簡易檢索 / 詳目顯示

研究生: 黃家科
Jia-Ke Huang
論文名稱: 氧化鋅-氧化鋅鎵與寬能隙材料複合奈米結構之光特性研究
Hybrid nanostructures of ZnO and ZnGa2O4 with wide-bandgap materials for UV photodetectors Studies
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 許正良
周賢鎧
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 201
中文關鍵詞: 氧化鋅鎵氧化鋅奈米柱紫外光感測器
外文關鍵詞: Zinc gallium oxide, ZnO nanorods, UV photodetector
相關次數: 點閱:387下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以簡單與低成本的製程技術製備高響應的紫外光感測元件,內文將分為兩個部分,第一個部分為研究氧化鋅鎵物性及光特性,接著嘗詴結合氧化鎵及摻氮超奈米鑽石,量測其紫外光響應;第二個部分為研究氧化鋅奈米柱物性及光特性,並嘗詴結合氧化鎵、摻氮超奈米鑽石及氧化鋅鎵,研究其紫外光響應。
    研究發現,氧化鋅鎵隨著退火溫度提高,結晶品質提升,導電性變好,光響應也越高,且增長幅度在高於退火 800 度後縮小,進一步研究,氧化鋅鎵成長於摻氮超奈米鑽石,導電度將大幅提升,而氧化鋅鎵成長於氧化鎵上有助於降低暗電流,提升光暗電流比。
    第二部分,氧化鋅奈米柱在水熱溶液濃度為 30 mM 時,成長 15 分鐘相較於成長 30 分鐘之光暗電流比高,而響應率則是後者較高,可歸因於後者之電阻較低。
    進一步研究,氧化鋅奈米柱在成長於氧化鋅鎵與超奈米鑽石複合結構上,在 375 nm的紫外光照射下,皆可提升其光暗電流比,因為能隙差,使其有足夠大的內建電場,對於使光生電子電洞對分離有所增益,進而提升其光響應,其中,當氧化鋅奈米柱(30mM15min)成長於氧化鋅鎵(90W45min_A800)上,在 375 nm 的紫外光照射下,光暗電流比可高達 4.909×104。本研究顯示氧化鋅奈米柱與氧化鋅鎵之奈米複合結構為有前景之紫外光感測器。


    In this study, a high-response ultraviolet photodetector is prepared by a simple and low-cost process. Through the process, ZnO nanorods (ZNR) and Zinc Gallium oxide (ZGO) were successfully prepared, and UV sensing properties were investigated. Futhermore, both materials were combined with gallium oxide (GaO) and ultra-nanodiamonds (N-UNCD), which would be studied with their photodetectors’ performance. The study found that as the annealing temperature increases, the crystal quality of zinc gallium oxide improves, the conductivity becomes better, and the photoresponse is also higher, and the growth rate decreases after the annealing temperature is higher than 800 degrees. When ZGO grows on N-UNCD, the conductivity of component will be greatly improved, and the growth of ZGO on GaO will help reduce dark current and increase the switch ratio. In the second part, when the ZNR are grown in a hydrothermal solution at a concentration of 30 mM, the switch ratio was higher for 15 minutes than for 30 minutes, and the responsivity was higher for the latter, which could be attributed to the lower resistance of the latter. When ZNR are grown on ZGO and N-UNCD to form hybrid structure, they can increase the switch ratio under the irradiation of 375 nm ultraviolet light, because the difference in energy gap makes it has large enough of built-in electric field, which is beneficial to the separation of photogenerated electron-hole pairs, thereby improving its photoresponse. Among them, when ZNR(30mM15min) are grown on ZGO (90W45min_A800), under the ultraviolet light at 375 nm irradiation, the switch ratio can be as high as 4.909×104 . This study shows that the nanohybrid structure of ZNR and ZGO is a promising ultraviolet photodetector.

    摘要........................I 目錄........................ III 圖目錄......................VII 表目錄....................XV 第一章 緒論......................... 1 1.1 前言........................ 1 1.2 研究動機.................................................. 2 第二章 文獻探討................................................... 3 2.1 氧化鋅特性簡介...................................... 3 2.2 氧化鋅螢光特性簡介.............................. 4 2.2.1 紫外光輻射(UV emission)........................... 4 2.2.2 雜質/缺陷輻射(Defect emissions) ..............................4 2.3 氧化鋅奈米柱成長機制簡介.................. 6 2.3.1 水熱法成長機制........................... 6 2.3.2 電化學沉積法成長機制............... 7 2.3.3 化學氣相沉積法成長機制........... 8 2.4 氧化鋅鎵(ZnGa2O4)特性簡介................. 9 2.5 鑽石薄膜之特性簡介............................ 10 2.6 超奈米鑽石成長機制............................ 12 2.6.1 奈米結晶鑽石(Nanocrystalline diamond) ...................................... 13 2.7 氧化鎵(Ga2O3)特性簡介 ....................... 15 2.8 紫外光檢測器種類與機制.................... 18 2.8.1 光電導型光感測器(Photoconductive photodetectors)........................ 19 2.8.2 P-N 結型光感測器(P-N photodetectors)....................................... 20 2.8.3 電性量測之影響因子................. 21 2.8.4 電性量測之重要參數................. 24 2.9 氧化鋅奈米柱之紫外光感測器............ 25 第三章 實驗方法................................................. 28 3.1 實驗設計與流程圖................................ 28 3.2 製備之材料介紹.................................... 39 3.3 基板清洗................................................ 40 3.4 水熱法(Hydrothermal method)成長氧化鋅奈米柱....................................... 41 3.4.1 溶膠凝膠法(Sol-gel method)製備氧化鋅種子層............................... 41 3.4.2 水熱法(Hydrothermal method)成長氧化鋅奈米柱............................ 43 3.5 微波電漿輔助化學氣相沉積法(Microwave Plasma Enhanced Chemical Vapor Deposition method)成長超奈米鑽石........................... 44 3.5.1 鑽石種子層製備......................... 44 3.5.2 MPCVD 成長超奈米鑽石.......... 44 3.6 磁控濺鍍薄膜系統濺鍍氧化鋅鎵薄膜及氧化鎵薄膜................................. 46 3.7 磁控濺鍍薄膜系統濺鍍鈀(Pd)電極 ............................ 47 3.8 儀器設備與材料分析方法.................... 48 3.8.1 場發射掃描式電子顯微鏡(FE-SEM) ................................................. 48 3.8.2 紫外光/可見光光譜儀分析(UV-Vis Spectrometers).......................... 49 3.8.3 Bruker D8 X 光粉末繞射儀 ........ 50 3.8.4 拉曼光譜儀(Raman Spectrum)... 51 3.8.5 紫外光感測器(UV photodetector)電性量測系統............................... 52 第四章 氧化鋅鎵薄膜/氧化鎵-超奈米鑽石(ZGO/GaO-N-UNCD)複合結構之紫外光 感測研究...... 54 4.1 ZGO 之特性分析.................................... 54 4.1.1 ZGO 之表面型態分析................. 54 4.1.2 ZGO 之紫外光-可見光光譜儀分析............................................... 59 4.1.3 ZGO 之 X-ray 繞射儀分析.......... 60 4.1.4 ZGO 之紫外光感測分析............. 62 4.1.5 ZGO 之能帶圖............................. 71 4.2 ZGO/N-UNCD 複合結構之特性分析 ............................... 72 4.2.1 ZGO/N-UNCD 之表面型態分析 ................................... 73 4.2.2 ZGO/N-UNCD 之紫外光-可見光光譜儀分析.................................... 79 4.2.3 ZGO/N-UNCD 之 X-ray 繞射儀分析........................................... 80 4.2.4 ZGO/N-UNCD 複合結構之紫外光感測分析 ..................................... 82 4.3 ZGO/GaO 複合結構之特性分析 ............................ 91 4.3.1 ZGO/GaO 之表面型態分析 ....................... 91 4.3.2 ZGO/GaO 之紫外光-可見光光譜儀分析............................................ 97 4.3.3 ZGO/GaO 之 X-ray 繞射儀分析........................... 98 4.3.4 ZGO/GaO 複合結構之紫外光感測分析 ........................................... 100 4.3.5 ZGO/GaO 之能帶圖 ...................... 108 4.4 ZGO/GaO-N-UNCD 複合結構之特性分析 ......................................... 109 4.4.1 ZGO/GaO-N-UNCD 之表面型態分析 .............................................. 109 4.4.2 ZGO/GaO-N-UNCD 之紫外光-可見光光譜儀分析..........................111 4.4.3 ZGO/GaO-N-UNCD 之 X-ray 繞射儀分析........................................112 4.4.4 ZGO/GaO-N-UNCD 複合結構之紫外光感測分析 ...........................113 4.5 第四章概要...........................................115 .第五章 氧化鋅奈米柱-氧化鋅鎵/氧化鎵-超奈米鑽石(ZNR-ZGO/GaO-N-UNCD)複 合結構之紫外光感測研究..................................117 5.1 ZNR 之特性分析 ...................................117 5.1.1 ZNR 之表面型態分析................117 5.1.2 ZNR 之紫外光-可見光光譜儀分析.....................................119 5.1.3 ZNR 之 X-ray 繞射儀分析........ 120 5.1.4 ZNR 之拉曼光譜儀分析........... 121 5.1.5 ZNR 之紫外光感測分析........... 122 5.1.6 ZNR 之能帶圖 ........................... 125 5.2 ZNR/N-UNCD 複合結構之特性分析 .................................... 126 5.2.1 ZNR/N-UNCD 之表面型態分析 ................................................. 127 5.2.2 ZNR/N-UNCD 之紫外光-可見光光譜儀分析.................................. 129 5.2.3 ZNR/N-UNCD 之 X-ray 繞射儀分析 ......................................... 130 5.2.4 ZNR/N-UNCD 之拉曼光譜儀分析 .............................................. 131 5.2.5 ZNR/N-UNCD 複合結構之紫外光感測分析 ................................... 132 5.3 ZNS/GaO 複合結構之特性分析.................................... 134 5.3.1 ZNS/GaO 之表面型態分析......................... 134 5.3.2 ZNS/GaO 之紫外光-可見光光譜儀分析........................................... 137 5.3.3 ZNS/GaO 之 X-ray 繞射儀分析 ..................................... 138 5.3.4 ZNS/GaO 複合結構之紫外光感測分析............................................ 139 5.4 ZNR-ZGO 複合結構之特性分析.............................. 141 5.4.1 ZNR-ZGO 之表面型態分析....................... 142 5.4.2 ZNR-ZGO 之紫外光-可見光光譜儀分析 ......................................... 148 5.4.3 ZNR-ZGO 之 X-ray 繞射儀分析 ............................................ 149 5.4.4 ZNR-ZGO 複合結構之紫外光感測分析........................................... 151 5.4.5 ZNR-ZGO 之能帶圖................................ 159 5.5 ZNR-ZGO/N-UNCD 複合結構之特性分析.................................. 160 5.5.1 ZNR-ZGO/N-UNCD 之表面型態分析.............................................. 161 5.5.2 ZNR-ZGO/N-UNCD 之紫外光-可見光光譜儀分析......................... 163 5.5.3 ZNR-ZGO/N-UNCD 之 X-ray 繞射儀分析....................................... 164 5.5.4 ZNR-ZGO/N-UNCD 複合結構之紫外光感測分析.......................... 165 5.6 ZNR-ZGO/GaO-N-UNCD 複合結構之特性分析........................................ 167 5.6.1 ZNR-ZGO/GaO-N-UNCD 之表面型態分析..................................... 167 5.6.2 ZNR-ZGO/GaO-N-UNCD 之紫外光-可見光光譜儀分析................ 169 5.6.3 ZNR-ZGO/GaO-N-UNCD 之 X-ray 繞射儀分析.............................. 170 5.6.4 ZNR-ZGO/GaO-N-UNCD 複合結構之紫外光感測分析................. 171 5.7 第五章概要.......................................... 173 第六章 結論與未來展望................................... 175 6.1 結論...................................................... 175 6.2 未來展望.............................................. 177 參考文獻................... 178 附錄.................... 183

    [1] Guo, Lin, et al. "Regularly shaped, single-crystalline ZnO nanorods with wurtzite
    structure." Journal of the American Chemical Society 124.50 (2002): 14864-14865.
    [2] Deng, H., et al. "Microstructure control of ZnO thin films prepared by single source
    chemical vapor deposition." Thin Solid Films 458.1 (2004): 43-46.
    [3] Yang, Peidong, et al. "Controlled growth of ZnO nanowires and their optical
    properties." Advanced Functional Materials 12.5 (2002): 323.
    [4] Lim, J‐H., et al. "UV Electroluminescence Emission from ZnO Light‐Emitting
    Diodes Grown by High‐Temperature Radiofrequency Sputtering." Advanced
    Materials 18.20 (2006): 2720-2724.
    [5] Du, Xiaolong, et al. "Controlled Growth of High‐Quality ZnO‐Based Films and
    Fabrication of Visible‐Blind and Solar‐Blind Ultra‐Violet Detectors." Advanced
    Materials 21.45 (2009): 4625-4630.
    [6] Su, Yan-Kuin, et al. "Ultraviolet ZnO nanorod photosensors." Langmuir 26.1 (2009):
    603-606.
    [7] Lupan, Oleg, Thierry Pauporte, and Bruno Viana. "Low‐Voltage UV‐
    Electroluminescence from ZnO‐Nanowire Array/p‐GaN Light‐Emitting
    diodes."Advanced Materials 22.30 (2010): 3298-3302.
    [8] Lai, Wei-Chih, Jiun-Ting Chen, and Ya-Yu Yang. "ZnO-SiO2 solar-blind
    photodetectors on flexible polyethersulfone substrate with organosilicon buffer
    layer." Applied Physics Letters 102.19 (2013): 191115.
    [9] Emanetoglu, Nuri W., et al. "Surface acoustic wave ultraviolet photodetectors using
    epitaxial ZnO multilayers grown on r-plane sapphire." Applied physics letters 85.17
    (2004): 3702-3704.
    [10] Wei, C. S., et al. "Partial-electroded ZnO pyroelectric sensors for responsivity
    improvement." Sensors and Actuators A: Physical 128.1 (2006): 18-24.
    [11] Wang, J. X., et al. "Hydrothermally grown oriented ZnO nanorod arrays for gas
    sensing applications." Nanotechnology 17.19 (2006): 4995.
    [12] Sahu, D. R., Shin-Yuan Lin, and Jow-Lay Huang. "ZnO/Ag/ZnO multilayer films
    for the application of a very low resistance transparent electrode." Applied Surface
    Science 252.20 (2006): 7509-7514.
    [13] Klingshirn, C. The Luminescence of ZnO under High One‐and Two‐Quantum
    Excitation. physica status solidi (b) 71.2 (1975) 547-556
    [14] Morkoç, Hadis, and Ü mit Ö zgür. General properties of ZnO. Zinc Oxide
    Fundamentals, Materials and Device Technology (2009) 1-76
    [15] Lin, Bixia, Zhuxi Fu, and Yunbo Jia. "Green luminescent center in undoped zinc
    oxide films deposited on silicon substrates." Applied Physics Letters 79.7 (2001):
    943-945.
    [16] Xu, P. S., et al. "The electronic structure and spectral properties of ZnO and its
    defects." Nuclear Instruments and Methods in Physics Research Section B: Beam
    Interactions with Materials and Atoms 199 (2003): 286-290.
    [17] Lima, S. A. M., et al. "Luminescent properties and lattice defects correlation on
    zinc oxide." International Journal of Inorganic Materials 3.7 (2001): 749-754.
    [18] Huang, Michael H., et al. "Catalytic growth of zinc oxide nanowires by vapor
    transport." Advanced Materials 13.2 (2001): 113-116.
    [19] Liu, Xiang, et al. "Growth mechanism and properties of ZnO nanorods synthesized
    by plasma-enhanced chemical vapor deposition." Journal of Applied Physics 95.6
    (2004): 3141-3147.
    [20] Vergés, M. Andrés, A. Mifsud, and C. J. Serna. "Formation of rod-like zinc oxide
    microcrystals in homogeneous solutions." Journal of the Chemical Society, Faraday
    Transactions 86.6 (1990): 959-963.
    [21] Vayssieres, Lionel, et al. "Purpose-built anisotropic metal oxide material: 3D
    highly oriented microrod array of ZnO." The Journal of Physical Chemistry B105.17
    (2001): 3350-3352.
    [22] Liu, Di, et al. "Controlled synthesis of 1D ZnO nanostructures via hydrothermal
    process." Materials Research Bulletin 49 (2014): 665-671.
    [23] Cembrero, J, et al. "Nanocolumnar ZnO films for photovoltaic applications."Thin
    Solid Films 451 (2004): 198-202.
    [24] 葉秉昀, "電鍍法治被準直排列 ZnO 奈米結構陣列及其特性研究" ,碩士論文,
    化學工程與材料工程研究所, 國立中央大學, 桃園, (2010).
    [25] Wagner, R. S., and W. C. Ellis. "Vapor‐liquid‐solid mechanism of single crystal
    growth." Applied Physics Letters (1964): 89-90.
    [26] Wang, Xudong, Christopher J. Summers, and Zhong Lin Wang. "Large-scale
    hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and
    nanosensor arrays." Nano Letters 4.3 (2004): 423-426.
    [27] Song, Jinhui, et al. "Systematic study on experimental conditions for large-scale
    growth of aligned ZnO nanwires on nitrides." The Journal of Physical Chemistry
    B 109.20 (2005): 9869-9872.
    [28] Hsieh, I.J.; Chu, K.T.; Yu, C.F.; Feng, M.S. Cathodoluminescent characteristics of
    ZnGa2O4 phosphor grown by radio frequency magnetron sputtering. J. Appl.
    Phys. 1994, 76, 3735–3739.
    1. [29] Lee, Y.E.; Norton, D.P.; Budai, J.D.; Wei, Y. Enhanced ultraviolet
    photoconductivity in semiconducting ZnGa2O4 thin films. J. Appl. Phys. 2001, 90,
    3863–3866.
    [30] Chen, M.I.; Singh, A.K.; Chiang, J.L.; Horng, R.H.; Wuu, D.S. Zinc gallium
    oxide—A review from synthesis to applications. Nanomaterials 2020, 10, 2208.
    [31] Arthur De Vos et al. Inorg. Chem. 55, 5, 2402–2412, 2016.
    [32] H. He, M. A. Blanco, and R. Pandey, Electronic and thermodynamic properties of
    β-Ga2O3,Appl. Phys. Lett. 88, 261904 (2006).
    [33]J. Ahman, G. Svensson, and J. Albertson, Acta. Crystallogr., A Reinvestigation of
    [beta]-Gall See, for example, T. Miyata, T. Nakatani, and T. Minami, J. Lumin. 87–89,
    1183 (2000)
    [34]Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J. J. Delaunay,
    Gallium oxide as host material for multicolor emitting phosphors, Adv. Funct. Mater. 20,3972 (2010).
    [35] Butler, James E., and Anirudha V. Sumant. "The CVD of nanodiamond
    materials." Chemical Vapor Deposition 14.7‐8 (2008): 145-160.
    [36] S.Matusumoto, Y.Sato, M.Kamo, and N.Setaka, ― Vapor Depositiion of Diamond
    Particles from Methane ‖ Japanese J.Appl. Phys. (1992) 1562.
    [37] Lin, C. R., et al. ― Development of high-performance UV detector using
    nanocrystalline diamond thin film ‖ International Journal of Photoenergy (2014)
    [38] Suneet Arora, V.D. Vankar, ― Field emission characteristics of microcrystalline
    diamond films:Effect of surface coverage and thickness ‖ Thin Solid Films (2006) 1963.
    [39] S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park IEEE (1996) 526.
    [40] 曾永華、陳柏穎、鄭孙明、游銘永,―人造鑽石的合成及應用‖,科學發展 497
    期,一百零三年五月。
    [41] Roy, R., et al. (1952). "Polymorphism of Ga2O3 and the system Ga2O3—H2O."
    Journal of the American Chemical Society 74(3): 719-722.
    [42] Stepanov, S., et al. (2016). "Gallium OXIDE: Properties and applica 498 a review."
    Rev. Adv. Mater. Sci 44: 63-86.
    [43] Pearton, S., et al. (2018). "A review of Ga2O3 materials, processing, and devices."
    Applied Physics Reviews 5(1): 011301.
    [44] Higashiwaki, M., et al. (2016). "Recent progress in Ga2O3 power devices."
    Semiconductor Science and Technology 31(3): 034001.
    [45] Miyata, T., et al. (2000). "Gallium oxide as host material for multicolor emitting
    phosphors." Journal of Luminescence 87: 1183-1185.
    [46] Fleischer, M., et al. (1990). "Stability of semiconducting gallium oxide thin films."
    Thin Solid Films 190(1): 93-102.
    [47] Ho, C.-H., et al. (2010). "Thermoreflectance characterization of β-Ga2O3 thin-film
    nanostrips." Optics express 18(16): 16360-16369.
    [48] Ma, X., et al. (2017). "First-principles calculations of electronic and optical
    properties of aluminum-doped β-Ga2O3 with intrinsic defects." Results in physics 7:
    1582-1589.
    [49] Irmscher, K., et al. (2011). "Electrical properties of β-Ga2O3 single crystals grown
    by the Czochralski method." Journal of applied physics 110(6): 063720.
    [50] Z. Bielecki et al. Bull. Pol. Acad. Sci. Tech. Sci. 70, 2, p. e140534, 2022.
    [51] Su, Yan-Kuin, et al. "Ultraviolet ZnO nanorod photosensors." Langmuir 26.1
    (2009): 603-606.
    [52] Ji, L. W., et al. "Ultraviolet photodetectors based on selectively grown ZnO
    nanorod arrays." Applied Physics Letters 94.20 (2009): 203106.
    [53] Dongyang Han, et al. (2021).” Performance enhancement of a
    p-Si/n-ZnGa2O4 heterojunction solar-blind UV photodetector through interface
    engineering.‖ J. Mater. Chem. C, 9: 10013-10019
    [54] C. -C. Yang et al.(2014), "Novel Ga-ZnO Nanosheet Structures Applied in
    Ultraviolet Photodetectors," in IEEE Photonics Technology Letters, 26(13):1317-1320
    [55] Wu, K., et al. (2012). ―Unique Approach toward ZnO growth with tunable
    properties: Influence of methanol in an electrochemical process.‖ Crystal
    growth&design 12(6):2864-2871.
    [56] She, G., et al. (2009). ―Controlled synthesis of oriented 1D ZnO nanostructures on
    transparent conductive substrates.‖ Journal of nanoscience and nanotechnology 9(3):
    1832-1838
    [57] Z. Song et al. (2017). ―Surface treatment for Schottky barrier photodetector based
    on Au/GaZnO nanorods/Au structure‖ Materials Science in Semiconductor Processing.
    64 101–108
    [58] S.-H. Tsai, et al. (2019). ―Deep-ultraviolet Schottky photodetectors with high
    deep-ultraviolet/visible rejection based on a ZnGa2O4 thin film‖ Applied Surface
    Science 496 143670
    [59] Singh, A.K. et al. (2021). ―The Effect of Annealing Ambience on the Material and
    Photodetector Characteristics of Sputtered ZnGa2O4 Films‖ Nanomaterials. 11 2316
    [60] W. Lin, D. Zhang, S. Liu et al. (2021). ―ZnGa2O4 deep-ultraviolet photodetector
    based on Si substrate‖ Materials Letters 283 128805
    [61] Dongyang Han et al. (2021). ―Performance enhancement of a p-Si/n-ZnGa2O4
    heterojunction solar-blind UV photodetector through interface engineering‖ J. Mater.
    Chem. C. 9 10013-10019
    [62] Dan Zhang et al. (2022). ―Pt/ZnGa2O4/p-Si Back-to-Back Heterojunction for Deep
    UV Sensitive Photovoltaic Photodetection with Ultralow Dark Current and High
    Spectral Selectivity‖ ACS Appl. Mater. Interfaces 14 5653−5660
    [63] S. -J. Young and Y. -H. Liu (2021) "Pd Nanoparticle Adsorption ZnO Nanorods
    for Enhancing Photodetector UV-Sensing Performance" in IEEE Journal of the Electron
    Devices Society, vol. 9, pp. 265-270
    [64] Shiguang Shang et al. (2022) ―Fabrication and Performance of UV Photodetector
    of ZnO Nanorods Decorated with Al Nanoparticles” Nanomaterials, 12(21), 3768

    無法下載圖示 全文公開日期 2025/08/16 (校內網路)
    全文公開日期 2028/08/16 (校外網路)
    全文公開日期 2028/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE