. Sericin capped ZNR was fabricated from the degummed sericin solution as inexpensive material using hydrothermal method. Sericin capped ZNR shows excellent H2 gas response (17.8%) and photo-response with fast response under the UV illumination due to sericin coating on the surface of the ZnO. Since sericin is water-soluble protein with strong polar groups as side chains such as carboxyl, amino and hydroxyl groups, which can easily interact with zinc particles through the electrostatic interactions, which result in unique and improved ZnO sensor behavior. This interaction was characterized by various analytical techniques and compared with as-grown ZNR. The gas sensing response and UV photoresponse were evaluated for both as-grown ZNR and sericin capped ZNR with function of H2 concentration and time, respectively. Under 365nm UV illumination, the sericin capped ZNR possesses ultra-high photoresponse as 408.4, which is 40 times better than as prepared ZnO devices (10.3). Moreover, the sensing response for sericin capped ZNR shows completely recovery to the original level after evacuating the H2 and UV illumination in each cycle, indicating complete desorption and decomposition process of the main adsorbed moieties. Our sericin capped ZNR obtained by utilizing biomass from degummed wastewater in this work shows enhanced, sustained and reversible H2 gas sensing property and fast switching speed in the UV region and can be employed for development of inorganic–organic novel material.
    The fifth chapter shows we attempt to develop a molecular composite material combined with natural material such as silk fibers and obtain controllable optical properties. Post-modification of pristine silk has been used to produce material for optics and photonic applications. Such a treatment should be ecologically friendly, simple, and inexpensive while retaining the features of the pristine silk. Here we describe the preparation of a fluorescent-silk fabric by the application of an in situ chemical coating of gold nanoclusters on the surface of the natural silk fiber through a redox reaction between the silk protein and a gold precursor. The resulting golden silk fabric was characterized by using several methods, with the spectroscopic analysis revealing the interaction between the silk protein and gold particles. The obtained results demonstrate an effective approach for the bulk industrial production of novel silk based medical textile materials through in situ chemical modification, which may be versatile enough to be adapted not only for photo thermal therapy but also UV inhibition, as well as the manufacture of the scaffold for tissue engineering and medical-grade textile.

    Contents 中文摘要 ........................................................................................................................ I Abstract ........................................................................................................................ II Acknowledgement ........................................................................................................ V Contents ...................................................................................................................... VI Abbreviations ............................................................................................................... X Index of Figures .......................................................................................................... XII Index of Tables ........................................................................................................... XV Index of Scheme ....................................................................................................... XVI Chapter 1. Introduction ............................................................................................1-19 1.1 Natural Structural Proteins ..................................................................................1 1.2 Species of silk ......................................................................................................3 1.3 Bombyx mori (B. mori) Silk ...................................................................................4 1.4 Silk Proteins .........................................................................................................5 1.4.1 Structural information of silk protein ................................................................5 1.4.2 Silk-Sericin ........................................................................................................6 1.4.3 Silk-Fibroin ........................................................................................................7 1.5 Processability of Silk Proteins .............................................................................9 1.6 The structure-property relationship of silk fibers ..............................................10 1.6.1 Mechanisms of interaction ................................................................................11 1.6.2 Structural interaction …......................................................................................12 1.7 Advanced applications of silk fibers ..................................................................12 1.7.1 Material fabrications and applications ..............................................................12 1.7.2 Silk proteins as biomaterials .............................................................................13 1.8 Silk protein-based composite materials .............................................................14 1.8.1 Silk protein-based composite materials with synthetic polymers .....................14 1.8.2 Silk protein-based composite materials with Biodegradable ............................15 synthetic polymers and Biopolymers 1.8.3 Silk protein-based composite materials with metal nanoparticles ..................16 1.8.4 Application of Silk protein-based composite materials ...................................17 1.9. Fluorescent carbonaceous nanoparticles based on silk protein .......................17 1.10. Aim and objectives of the dissertation ..............................................................18 Chapter 2. Experimental Section ............................................................................ 20-24 2.1 Materials .............................................................................................................20 2.1.1 Sericin isolation .................................................................................................20 2.1.2 Hydrothermal carbonization of the silk sericin degumming solution ................20 2.1.3 Fabrication of sericin capped ZNR ....................................................................21 2.1.4 Synthesis of the gold-coated silk fabric ............................................................22 2.1.5 Isolation, culture and storage of oral fat stem cells ...........................................22 2.2 Methods ..............................................................................................................23 
 2.2.1 Measurements .........................................................................................23 2.2.2 MTT Assay .......................................................................................................23 2.2.3 Fluorescence measurement and observation by microscope .........................23 2.2.4 Gas sensor and photo sensor performance ....................................................24 2.2.5 Photothermal effect and photoviability in vitro ............................................... 24 Chapter 3. Experimental Section Silk-Sericin degummed wastewater......................25-39 solution-derived and nitrogen enriched carbon nanosheets for robust biological imaging of stem cells 3.1 Introduction ........................................................................................................25 3.2 Results and Discussion ......................................................................................27 3.2.1 Formation and characterization of SCN ...........................................................27 3.2.2 Effect of hydrothermal carbonization on structural .........................................32 deformation of silk-sericin 3.2.3 Cytotoxicity and bio-image application of SCN ...............................................35 3.3 Summary ...........................................................................................................39 Chapter 4 Simple synthesize of eco-friendly multifunctional ..................................40-57 silk-sericin capped zinc oxide nanorods and their potent fabrication of hydrogen sensors and UV photodetectors 4.1 Introduction .......................................................................................................40 4.2 Results and Discussion ......................................................................................41 4.2.1 Structural confirmation of sericin capped ZNR ................................................41 4.2.2 Gas sensing performance of sericin capped ZNR ...........................................49 4.2.3 UV-photo detector property of sericin coated ZNR .........................................53 4.3. Summary ........................................................................................................... 57 Chapter 5. Fabrication of highly fluorescent golden-silk fabric ..............................59-70 for photothermal therapy through in situ chemical modification of pristine-silk fabric and gold nanoclusters 5.1 Introduction ........................................................................................................59 5.2 Results and Discussion ......................................................................................60 5.2.1 Fabrication and Characterization of the gold-coated silk fabric .......................60 5.2.2 Photothermal effect of the gold-coated silk fabric ...........................................68 5.2.3 Photocell viability of the gold-coated silk fabric on A549 cell ..........................69 5.3 Summary .............................................................................................................70 Chapter 6. Conclusion .............................................................................................72-73 Chapter 7. Reference ...............................................................................................74-87

    Reference
    1. N.H.C.S. Silva, C. Vilela, I.M. Marrucho, C.S.R. Freire, C. Pascoal Neto, A.J.D. Silvestre, Protein-based materials: from sources to innovative sustainable materials for biomedical applications, J. Mater. Chem. B., 2014; 2:3715-3740
    2. P.S. Maher, R.P. Keatch, K. Donnelly, R.E. Mackay, J.Z Paxton, Construction of 3D biological matrices using rapid prototyping technology. Rapid Prototyping J., 2009; 15:204–210.
    3. A.J. Domb, J. Kost, D.M. Wiseman, Handbook of Biodegradable Polymers, 1998; 387–390.
    4. X. Hu, P. Cebe, A.S. Weiss, F. Omenetto, D.L. Kaplan, Protein-based composite materials. Mater. Today., 2012; 15: 208-215.
    5. S. Gomes, I.B. Leonor, J.F. Mano, R.L. Reis, D.L. Kaplan, Natural and genetically engineered proteins for tissue engineering, Prog. Polym. Sci., 2012; 37:1-17
    6. A.M. Jonker, D.W. Löwik, J.C. van Hest, Peptide-and protein-based hydrogels, Chem.Mater., 2012;24:759-773.
    7. R.L. DiMarco, S.C. Heilshorn, Multifunctional materials through modular protein engineering, Adv. Mater., 2012;24:3923-3940.
    8. H.J. Wang, Di L, Q.S. Ren, J.Y. Wang, Applications and degradation of proteins used as tissue engineering materials. Materials, 2009; 2:613–635.
    9. https://courses.lumenlearning.com/microbiology/chapter/proteins/
    10. J.G. Hardy, L.M. Römer, T.R. Scheibel, Polymeric materials based on silk proteins. Polymer, 2008; 49(30):4309–4327.
    11. M. Mondal. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., -a review. Caspian Journal of Environmental Sciences, 2007 Apr 1; 5(2):63-76.
    12. P. Aramwit, T. Siritientong, T. Srichana, Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Management & Research, 2012 Mar;30(3):217-224.
    13. A.U. Ude, R.A. Eshkoor, R. Zulkifili, A.K. Ariffin, A.W. Dzuraidah, C.H. Azhari, Bombyx mori silk fibre and its composite: a review of contemporary developments, Materials & Design, 2014 May 31;57:298-305.
    14. L. Eisoldt, A. Smith, T. Scheibel, Decoding the secrets of spider silk, Materials Today, 2011 Mar 31;14(3):80-86.
    15. M. Yang Silk‐based biomaterials, Microscopy Research and Technique, 2017 Mar 1;80(3):321-330.
    16. B. Kundu, N.E. Kurland, V.K. Yadavalli, S.C. Kundu, Isolation and processing of silk proteins for biomedical applications, International journal of biological macromolecules, 2014 Sep 30;70:70-77.
    17. A.E. Thurber, F.G. Omenetto, D.L. Kaplan, In vivo Bioresponses to Silk proteins. Biomaterials, 2015 Dec; 71:145-157
    18. A. Rising, M. Widhe, J. Johansson, M. Hedhammar, Spider silk proteins: recent advances in recombinant production, structure–function relationships and biomedical applications. Cellular and molecular life sciences, 2011 Jan 1;68(2):169-184.
    19. L.D. Koh, Y. Cheng, C.P. Teng, Y.W. Khin, X.J. Loh, S.Y. Tee, M. Low, E. Ye, H.D. Yu, Y.W. Zhang, M.Y. Han, Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 2015 Jul 31; 46:86-110.
    20. K. Yamaguchi, Y. Kikuchi, T. Takagi, A. Kikuchi, F. Oyama, K. Shimura, S. Mizuno, Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J Mol Biol, 1989; 210: 127-139.
    21. C.Z. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z.G. Li, J. Janin, Silk fibroin: structural implications of a remarkable amino acid sequence. Protein Struct Funct Genet, 2001; 44: 119-122.
    22. L.D. Koh, Y. Cheng, C.P. Teng, Y.W. Khin, X.J. Loh, S.Y. Tee, M. Low, E. Ye, H.D. Yu, Y.W. Zhang, Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci., 2015; 46 : 86–110.
    23. S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, S. Mizuno, Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem, 2000; 275:40517-40528.
    24. S. Nayak, S.C. Kundu, Silk Protein Sericin: Promising Biopolymer for Biological and Biomedical Applications. Biomaterials from Nature for Advanced Devices and Therapies, 2016 Oct 21:142-158.
    25. J. Nagaraju, SilkSatDb. Silkworm biology; 2004. http://www.cdfd.org.in/SILKSAT/index.php?f=silkbio [accessed January 2014].
    26. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials. Biomaterials, 2003; 24: 401-416.
    27. H. Tao, J.J. Amsden, A.C. Strikwerda, K. Fan, D.L. Kaplan, X. Zhang, R.D. Averitt, F.G. Omenetto, Metamaterial silk composites at terahertz frequencies. Adv Mater, 2010; 22: 3527-3531.
    28. M. Tsukada, G. Bertholon, Preliminary study of the physicochemical characteristics of silk sericin. Bull Sci Inst Text Fr 1981; 10:141–154.
    29. R. Gautam, A. Jain, S. Kapoor, Silk Protein based Novel Matrix for Tissue Engineering Applications. Indian Journal of Science and Technology, 2017 Aug 8;10(31).
    30. K. Kimura, F. Oyama, H. Ueda, S. Mizuno, and K. Shimura, Molecular cloning of the fibroin light chain complementary DNA and its use in the study of the expression of the light chain gene in the posterior silk gland of Bombyx mori. Experientia, 1985; 41(9):1167–1171.
    31. M. N. Padamwar and A. P. Pawar, “Silk sericin and its applications: a review.” Journal of Scientific and Industrial Research, 2004; 63(4): 323–329.
    32. L. Lamboni, M. Gauthier, G. Yang, Q. Wang, Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnology Advances, 2015; 3:1855–1867
    33. D. Jao, X. Mou, X. Hu, Tissue regeneration: A silk road. Journal of functional biomaterials. 2016 Aug 5; 7(3):22.
    34. F. Sehnal, “Prospects of the practical use of silk sericins,” Entomological Research, 2008; 38: S1–S8.
    35. S. K. Rajput and M. Kumar, “Sericin—a unique biomaterial.” IOSR Journal of Polymer and Textile Engineering, 2015; 2(3):29–35.
    36. Y. Takasu, H. Yamada, and K. Tsubouchi, “Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori.” Bioscience, Biotechnology and Biochemistry, 2002; 66(12):2715–2718.
    37. Y. Takahashi, M. Gehoh, K. Yuzuriha, Structure refinement and diffuse streak scattering of silk (Bombyx mori), Int. J. Biol. Macromol, 1999; 24:127-138.
    38. R. Marsh, R.B. Corey, L. Pauling, An investigation of the structure of silk fibroin. Biochim Biophys Acta, 1955; 16:1-34.
    39. D.L. Kaplan, Fibrous proteins–silk as a model system. Polym Degrad Stabil, 1998; 59:25-32.
    40. C.Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, Z.G. Li, Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res, 2000; 28:2413-2419
    41. C.Z. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z.G. Li, J. Janin, Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins, 2001; 44:119-122.
    42. F. Vollrath, D. Porter, Silks as ancient models for modern polymers. Polymer, 2009;50:5623-5632
    43. C.W.P. Foo, E. Bini, J. Hensman, D.P. Knight, R.V. Lewis, D.L. Kaplan, Role of pH and charge on silk protein assembly in insects and spiders. Appl Phys A Mater Sci Process, 2006; 82:223-233.
    44. H.J. Jin, D.L. Kaplan, Mechanism of silk processing in insects and spiders. Nature, 2003; 424:1057-1061.
    45. M. Humenik, A.M. Smith, T. Scheibel, Recombinant Spider Silks—Biopolymers with Potential for Future Applications. Polymers, 2011; 3:640–661.
    46. J. Sirichaisit, V.L. Brookes, R.J. Young, F. Vollrath Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules, 2003; 4:387-394.
    47. P.M. Cunniff, S.A. Fossey, M.A. Auerbach, J.W. Song, D.L. Kaplan, W.W. Adams, R.K. Eby, D. Mahoney, D.L. Vezie, Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym Adv Technol, 1994; 5:401-410.
    48. Z. Shao, F. Vollrath Surprising strength of silkworm silk. Nature, 2002; 418: 741.
    49. S. Keten, Z. Xu, B. Ihle, M.J. Buehler, Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat Mater, 2010; 9:359-367.
    50. N. Dinjaski, D.L. Kaplan, Recombinant protein blends: Silk beyond natural design. Curr. Opin. Biotechnol., 2015; 39:1–7.
    51. K. Schacht, T. Scheibel, Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Curr. Opin. Biotechnol., 2014; 29:62–69.
    52. S. Du, J. Zhang, W.T. Zhou, Q.X. Li, G.W. Greene, H.J. Zhu, J.L. Li, X.G. Wang, Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers. Journal of colloid and interface science, 2016 Sep 15; 478:316-323.
    53. F.G. Omenetto, D.L. Kaplan New opportunities for an ancient material. Science, 2010; 329:528-531.
    54. B. Kundu, R. Rajkhowa, S.C. Kundu, X. Wang, Silk fibroin biomaterials for tissue regenerations. Advanced drug delivery reviews, 2013 Apr 30; 65(4):457-470.
    55. B. Alberts, A. Johnson, J. Lewis et al., Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. The Shape and Structure of Proteins. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26830/
    56. D. Kaplan, W.Wade Adams, B. Farmer, C. Viney editors, Silk polymers: materials science and biotechnology. American Chemical Society, 1993.
    57. B.D. Lawrence, M. Cronin-Golomb, I.Georgakoudi, D.L. Kaplan, F.G. Omenetto Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules, 2008 Mar 28; 9(4):1214-1220.
    58. S. Zhang, D.M. Marini, W. Hwang, S. Santoso Design of nanostructured biological materials through self-assembly of peptides and proteins. Current opinion in chemical biology, 2002 Dec 1; 6(6):865-871.
    59. R. Nazarov, H.J. Jin, D.L. Kaplan, Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules. 2004 May 10; 5(3):718-726.
    60. J.J. Amsden, P. Domachuk, A. Gopinath, R.D. White, L.D. Negro, D.L. Kaplan, F.G. Omenetto, Rapid nanoimprinting of silk fibroin films for biophotonic applications. Advanced Materials, 2010 Apr 18; 22(15):1746-1749.
    61. S. Kapoor, S.C. Kundu, Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta biomaterialia, 2016 Feb 29; 31:17-32.
    62. K. Kazmierska, A. Florczak, K. Piekos, A. Mackiewicz, H. Dams-Kozlowska, Engineered spider silk: the intelligent biomaterial of the future, Part II Postepy Hig Med Dosw, 2011; 65:389-396.
    63. C.Vendrely, T. Scheibel, Biotechnological production of spider-silk proteins enables new applications Macromol Biosci, 2007; 7:401-409.
    64. A. Florczak, K. Piekos, K. Kazmierska, A. Mackiewicz, H. Dams-Kozlowska, Engineered spider silk: the intelligent biomaterial of the future. Part I Postepy Hig Med Dosw, 2011; 65: 377-388.
    65. D.M. Cates, H.J. White, Preparation and properties of fibers containing mixed polymers.III. Polyacrylonitrile-silk fibers. J Polym Sci, 1956; 21:125–138.
    66. J.G. Hardy, T.R. Scheibel, Composite materials based on silk proteins, Progress in Polymer Science, 2010; 35:1093–1115.
    67. J.G. Handy et al, Biomineralization of engineered spider silk protein-based Materials, 2016;9(7).
    68. D. Tomasz, D.K. Hanna, Silk Materials Functionalized via Genetic Engineering for Biomedical Applications. Materials, 2017;10(12):1417.
    69. K. Hola, Y. Zhang, Y. Wang, E.P. Giannelis, R. Zboril, A.L. Rogach, Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 2014; 9:590–603.
    70. H. Feng, M. Zheng, H. Dong, B. Lei, H. Zhang, Y. Xiao, Y. Liu, Luminescence properties of silk cocoon derived carbonaceous fluorescent nanoparticles/PVA hybrid film. Optical Materials., 2014; 36: 1787–1791.
    71. S. Roy, B. Korzeniowska, C. K. Dixit, G. Manickam, S. Daniels, C. McDonagh, Biocompatibility and Bioimaging Application of Carbon Nanoparticles Synthesized by Phosphorus Pentoxide Combustion Method Journal of Nanomaterials. 2015; 2015: Article ID 761517, 10 pages.
    72. J. H. Cherng, S. J. Chang, T.J Fang, M.L. Liu, C.H. Li, S.F. Yang, J.C. Liu, N.H. Liou, M.L Hsu, Surgical-derived oral adipose tissue provides early stage adult stem cells. Journal of Dental Sciences, 2014; 9:10-15.
    73. T.M. Lin, J. L. Tsai, S.D. Lin, C.S. Lai, C.C. Chang, Accelerated growth and prolonged lifespan of adipose tissue-derived human mesenchymal stem cells in a medium using reduced calcium and antioxidants. Stem Cell Dev., 2005; 14:92-102.
    74. J.T. Daniels, Biomedicine: Visionary stem-cell therapies. Nature, 2016; 531:309–310.
    75. L.A.A. Aly, Stem cells: Sources, and regenerative therapies in dental research and practice. World Journal of Stem Cells, 2015; 7:1047–1053.
    76. M. Locke, J. Windsor, P. R. Dunbar, Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg, 2009; 79: 235–244.
    77. J. H. Jeong, Adipse Stem Cells as a Clinically Available and Effective Source of Adult Stem Cell Therapy. International Journal of Stem Cells, 2008; 1(1):43-48.
    78. H. Egusa, W. Sonoyama, M. Nishimura, I. Atsuta, K. Akiyama, Stem cells in dentistry–Part I: Stem cell sources. Journal of Prosthodontic Research, 2012; 56:151–165.
    79. N. Kawashima, Characterisation of dental pulp stem cells: a new horizon for tissue regeneration? Arch Oral Biol, 2012 Nov; 57(11):1439 –1458.
    80. H. Yukawa, Y. Baba, In Vivo Fluorescence Imaging and the Diagnosis of Stem Cells Using Quantum Dots for Regenerative Medicine. Anal. Chem, 2017; 89: 2671–2681.
    81. J. Li, W. Y. Lee, T. Wu, J. Xu, K. Zhang, G. Li, J. Xia, L. Bian, Multifunctional Quantum Dot Nanoparticles for Effective Differentiation and Long-Term Tracking of Human Mesenchymal Stem Cells In Vitro and In Vivo. Adv. Healthcare Mater., 2016; 5:1049–1057.
    82. Z. Fan, S. Li, F. Yuan, L. Fan, Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Adv, 2015; 5:19773–19789.
    83. B. Hu, K. Wang, L. Wu, S.H. Yu, M. Antonietti, M. M. Titirici, Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Adv. Mater., 2010; 22: 813–828.
    84. M. Yang, Silk-based biomaterials. Microsc. Res. Tech., 2017; 80:321–330.
    85. G. Capar, S.S. Aygun, M.R. Gecit, Treatment of Silk Production Wastewaters by Membrane Processes for Sericin Recovery. J. Membr. Sci., 2008; 325:920–931.
    86. T.D. Sutherland, J. H.Young, S. Weisman, C. Y. Hayashi, D. J. Merritt, Insect Silk: One Name, Many Materials. Annu, Rev. Entomol., 2010; 55:171–188.
    87. C. C. Chuang, A. Prasannan, B. R. Huang, P. D. Hong, M. Y. Chiang, Simple Synthesis of Eco-Friendly Multifunctional Silk-Sericin Capped Zinc Oxide Nanorods and Their Potential for Fabrication of Hydrogen Sensors and UV Photodetectors. ACS Sustainable Chem. Eng., 2017; 5: 4002–4010.
    88. A. Prasannan, T. Imae, One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels. Ind. Eng. Chem. Res., 2013; 52:15673–15678.
    89. Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao, J. Chen, Highly Luminescent N-Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform. Chem. Eur. J., 2014; 20:2254–2263.
    90. S. T. Yang, L. Cao, P. G. Luo, F.S. Lu, X.Wang, H. F. Wang, M. Meziani, Y. F. Liu, G. Qi, Y. P. Sun, Carbon dots for optical imaging in vivo. J.Am. Chem. Soc., 2009); 131:11308 – 11309.
    91. M. Demura, M. Minami, T. Asakura, T. A. Cross, Structure of Bombyx mori Silk Fibroin Based on Solid-State NMR Orientational Constraints and Fiber Diffraction Unit Cell Parameters. J. Am. Chem. Soc., 1998; 120:1300–1308.
    92. D. Tian, T. Li, R. Zhang, Q. Wu, T. Chen, P. Sun, A. Ramamoorthy, Conformations and Intermolecular Interactions in Cellulose/Silk Fibroin Blend Films: A Solid-State NMR Perspective. The Journal of Physical Chemistry B., 2017; 121(65):6108-6116.
    93. T. Asakura, K. Okushita, M.P. Williamson, Analysis of the Structure of Bombyx mori Silk Fibroin by NMR, Macromolecules. 2015; 48: 2345–2357.
    94. J.H. Wu, Z. Wang, S. Y. Xu, Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chemistry, 2007; 103:1255–1262.
    95. T. Mosmann, Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. Journal of lmmunological Methods, 1983; 65:55–63.
    96. J. W. Chon, H. Kim, H. N. Jeon, K. Park, K.G. Lee, J. H. Yeo, H. Kweon, H. S. Lee, Y.Y. Jo, Y.K. Park, Silk fibroin hydrolysate inhibits osteoclastogenesis and induces apoptosis of osteoclasts derived from RAW 264.7 cells. Int J Mol Med., 2012 Nov; 30(5):1203-1210.
    97. P. Aramwit, S. Kanokpanont, W. De-Eknamkul, K. Kamei, T. Srichana, The effect of sericin with variable amino-acid content from different silk strains on the production of collagen and nitric oxide. J BiomaterSciPolym Ed, 2009; 20:1295-1306.
    98. G. Capar, S. S. Aygun, M. R. Gecit, Treatment of silk production wastewaters by membrane processes for sericin recovery. J. Membr., Sci. 2008; 325:920–931.
    99. T.D. Sutherland, J.H. Young, S. Weisman, C.Y. Hayashi, D.J. Merritt, Insect silk: one name, many materials. Ann. Rev. Entomol., 2010; 55:71–88.
    100. S. Masahiro, Y. Hideyuki, K. Norihisa, Consumption of silk protein, sericin elevates intestinal absorption of zinc, iron, magnesium and calcium in rats. Nutr. Res., 2000; 20:1505–1511.
    101. D. Sasikala, K. Govindaraju, S. Tamilselvan, G. Singaravelu, Soybean protein: a natural source for the production of green silver nanoparticles. Biotechnol. Bioprocess. Eng., 2012; 9:1176–1181.
    102. S. Zhao, J. Yao, X. Fei, Z. Shao, X. Chen, An antimicrobial film by embedding in situ synthesized silver nanoparticles in soy protein isolate. Mater Lett., 2013; 9:142–144.
    103. S. C. Kundu, B. C. Dash, R. Dash, D.L. Kaplan, Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications. Progr. Polym. Sci., 2008; 33:998–1012.
    104. O. Lupan, V.V. Ursaki, G. Chai, L. Chow, G.A. Emelchenko, I.M. Tiginyanu, A.N. Gruzintsev, A.N. Redkin, Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens. Actuators, B., 2010; 144:56–66.
    105. R. Khan, H.W. Ra, J. T. Kim, W.S. Jang, D. Sharma, Y.H. Im, Nanojunction effects in multiple ZnO nanowire gas sensor. Sens. Actuators. B., 2010; 150: 389–393.
    106. D.P. Neveling, T.S. van den Heever, W.J. Perold, L.M.T. Dicks, A nanoforce ZnO nanowire-array biosensor for the detection and quantification of immunoglobulins, Sensor. Actuat. B-Chem., 2014; 203:102-110.
    107. Y. Zhao, P. Deng,; Y. Nie, P. Wang, Y. Zhang, L. Xing, X. Xue, Biomolecule-adsorption-dependent piezoelectric output of ZnO nanowire nanogenerator and its application as self-powered active biosensor. Biosens. Bioelectron., 2014; 57:269-275.
    108. J. Tang, H. Guo, P. An, M. Chen, D. Tsoukalas, Y. Shi, J. Liu, C. Xue, W. Zhang, ZnO nanoparticles embedded in polyethylene-glycol (PEG) matrix as sensitive strain gauge elements. J. Nanopart. Res., 2014; 16 (11):2714.
    109. Q.Xu, J.B. Li, Q. Peng, L.L. Wu, S.P. Li, Novel and simple synthesis of hollow propus silica fibers with hierarchical structure using silk as template. Mater. Sci. Eng. B., 2006; 127:212–217.
    110. E. L. Mayes, F. Vollrath, S. Mann, Fabrication of magnetic spider silk and other silk-fiber composites using inorganic nanoparticles. Adv. Mater., 1998; 10:801–805.
    111. M.R. Khan, M. Tsukada, X. Zhang, H. Morikawa, Preparation and characterization of electrospun nanofibers based on silk sericin powders. J. Mater. Sci., 2013; 9:3731–3736.
    112. A. Rafey, K.B. Shrivastavaa, S.A. Iqbal, Z. Khan, Growth of Ag-nanoparticles using aspartic acid in aqueous solutions. J. Colloid. Interface. Sci., 2011 Feb; 354(1):190-195.
    113. Y. Shin, I.T. Bae, G.J. Exarhos, Green approach for self-assembly of platinum nanoparticles into nanowires in aqueous glucose solutions. Colloids. Surface. A., 2009; 9:191–195.
    114. P. Monti, P. Taddei, G. Freddi, T. Asakura, M. Tsukada, Raman spectroscopic studies of silk fibroin from Bombyx mori. J. Raman. Spectrosc., 2001;32:103–107.
    115. Y. Zheng, T. Zhang, L.Wang, R.Wang, W. Fu, H. Yang, Synthesis and ethanol sensing properties of self-assembled monocrystalline ZnO nanorod by poly(ethylene)-assisted hydrothermal process. J. Phys. Chem. C., 2009; 113:3442–3448.
    116. X. Peng, Z. Wang, P. Huang, X. Chen, X. Fu, D. Wenxini, Comparative Study of Two Different TiO2 Film Sensors on Response to H2 under UV Light and Room Temperature. Sensors, 2016; 16:1249.
    117. H. Huang, Y.C. Lee, O.K. Tan, W. Zhou, N. Peng, Q. Zhang, High sensitivity SnO2 single-nanorod sensors for the detection of H2 gas at low temperature. Nanotechnology, 2009; 20(11):115501.
    118. Z. Zhang, X. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X. Xiao, C. Jiang, J. Li, Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Nanoscale, 2015; 7(22):10078–10084.
    119. Y. Pak, S.M. Kim, H. Jeong, C.G. Kang, J.S. Park, H. Song, R. Lee, N. Myoung, B.H. Lee, S. Seo, Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons. ACS Appl. Mater. Interfaces, 2014; 6:13293–13298.
    120. T.C. Lin, B.R. Huang, Palladium nanoparticles modified carbon nanotube/nickel composite rods (Pd/CNT/Ni) for hydrogen sensing. Sensors and Actuators B, 2012; 162:108–113.
    121. A. Kaniyoor, R.I. Jafri, T. Arockiadoss, S. Ramaprabhu, Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale, 2009; 1:382–1386.
    122. M.F.B. Alam, D.T. Phan, G.S. Chung, Palladium nanocubes decorated on a one-dimensional ZnO nanorods array for use as a hydrogen gas sensor. Materials Letters, 2015; 156:113–117.
    123. L. Guo, H. Zhang, D. Zhao, B. Li, Z. Zhang, M. Jiang, D. Shen, High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method. Sensors and Actuators B, 2012; 166–167:12–16.
    124. X. He, X. Wang, S. Nanot, K. Cong, Q. Jiang, A. A. Kane, J. E. M. Goldsmith, R.H. Hauge, F. Leonard, and J. Kono, Photothermoelectric pn Junction Photodetector with Intrinsic Broadband Polarimetry Based on Macroscopic Carbon Nanotube Films. ACS nano, 2013; 7: 7271–7277.
    125. Y. Cao, J.H. He, J.L. Zhu, J.L. Sun, Fabrication of carbon nanotube/silicon nanowire array heterojunctions and their silicon nanowire length dependent photoresponse. Chemical Physics Letters, 2011; 501:461–465.
    126. B. Nie, J.G. Hu, L.B. Luo, C. Xie, L.H. Zeng, P. Lv, F.Z. Li, J.S. Jie, M. Feng, C.Y. Wu, Y.Q. Yu, S.H. Yu, Monolayer Graphene Film on ZnO Nanorod Array for High-Performance Schottky Junction Ultraviolet Photodetectors. Small, 2013; 9(17): 2872−2879.
    127. Z. Bai, Y. Zhang, Self-powered UVevisible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions. Journal of Alloys and Compounds, 2016; 675:325-330.
    128. A.G. Ardakani, M. Pazoki, S.M. Mahdavi, A.R. Bahrampour, N. Taghavinia, Ultraviolet photodetectors based on ZnO sheets: The effect of sheet size on photoresponse properties. Applied Surface Science, 2012; 258:5405–5411.
    129. S.S. Shinde, Bhosale,; Rajpure, K.Y.; N-doped ZnO based fast response ultraviolet photoconductive detector, Solid-State Electronics, 2012; 68:22–26.
    130. M. Kumar, Y. Noh, K. Polat, A.K. Okyay, D. Le, Metal–semiconductor–metal UV photodetector based on Ga doped ZnO/graphene interface. Solid State Communications, 2015; 224:37–40.
    131. P.S. Shewale, N.K. Lee, S.H. Lee, K.Y. Kang, Y.S. Yu, Ti doped ZnO thin film based UV photodetector: Fabrication and Characterization. Journal of Alloys and Compounds, 2015; 624:251–257.
    132. C. Liu, A. Piyadasa, M. Piech, S. Dardona, Z. Rena, and P.X. Gao, Tunable UV response and high performance of zinc stannate nanoparticle film photodetectors J. Mater. Chem. C, 2016; 4:6176-6184.
    133. Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, J. J. Wu, Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes. Appl. Phys. Lett. 2008; 92:233301.
    134. R. Langer, D.A. Tirrell, Designing materials for biology and medicine. Nature, 2004; 428:487–492.
    135. M.P. Ho, H. Wang, K.T. Lau, Effect of degumming time on silkworm silk fiber for biodegradable polymer composites. Appl. Surf. Sci., 2012; 258:3948–3955.
    136. Y. Cao, B.C. Wang, Biodegradation of silk biomaterials. Int. J. Mol. Sci., 2009; 10:1514–1524.
    137. B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, editors, Biomaterials science: an introduction to materials in medicine, 2nd edition, Amsterdam/Boston: Elsevier Academic Press. P. 2004:1-864.
    138. J.G. Hardy, T.R. Scheibel, Silk-inspired polymers proteins. Biochem. Soc. Trans., 2009; 37 :677–681.
    139. H. Tao, D.L. Kaplan, F.G. Omenetto, Silk materials – a road to sustainable high technology. Adv. Mater., 2012; 24:2824–2837.
    140. Y. Qi, H. Wang, K. Wei, Y. Yang, R. Zheng, I.S. Kim, K.Q. Zhang, A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci., 2017; 18(3):237.
    141. R.I. Kunz, R.M.C. Brancalhão, L. de F.C. Ribeiro, M.R.M. Natali, Silkworm sericin: properties and biomedical applications, BioMed. Res. Int., 2016: 8175701.
    142. D.M. Chevrier, A. Chatt, P. Zhang, Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review, J. Nanophotonics, 2012;6(1):64504.
    143. J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, Q. Li, Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev., 2015; 44 (17):6330-6374.
    144. T.M. Dinis, R. Elia, G. Vidal, Q. Dermigny, C. Denoeud, D.L. Kaplan, C. Egles, F. Marin, 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. Journal of the mechanical behavior of biomedical materials, 2015; 41:43-55.
    145. S. Das, M. Sharma, D. Saharia, K.K. Sarma, M.G. Sarma, B.B. Borthakur, U. Bora, In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials, 2015; 62:66-75.
    146. S.H. Tsao, D. Wan, Y.S. Lai, H.M. Chang, C.C. Yu, K.T. Lin, H.L. Chen, White-light-induced collective heating of gold nanocomposite/bombyx mori silk thin films with ultrahigh broadband absorbance. ACS nano., 2015; 9:12045-12059.
    147. E.C. Dreaden, A.M Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012; 41:2740-2779.
    148. T.L. Doane, C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev., 2012; 41:2885-2911.
    149. W. Zhang, F. Wang, Y. Wang, J. Wang, Y. Yu, S. Guo, R. Chen, D. Zhou, pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. J. Controlled Release., 2016; 232: 9-19.
    150. C.C. You, M. De, G. Han, V.M. Rotello, Tunable inhibition and denaturation of α-chymotrypsin with amino acid-functionalized gold nanoparticles. J. Am. Chem. Soc. 2005; 127:12873-12881.
    151. W. Chen, W. Wu, H. Chen, Z. Shen, Preparation and characterization of noble metal nanocolloids by silk fibroin in situ reduction. Sci. China, Ser. B: Chem., 2003; 46:330-338.
    152. Z. Wang, Y. Zhang, J. Zhang, L. Huang, J. Liu, Y. Li, L. Wang, Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel. Scientific Reports., 2014; 4(7064).
    153. Q. Lu, et al, Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process. Biomaterials, 2011; 32:1059–1067.
    154. Q. Lu, et al, Degradation mechanism and control of silk fibroin. Biomacromolecules, 2011; 12:1080–1086.

    無法下載圖示 全文公開日期 2023/01/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE