簡易檢索 / 詳目顯示

研究生: 葉詞超
CI-CHAO YE
論文名稱: 氧化鋅奈米線的光致發光及紫外光檢測特性
Photoluminescence and UV sensing properties of ZnO nanowires
指導教授: 趙良君
Liang-Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 57
中文關鍵詞: 光致發光紫外光檢測器氧化鋅奈米線
外文關鍵詞: Photoluminescence, UV sensor, ZnO nanowires
相關次數: 點閱:310下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以熱氧化金屬鋅膜法製備氧化鋅奈米線紫外光檢測器,鋅薄膜之溝槽藉由聚焦離子束(focus ion beam, FIB)系統切割,隨後藉由熱氧化法於溝槽間成長氧化鋅奈米線。氧化鋅奈米線的直徑約為70 nm,成長方向為[110]且為單晶結構。由室溫PL量測顯現,氧化鋅奈米線於377 nm具有較強之近能隙發光,且較無缺陷階之發光。變溫PL量測顯現,氧化鋅奈米線之室溫PL發光是由於自由激子的複合,當低溫10 K時,PL光譜由表面激子 (surface exciton, SX)和中性受子束縛激子(neutral acceptors bound excitons) 所主導。以紫外光300 nm照射氧化鋅奈米線光檢測器所得到之Gnormalized 為10^-5 m^2V^-1,而光電流之上升時間以及下降時間分別是0.15 s 以及2.1 s。紫外光和可見光之光響應以及鑑別率分別為1.5×10^5以及30,氧化鋅奈米線具有較好之光檢測特性是由於氧化鋅奈米線為單晶結構,且成長方向為[110]。


    ZnO nanowire UV sensors were fabricated by thermal oxidation of metallic zinc strips. A trench was cut through the metallic zinc strip by focused ion beam and subsequent thermal oxidation at 450oC results in the formation of ZnO nanowires across the trench. The diameter of the ZnO nanowire is ~ 70 nm, the growth direction is along the [110] direction and is of single crystalline quality. Room temperature photoluminescence (PL) study shows strong near band edge emission at 377 nm and negligible defect related deep level emission. Variable temperature PL study shows that the room temperature PL emission is due to recombination of free excitons, while at 10 K, the PL is dominated by recombination of surface excitons and exciton bound to neutral acceptors. The ZnO nanowire sensor exhibits a normalized gain of ~ 10^-5 m^2V^-1 under 300 nm illuminations with a riese and decay time of 0.15 and 2.1 seconds, respectively. The responsitivity and UV/Visible rejection ratio are 1.5105 A/W and 30, respectively. This extradoinary high photosensing property is due to the high crystalline quality of ZnO [110] nanowires.

    論文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 實驗動機 1 第二章 理論基礎與文獻回顧 3 2.1 氧化鋅簡介 3 2.1.1 氧化鋅特性 3 2.1.2 氧化鋅薄膜之發光機制 4 2.1.3 氧化鋅一維奈米結構簡介 6 2.1.4 Cabrera-Mott金屬氧化理論 7 2.2 文獻回顧 10 2.2.1 氧化鋅一維結構 10 2.2.2 氧化鋅光偵測器 16 第三章 實驗步驟與分析系統 19 3.1 實驗設備及流程 19 3.2 分析儀器 22 3.2.1 場發射掃描式電子顯微鏡 (field emission scanning electron microscope, FE-SEM) 22 3.2.2 光激發螢光光譜 (photoluminescence spectroscopy, PL) 23 3.2.3 光電流量測 (photocurrent) 26 第四章 實驗結果與討論 30 4.1 場發射掃描式電子顯微鏡分析 30 4.2 光激發螢光光譜分析 33 4.3 光電流量測分析 39 第五章 結論與外來展望 43 參考文獻 44

    [1] J. F. Yan, Y. M. Lu, Y. C. Liu, H.W. Liang, B.H. Li, D.Z. Shen, J.Y. Zhang and X. W. Fan, “Improvement of the crystalline quality of the ZnO epitaxial layer on a low-temperature grown ZnO buffer layer,” J. Cryst. Growth, Vol. 266, pp. 505-510, 2004.
    [2] W. Liu, B. Yao, Y. Li, B. Li, C. Zheng, B. Zhang, C. Shan, Z. Zhang, J. Zhang and D. Shen, “Annealing temperature dependent electrical and optical properties of ZnO and MgZnO films in hydrogen ambient,” Appl. Surf. Sci., Vol. 255, pp. 6745-6749, 2009.
    [3] C. G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett., Vol. 85, pp. 1012-1015, 2000.
    [4] X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett., Vol. 78, pp. 2285-2287, 2001.
    [5] S. A. Studenikin, N. Golego and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis,” J. Appl. Phys., Vol. 84, pp. 2287-2294, 1998.
    [6] A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnol., Vol. 18, pp. 1-8, 2007.
    [7] B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions,” J. Electrochem. Soc., Vol. 148, pp. 110-113, 2001.
    [8] G. Roussos, H. J. Schulz and M. Thiede, “Luminescence and related optical properties of iron ions in II–VI compounds,” J. Lumin., Vol. 31-32, pp. 409-411, 1984.
    [9] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin., Vol. 99, pp. 149-154, 2002.
    [10] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., Vol. 79, pp. 7983-7990, 1996.
    [11] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., Vol. 84, No. 18, pp. 3654-3656, 2004.
    [12] N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys., Vol. 12, pp. 163-184, 1949.
    [13] S. Rackauskas, A. G. Nasibulin, H. Jiang, Y. Tian, G. Statkute, S. D. Shandakov, H. Lipsanen and E. I. Kauppinen, “Mechanism investigation of ZnO nanowires growth,” Appl. Phys. Lett., Vol. 95, pp. 183114-1 - 183114-3, 2009.
    [14] A. M. B. Gonçalves, L. C. Campos, A. S. Ferlauto and R. G. Lacerda, “On the growth and electrical characterization of CuO nanowires by thermal oxidation,” J. Appl. Phys., Vol. 106, pp. 034303-1-034303-5, 2009.
    [15] J. B. K. Law, C. B. Boothroyd and J. T. L. Thong, “Site-specific growth of ZnO nanowires from patterned Zn via compatible semiconductor processing,” J. Cryst. Growth., Vol. 310, pp. 2485-2492, 2008.
    [16] S. Ren, Y. F. Bai, Jun Chen, S. Z. Deng, N. S. Xu, Q. B. Wu and S. Yang, “Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation,” Mater. Lett., Vol. 61, pp. 666-670, 2007.
    [17] T.W. Kim, T. Kawazoe, “Low-temperature orientation-selective growth and ultraviolet emission of single-crystal ZnO nanowires,” Appl. Phys. Lett., Vol. 84, No. 17, pp. 3358-3360, 2004.
    [18] H.Haiping, Y.Qian, W.Jingrui, Y.Zhizhen, “Layer-structured ZnO nanowire arrays with dominant surface and acceptor related emissions,” Mater. Lett., Vol. 65, pp. 1351-1354, 2011.
    [19] Q. X. Zhao and M. Willander, “Optical recombination of ZnO nanowires grown on sapphire and Si substrates,” Appl. Phys. Lett.,Vol. 83, No. 1, pp. 165-167, 2003.
    [20] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., Vol. 7, No. 4, pp. 1003-1009, 2007.
    [21] S. Dhara and P. Giri, “ Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires,” Nanoscale Res. Lett., Vol. 6, pp. 504-1-504-8, 2011.
    [22] W. Y. Weng, S. J. Chang, C. L. Hsu, T. J. Hsueh, and S. P. Chang, “A Lateral ZnO Nanowire Photodetector Prepared on Glass Substrate,” J. Electrochem. Soc., Vol. 157, pp. K30-K33, 2010.
    [23] Sanjeev Kumar1, Vinay Gupta and K Sreenivas, “Synthesis of photoconducting ZnO nano-needles using an unbalanced magnetron sputtered ZnO/Zn/ZnO multilayer structure,” nanotechnolo., Vol. 16, pp. 1167-1171, 2005.
    [24] D. K. Schroder, “Semiconductor Material and Devic Characterization,” 2nd edition, J. Wiley and Sons, New York, 1998.
    [25] J. D. Prades, R. J. Diaz, F. H. Ramirez, L. F. Romero, T. Andreu, A. Cirera and A. R. Rodriguez, A. Cornet, J. R. Morante, S. Barth and S. Mathur, “Toward a Systematic Understanding of Photodetectors Based on Individual Metal Oxide Nanowires,” J. Phys. Chem. C, Vol. 112, pp. 14639-14644, 2008.
    [26] B. Kumar, H. Gong, S. Vicknesh, S. J. Chua and S. Tripathy, “Luminescence properties of ZnO layers grown on Si-on-insulator substrates,” Appl. Phys. Lett., Vol. 89, pp. 141901-1-141901-3 , 2006.

    無法下載圖示 全文公開日期 2017/06/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE