簡易檢索 / 詳目顯示

研究生: 宋宛臻
WAN-JHEN SONG
論文名稱: 濺鍍氧化鋅和氮化鈦於矽油中並應用於紫外光感測器
Sputtering ZnO and TiN into silicone oil and their application to UV photodetector
指導教授: 周賢鎧
Shyankay Jou
口試委員: 鄭偉鈞
Wei-Chun Cheng
胡毅
Hu Yi
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 146
中文關鍵詞: 矽油光感測
外文關鍵詞: silicone oil, photodetector
相關次數: 點閱:226下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用磁控式濺鍍,利用矽油(silicone oil)作為液態基材,分別濺鍍氧化鋅和氮化鈦,於矽油中形成氧化物和氮化物的奈米顆粒,並分析材料之特性,實驗可分為三部分,第一為不添加矽油直接濺鍍氧化鋅及氮化鈦;第二為將矽油以加熱的方式蒸鍍於基材表面再進行濺鍍氧化鋅及氮化鈦;第三為將矽油盛裝於培養皿中再進行濺鍍氧化鋅及氮化鈦。
    於矽油中所形成的奈米顆粒,經由TEM分析確認為結晶的結構,氧化鋅之晶粒平均為5.7±0.6 nm,氮化鈦之晶粒平均為6.3±1.5 nm。以加熱方式將矽油蒸鍍於基材表面再進行濺鍍的試片,無論濺鍍氧化鋅或氮化鈦,都可以形成皺紋的結構,有別於不加矽油直接濺鍍所形成平坦的薄膜。
    利用網印的方式於SiO2/Si基板上製作銀指叉電極,接著濺鍍氧化鋅、氮化鈦薄膜或直接將濺鍍完成之矽油滴於基材上,接著用170°C氬氣氣氛中將矽油烤乾,之後氧化鋅於500°C大氣退火2小時,氮化鈦以650°C氧氣氣氛退火2小時,完成光感測器元件製作。
    本研究使用波長365 nm的紫外光源,對元件進行光暗電流電壓曲線(I-V)與響應時間(I-T)之量測。在5 V電壓下量測時,發現加入矽油所形成之奈米顆粒光感測器,響應度較未加矽油的光感測器高,且響應時間較快,氧化鋅奈米顆粒所製成之元件響應時間為0.16 ms,氮化鈦奈米顆粒所製成之元件響應時間為0.43 ms。


    Zinc oxide and titanium nitride nanoparticles were prepared on silicone oil by RF magnetron sputtering and they were characterized.
    The samples were prepared by three different methods. Firstly, it was sputtered directly onto the substrate without silicon oil, secondly, silicone oil was evaporate using a hot plate to condense on the substrate and then sputtered onto it and thirdly, they were sputtered on petri dish which contains 3 ml of silicone oil.
    TEM analysis confirmed the polycrystalline structure of the nanoparticles and the particle sizes of as-produced zinc oxide and titanium nitride were about 5.7±0.6 nm and 6.3±1.5 nm respectively.
    The samples which contain evaporated silicone oil was found to be wrinkle structured while samples which were prepared without silicone oil were different in structure.
    In addition, UV photodetectors were fabricated by depositing ZnO nanoparticles and TiN nanoparticles which is deposited onto Ag Interdigitated electrodes. The current-voltage (I-V) curves were measured using dark and UV light conditions. The response time (I-T) of the devices were measured to investigate the relationship between photoconductive performance and the characteristics which were affected by silicone oil. The experimental results show that the photodetectors with nanoparticles which were prepared on silicone oil have high responsivity than the nanoparticles without silicone oil.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XV 第一章 前言 1 第二章 文獻回顧 2 2.1奈米粒子之簡介 2 2.2氧化鋅 5 2.2.1氧化鋅的基本特性[13] 5 2.2.2 氧化鋅的發光機制[20] 6 2.3氮化鈦和二氧化鈦 9 2.3.1氮化鈦的基本性質[23, 24] 9 2.3.2二氧化鈦的基本性質 10 2.4 矽油 11 2.4.1矽油簡介 11 2.4.2 矽油相關文獻回顧 12 2.5 紫外光光感測器 19 2.5.1光感測器特性參數 20 2.5.2 光感測器之光電導機制 22 2.5.3 氧化鋅感測器近期研究之文獻 23 2.5.4氮化鈦相關之光感測器 30 2.6 研究目的 37 第三章 實驗方法與步驟 38 3.1 實驗材料與藥品規格 38 3.2 實驗儀器與設備 39 3.2.1 實驗用儀器 39 3.2.2 實驗用分析儀器 41 3.3 分析與鑑定 42 3.3.1紫外光/可見光光譜儀[67] 42 3.3.2光致發光光譜儀 43 3.3.3場發射式掃描式電子顯微鏡 44 3.3.4穿透式電子顯微鏡 45 3.3.5 X光繞射分析儀(X-Ray Diffractometer,XRD)
 46 3.3.6 X-ray電子能譜儀(X-ray Photoelectron Spectrometer, XPS) 47 3.4 實驗步驟 48 3.4.1 基材清洗流程 48 3.4.2氧化鋅沈積於矽油和氧化鋅薄膜及其光感測器之製備 49 3.4.3氮化鈦沈積於矽油和氮化鈦薄膜及其光感測器之製備 51 3.4.4 TEM試片之製備 53 3.4.5 電性量測 54 第四章 ZNO結果與討論 55 4.1 不添加矽油直接濺鍍ZnO於基材上 55 4.1.1 ZnO薄膜之XRD分析 55 4.1.2 ZnO薄膜之SEM分析 56 4.1.3 ZnO薄膜之XPS分析 58 4.2 ZnO濺鍍於蒸油之基材上 60 4.2.1 ZnO濺鍍於蒸油之基材上之XRD分析 61 4.2.2 ZnO濺鍍於蒸油基材上之SEM表面形貌分析 63 4.2.3 ZnO濺鍍於蒸油之基材上之XPS分析 64 4.3 ZnO奈米顆粒濺鍍於矽油中 67 4.3.1 ZnO奈米顆粒XRD分析 68 4.3.2 ZnO奈米顆粒SEM分析 69 4.3.3 ZnO奈米顆粒TEM結構分析 70 4.3.4 ZnO奈米顆粒XPS分析 73 4.4 ZnO之光學性質分析 76 4.4.1 ZnO之紫外光可見光光譜分析 76 4.4.2 ZnO之光致發光光譜分析 79 4.5 ZnO光感測器電性分析 80 4.5.1未添加矽油直接濺鍍ZnO於基材上之元件 81 4.5.2 ZnO濺鍍於蒸油之基材上之元件 83 4.5.3滴ZnO奈米顆粒之矽油於基材上之元件 85 第五章 TIN結果與討論 88 5.1不添加矽油直接濺鍍TiN於基材 88 5.1.1 TiN薄膜之XRD分析 88 5.1.2 TiN薄膜之SEM分析 90 5.1.3 TiN薄膜之XPS分析 92 5.2 TiN濺鍍於蒸油之基材上 95 5.2.1 TiN濺鍍於蒸油之基材上之XRD分析 96 5.2.2 TiN濺鍍於蒸油之基材上之SEM分析 99 5.2.3 TiN濺鍍於蒸油之基材上之XPS分析 101 5.3 TiN奈米顆粒濺鍍於矽油中 104 5.3.1 TiN奈米顆粒之XRD分析 104 5.3.2 TiN奈米顆粒之SEM分析 106 5.3.3 TiN奈米顆粒TEM結構分析 107 5.3.4 TiN奈米顆粒之XPS分析 111 5.4 TiN之光學性質分析 114 5.4.1 TiN之紫外光可見光光譜分析 114 5.4.2 TiN之光致發光光譜分析 117 5.5 TiN光感測器電性分析 118 5.5.1不添加矽油直接濺鍍TiN於基材上之元件 118 5.5.2 TiN濺鍍於蒸油之基材上之元件 119 5.5.3滴TiN奈米顆粒之矽油於基材上之元件 121 第六章 結論 124 參考文獻 126 附錄 134 JCPDS card ZnO 134 JCPDS card TiN 135 JCPDS card TiO 136 JCPDS card TiO2 -Anatase 137 JCPDS card TiO2 -Rutile 138 XPS 139 氮化鈦光感測器電性分析 144

    [1] M. N. Kamalasanan, S. Chandra, "Sol-gel synthesis of ZnO thin films", Thin Solid Films 1996, 288 (1–2), 112-115.
    [2] I.S. Kim, P. N. Kumta, "Hydrazide sol-gel synthesis of nanostructured titanium nitride: precursor chemistry and phase evolution", Journal of Materials Chemistry 2003, 13 (8), 2028-2035.
    [3] Z. Chen, K. Shum, T. Salagaj, W. Zhang, K. Strobl, "ZnO thin films synthesized by chemical vapor deposition", Energy 8, 8-9.
    [4] H. Jeon, J.W. Lee, Y. D. Kim , D. S. Kim, K. S. Yi,"Study on the characteristics of TiN thin film deposited by the atomic layer chemical vapor deposition method", Journal of Vacuum Science & Technology A 2000, 18 (4), 1595-1598.
    [5] B. D.Yao, Y. F. Chan, N. Wang, "Formation of ZnO nanostructures by a simple way of thermal evaporation", Applied Physics Letters 2002, 81 (4), 757-759.
    [6] K. Sivalingam, P. Shankar, G. K. Mani , J. B. B. Rayappan , "Solvent volume driven ZnO nanopetals thin films: Spray pyrolysis", Materials Letters 2014, 134, 47-50.
    [7] J. C. S. Kools, C. J. C. M. Nillesen, S. H. Brongersma , E. van de Riet, J. Dieleman, "Laser ablation deposition of TiN films", Journal of Vacuum Science & Technology A 1992, 10 (4), 1809-1814.
    [8] S. Rajendiran, A. K. Rossall, A. Gibson, and E. Wagenaars, "Modelling of laser ablation and reactive oxygen plasmas for pulsed laser deposition of zinc oxide", Surface and Coatings Technology 2014, 260, 417-423.
    [9] S. Link, M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles", The Journal of Physical Chemistry B 1999, 103 (21), 4212-4217.
    [10] I. Shalish, H. Temkin, V. Narayanamurti, "Size-dependent surface luminescence in ZnO nanowires", Physical Review B 2004, 69 (24), 245401.
    [11] 呂宗昕, 全面進攻奈米科技與太陽電池, 天下遠見出版股份有限公司 2009.
    [12] H.M. Cheng, K.F. Lin, H.C. Hsu, and W.F. Hsieh, "Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots", Applied Physics Letters 2006, 88 (26), 261909.
    [13] 謝旺成,以熱蒸鍍法蒸鍍氧化鋅及氧化鋅混合一氧化矽應用於指紋顯影, 國立台灣科技大學材料科學與工程研究所碩士學位論文 民國100年.
    [14] M. Vaseem, A. Umar, Y. B. Hahn, ZnO nanoparticles: growth, properties, and applications. American Scientific Publishers: New York: 2010; Vol. 5, pp 1-36.
    [15] J. Zhou, Y. Gu, Y. Hu , W. Mai, P.H. Yeh, G. Bao, A. K. Sood, D. L. Polla, Z. L.Wang, "Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization", Applied Physics Letters 2009, 94 (19), 191103.
    [16] S. J. Jiao , Z. Z.Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, X. W.Fan, Z. K. Tang, "ZnO pn junction light-emitting diodes fabricated on sapphire substrates", Applied Physics Letters 2006, 88 (3), 031911.
    [17] J. Katayama , K. Ito , M. Matsuoka, and J. Tamaki, "Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition", Journal of Applied Electrochemistry 2004, 34 (7), 687-692.
    [18] P. Nunes, B. Fernandes, E. Fortunato, P. Vilarinho, R. Martins,"Performances presented by zinc oxide thin films deposited by spray pyrolysis", Thin Solid Films 1999, 337 (1–2), 176-179.
    [19] W. Water, and S. Y. Chu , "Physical and structural properties of ZnO sputtered films", Materials Letters 2002, 55 (1–2), 67-72.
    [20] C. H. Ahn, Y. Y. Kim , D. C. Kim, S. K. Mohanta, H. K. Cho, "A comparative analysis of deep level emission in ZnO layers deposited by various methods", Journal of applied physics 2009, 105 (1), 013502.
    [21] K. Vanheusden, C. H. Seager , W. L. t. Warren, D. R. Tallant, J. A. Voigt, "Correlation between photoluminescence and oxygen vacancies in ZnO phosphors", Applied Physics Letters 1996, 68 (3), 403-405.
    [22] Z. W. Li, W. Gao, Growth of zinc oxide thin films and nanostructures by wet oxidation. Thin Solid Films, 2007, 515(7–8), 3323-3329.
    [23] K. Inumaru , T. Ohara, S. Yamanaka, "Pulsed laser deposition of epitaxial titanium nitride on MgO (001) monitored by RHEED oscillation", Applied Surface Science 2000, 158 (3), 375-377.
    [24] P. Patsalas , C. Charitidis, S. Logothetidis , "The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films", Surface and Coatings Technology 2000, 125 (1–3), 335-340.
    [25] F. James , F. Shackelford, W. Alexander, "Materials science and engineering handbook", CRC Press, LLC 2001.
    [26] S. D. Mo, W. Y. Ching,” Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite”, Physical Review B 1995,51(19), 13023 .
    [27] U. Diebold,” The surface science of titanium dioxide”, Surface science reports 2003, 48(5), 53-229.
    [28] G.X .Ye, Q.R. Zhang, C.M. Feng, H.I. Ge, Z.K. Jiao, "Structural and electrical properties of a metallic rough-thin-film system deposited on liquid substrates", Physical Review B 1996, 54 (20), 14754.
    [29] G. X. Ye, T. Michely , V. Weidenhof, I. Friedrich, M. Wuttig, "Nucleation, growth, and aggregation of Ag clusters on liquid surfaces", Physical review letters 1998, 81 (3), 622.
    [30] C.M. Feng , H.L. Ge , M.R. Tong, G. X. Ye, and Z. K. Jiao, "Growth behavior and surface morphology of Ag rough thin films deposited on silicone oil surfaces", Thin Solid Films 1999, 342 (1–2), 30-34.
    [31] B. Yang, J. Scheidtmann , J. Mayer, M. Wuttig, T. Michely, "Fragmentation, rings and coarsening: structure and transformations of nanocrystal aggregate networks on a liquid surface", Surface Science 2002, 497 (1–3), 100-112.
    [32] J. P. Xie, W.Y.Yu, S. L. Zhang, M.G. Chen, G.X.Ye, "AFM study on microstructures of metal films deposited on liquid substrates", Physics Letters A 2007, 371 (1), 160-164.
    [33] C. Zhang, Y.Feng, "Fabrication of Size-Controlled Gold Nanoparticles on Silicone Oil Surface and Mechanism for Size-Controllability", Journal of the Physical Society of Japan 2015, 84 (7), 074601.
    [34] C. H. Zhang, N. Lv, X. F. Zhang, B. Yang, and G.X. Ye , "Preferred structures of the atomic Ag islands on silicone oil surfaces", Journal of Physics: Condensed Matter 2011, 23 (43), 435006.
    [35] M.G. Chen , J.P. Xie, G.X. Ye, "Formation mechanism and ordered patterns in Cu films deposited on silicone oil surfaces", Physics Letters A 2006, 360 (2), 323-326.
    [36] M.G.Chen, S. J. Yu , Y.X.Feng, Z.W. Jiao, M.Z. Yu, B. Yang, "Microstructure and growth mechanism of Cu ramified aggregates on silicone oil surfaces", Thin Solid Films 2010, 518 (10), 2674-2677.
    [37] Q.L. Ye, C. M. Feng, X. J. Xu, J.S. Jin, A.G. Xia, G.X. Ye, "Anomalous hysteresis properties of iron films deposited on liquid surfaces", Journal of applied physics 2005, 98 (1), 013906.
    [38] S. J. Yu, H. Zhou, Y.J. Zhang, M.G. Chen , Z.W. Jiao, and P.Z. Si, "Stress relief patterns of Co films deposited on circular silicone oil substrates", Thin Solid Films 2012, 520 (17), 5683-5690.
    [39] P.Cai, S. Yu, X. Xu, M. Chen , C. Sui, G. X. Ye, "Growth mechanism and stress relief patterns of Ni films deposited on silicone oil surfaces", Applied Surface Science 2009, 255 (20), 8352-8358.
    [40] Q. X. Chen, Y. F. Feng, Y.D.Sun, S.J. Yu, "Aggregation Behaviors of Cr Atoms Sputtering Deposited on Flat and Curved Liquid Surfaces", Chinese Physics Letters 2014, 31 (8), 086801.
    [41] Tao, X.-M., Yang, B., Ma, H.-Z. and Ye, G.-X., "Expansion effect of liquid substrates on the ordered structures in the Al films", Physics Letters A 2006, 351 (4), 350-353.
    [42] Z.N. Fang, B. Yang, M.G. Chen, C. H. Zhang, , J.P. Xie, and G.X. Ye, , "Growth and morphology of ultra-thin Al films on liquid substrates studied by atomic force microscopy", Thin Solid Films 2009, 517 (11), 3408-3411.
    [43] C. Lu, Y. Cheng, Q. Pan, X. Tao, B. Yang, and G. Ye, "One-dimensional Growth of Zinc Crystals on a Liquid Surface", Scientific reports 2016, 6.
    [44] S.J .Yu, "Wrinkle patterns of Fe films deposited on micro-scale silicone oil droplets", Thin Solid Films 2014, 558, 247-251.
    [45] T. Zhai, X. Fang, M. Liao, X.Xu, H. Zeng, B. Yoshio, D. Golberg, "A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors", Sensors 2009, 9 (8), 6504-6529.
    [46] Monroy, E., Omnès, F. and Calle, F., "Wide-bandgap semiconductor ultraviolet photodetectors", Semiconductor Science and Technology 2003, 18 (4), R33.
    [47] E. Bogatin , "Signal Integrity: Simplified", Prentice Hall 2010.
    [48] C. Soci, A.Zhang, B. Xiang, S. A. Dayeh, D. Aplin, J.Park, X. Bao, Y. H.Lo, and D.Wang, "ZnO nanowire UV photodetectors with high internal gain", Nano letters 2007, 7 (4), 1003-1009.
    [49] A. Manekkathodi, M. Y. Lu, C. W. Wang, L. J. Chen, "Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low‐Cost Flexible Electronics", Advanced Materials 2010, 22 (36), 4059-4063.
    [50] A. J.Gimenez, J. M. Yanez-Limon, J. M. Seminario, "ZnO− Paper Based Photoconductive UV Sensor", The Journal of Physical Chemistry C 2010, 115 (1), 282-287.
    [51] K.ul Hasan, O. Nur, and M.Willander, "Screen printed ZnO ultraviolet photoconductive sensor on pencil drawn circuitry over paper", Applied Physics Letters 2012, 100 (21), 211104.
    [52] H. Li, S. Jiao, H. Li , L. Li, X. Zhang, "Band-edge modulated ZnO pomegranates-on-paper photodetector", Journal of Materials Chemistry C 2015, 3 (15), 3702-3707.
    [53] H. Zhang, Y. Hu , Z. Wang, Z. Fang, L. Peng, "Performance Boosting of Flexible ZnO UV Sensors with Rational Designed Absorbing Antireflection Layer and Humectant Encapsulation", ACS applied materials & interfaces 2015.
    [54] L.W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu and W. B. Cheng, "Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays"Applied Physics Letters, 2009, 94(20),203106.
    [55] C.C.Lin, W.H. Lin, Y.Y. Li , "Synthesis of ZnO nanowires and their applications as an ultraviolet photodetector", Journal of nanoscience and nanotechnology 2009, 9 (5), 2813-2819.
    [56] H.Wang , G. Yi, X. Zu, P.Qin, M. Tan, and H. Luo, "Photoelectric characteristics of the p–n junction between ZnO nanorods and polyaniline nanowires and their application as a UV photodetector", Materials Letters 2016, 162, 83-86.
    [57] L. Xu, X. Li, Z. Zhan, L. Wang, S. Feng, X. Chai, W. Lu, J. Shen, Z. Weng, J. Sun, "Catalyst-Free, Selective Growth of ZnO Nanowires on SiO2 by Chemical Vapor Deposition for Transfer-Free Fabrication of UV Photodetectors", ACS applied materials & interfaces 2015, 7 (36), 20264-20271.
    [58] J. G. Ok, J. Y. Lee , H. W.Baac , S. H. Tawfick, L. J. Guo, A. J. Hart, "Rapid Anisotropic Photoconductive Response of ZnO-Coated Aligned Carbon Nanotube Sheets", ACS applied materials & interfaces 2013, 6 (2), 874-881.
    [59] J.Lu, C. Xu, J. Dai, J. Li, Y. Wang, Y. Lin, P. Li, , "Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles", Nanoscale 2015, 7 (8), 3396-3403.
    [60] S. K. Shaikh, S. I. Inamdar, V. V. Ganbavle, K. Y. Rajpure, "Chemical bath deposited ZnO thin film based UV photoconductive detector", Journal of Alloys and Compounds 2016, 664, 242-249.
    [61] N. Yu, D. Dong, Y. Qi, Y. Wu, L.Chen, "Ultraviolet Photoconductive Detectors Based on A-Plane ZnO Film Grow by Hydrothermal Method", Journal of Electronic Materials 2016, 45 (2), 1073-1076.
    [62] J. B. K. Law, J. T. L. Thong,” Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time”,Applied Physics Letters 2006, 88(13), 133114.
    [63] L. Hu, J. Yan, M. Liao , H. Xiang, X. Gong, L. Zhang, X. Fang, “An Optimized Ultraviolet‐A Light Photodetector with Wide‐Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt”, Advanced Materials 2012, 24(17), 2305-2309.
    [64] A. A. Hussain, B. Sharma , T.Barman, and A. R. Pal, "Self-Powered Broadband Photodetector using Plasmonic Titanium Nitride", ACS applied materials & interfaces 2016, 8 (6), 4258-4265.
    [65] W. Bunjongpru, P. Panprom, S. Porntheeraphat, R. Meananeatra, Jeamsaksiri, W., A. Srisuwan, W. Chaisriratanakul, E. Chaowicharat, Pankiew, A. and Hruanun, C. In UV-enhanced photodetector with nanocrystalline-TiO 2 thin film via CMOS compatible process, Nanotechnology Materials and Devices Conference (NMDC), 2011 IEEE, IEEE: 2011; pp 364-367.
    [66] X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, S. Ruan, “Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes”,Applied Physics Letters 2009, 94(12), 123502.
    [67] 李正中, 薄膜光學與鍍膜技術, 藝軒圖書 民國98年.
    [68] 羅吉宗, 薄膜科技與應用, 全華圖書股份有限公司 民國98年.
    [69] 汪建民, 材料分析, 中國材料科學學會 民國92年.
    [70] 林麗娟, X 光繞射原理及其應用, X 光材料分析技術與應用專題 1994.
    [71] K. Hani, C. Guangyu, L. Oleg, H. Helge, P.Sanghoon , S. Alfons and C. Lee, "Investigation of chemical bath deposition of ZnO thin films using six different complexing agents", Journal of Physics D: Applied Physics 2009, 42 (13), 135304.
    [72] I. Milošv, H. H. Strehblow, B. Navinšek, M. Metikoš‐Huković, , "Electrochemical and thermal oxidation of TiN coatings studied by XPS", Surface and interface analysis 1995, 23 (7‐8), 529-539.
    [73] D. J. Mowbray, J. I. Martinez , J. M. García Lastra, K. S. Thygesen, K. W. Jacobsen, "Stability and electronic properties of TiO2 nanostructures with and without B and N doping", The Journal of Physical Chemistry C 2009, 113 (28), 12301-12308.
    [74] D. A. H. Hanaor, C. C. Sorrell, "Review of the anatase to rutile phase transformation", Journal of Materials science 2011, 46 (4), 855-874.

    QR CODE