簡易檢索 / 詳目顯示

研究生: 薛麗雯
Li-Wen Hsueh
論文名稱: 反轉式硫化銅鋅錫/硫化鎘/氧化鋅奈米柱薄膜型太陽能電池
Inversed Cu2ZnSnS4/CdS/ZnO Nanorods Thin Film Solar Cells
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳貞夙
Jen-Sue Chen
吳季珍
Jih-Jen Wu
陳景翔
Ching-hsiang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 105
中文關鍵詞: 氧化鋅奈米柱銅鋅錫硫硒溶液法
外文關鍵詞: zinc oxide nanorod, copper zinc tin sulfide, solvothermal
相關次數: 點閱:237下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,硫硒化銅鋅錫被廣泛地應用於薄膜型太陽能電池的吸光層材料,其主要的原因是因為此材料屬於一直階能隙的材料,且其能隙值可以藉由調變硫與硒的比例而改變,約介於1.0~1.5 eV之間。此外,硫硒化銅鋅錫尚具有高的吸收係數(>104 cm-1),低毒性、地球蘊藏量多等特點。除此之外,氧化鋅奈米柱具高電子遷移率(200 cm2/Vs at T=300K),柱狀結構可形成一個低傳導阻力的通道,使載子得以有效分離並快速傳遞。同時,氧化鋅的柱狀結構亦可以增加光散射量,使光可以在結構層中被大量捕捉,以增加更多的電子-電洞對產生。
    在此研究中,將以一個反轉式結構的薄膜型太陽能電池作為探討,首先在透明導電玻璃上以水熱法的方式成長氧化鋅奈米柱,再以化學浴沉積法於氧化鋅表面表面沉積一層適當厚度的硫化鎘鍍層;而在吸光層的部分則是利用硫化銅鋅錫的吡啶溶液以旋轉塗佈的方式得到一定厚度,最後,再以濺鍍系統鍍上金作為金屬導電層。在本研究中,依此方式所進行的反轉式太陽能電池,其Voc約為0.456 V、Jsc約為3.222 mA/cm2、FF約為0.456、光電轉換效率約為0.683 %。


    Recently, the copper zinc tin sulfide selenide (Cu2ZnSn(S,Se)4, CZTSSe) has been greatly employed on the light-harvesting materials of thin film type solar cells. The main reason is this material is a kind of directed band gap semiconductor and the band gap can be agjusted by modulation of the ratio of S and Se, which is between 1.0~1.5 eV. In addition, CZTSSe owns high absorption coefficient (>104 cm-1), low toxicity, earth-abundant…etc. In addition, zinc oxide has high electron migration mobility (200 cm2/V•s at 300 K). The 1-dimensional shape can form a low transport resistance channel for carriers to separate electrons and holes rapidly. When 1-D nanomaterials were used as electrode, the electron-hole pairs can be increased due to the ligh scattering effect.
    In this work, an inversed structural thin film solar cells was proposed for studying. In the first, a vertically-aligned zinc oxide (ZnO) nanorods were directly grown on the transparent conductivity oxide (TCO) substrate and a suitable cadmium sulfide (CdS) layer was deposited on the surfaces of ZnO nanorods via chemical bath deposition. After that, the light-harvesting copper sinc tin sulfide (CZTS) pyridine solution was employed to coat on the top of CdS@ZnO nanorods by spin-coating technique. Finally, the gold (Au) electrode was deposited on the top of the structural layer as collection electrode. In this study, the inversed structural thin film solar cells can obtain Voc of 0.456 V, Jsc of 3.222 mA/cm2, FF of 0.456 and power conversion efficiency of 0.683%.

    中文摘要 I Abstract II 致謝 IV 目錄 V 表目錄 IX 圖目錄 X 1-1 前言 1 1-2 研究動機與目的 2 第二章、理論基礎與文獻回顧 4 2-1 薄膜型太陽能電池 4 2-1-1 半導體特性 4 2-1-2 p-n 接面(p-n junction) 7 2-1-3 太陽能電池的基本工作原理 9 2-2 氧化鋅基本特性及成長方式 10 2-2-1 氧化鋅的結構與物理性質 10 2-2-2 氧化鋅的成長方式 12 2-3 硫化鎘基本特性及合成方式 14 2-3-1 硫化鎘的結構與物理性質 14 2-3-2 硫化鎘的合成方式 15 2-4硫(硒)化銅鋅錫基本特性及合成方式 20 2-4-1 CZTS和CZTSe的結構與物理性質 20 2-4-2 CZTS和CZTSe的合成方式 22 2-4-2-1 CZTS和CZTSe真空製程 22 2-1-2-2 CZTS和CZTSe非真空製程 23 2-1-2-2.1 CZTS和CZTSe的奈米晶體漿料 24 2-1-2-2.2 CZTS和CZTSe的溶液合成漿料 28 2-1-2-2.3 CZTS和CZTSe的晶粒成長 33 2-1-2-2.4反轉式CZTS 和 CZTSe薄膜型太陽能電池 35 第三章、實驗方法與步驟 38 3-1 實驗流程簡圖 38 3-2 實驗藥品與設備儀器 39 3-2-1 實驗藥品 39 3-2-2實驗設備 42 3-2-3 分析儀器 43 3-3 實驗步驟 49 3-3-1 基板清洗步驟 49 3-3-2 氧化鋅奈米柱成長步驟 50 3-3-3 硫化鎘(CdS)層的沉積步驟 51 3-3-4 硫化銅鋅錫 (CZTS)層的被覆 52 第四章、結果與討論 55 4-1 氧化鋅(ZnO)奈米柱陣列成長 55 4-1-1 表面型態分析 55 4-1-2 結構分析 56 4-1-3 螢光光譜與光學特性分析 57 4-2 氧化鋅奈米柱表面處理對於硫化鎘化學浴沉積法被覆差異性探討 60 4-2-1 表面型態分析 60 4-2-2 結構分析 69 4-2-3 光學性質分析 70 4-3 硫化銅鋅錫吸光層實驗最佳化探討 72 4-3-1 針對氧化鋅奈米柱電極之最適化硫化銅鋅錫溶液配置探討 72 4-3-2 CZTS/CdS/ZnO 表面型態與結構分析 76 4-4 三維結構CZTS薄膜太陽能元件特性分析 80 4-4-1 I-V特性分析 80 第五章、結論 84 第六章、參考文獻 85

    1. NREL, http://www.nrel.gov/
    2. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Advanced Energy Materials, 4 (2013)
    3. N. Kamoun, H. Bouzouita, and B. Rezig, Thin Solid Films, 515, 5949 (2007)
    4. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chemical reviews, 110, 6446 (2010)
    5. Y. Nicolau and J. Menard, Journal of Colloid and Interface Science, 148, 551 (1992)
    6. Z. Fan and J. G. Lu, Journal of nanoscience and nanotechnology, 5, 1561 (2005)
    7. 許立政, 台灣科技大學, 氧化鋅奈米線陣列應用於表面增幅拉曼光譜分析, (2012)
    8. A. Djurišić, Y. Leung, K. Tam, L. Ding, W. Ge, H. Chen, and S. Gwo, Applied Physics Letters, 88, 103107 (2006)
    9. Y. Kong, D. Yu, B. Zhang, W. Fang, and S. Feng, Applied Physics Letters, 78, 407 (2001)
    10. P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, and J. G. Lu, Chemistry of materials, 16, 5133 (2004)
    11. Y. Sun, G. M. Fuge, and M. N. Ashfold, Chemical Physics Letters, 396, 21 (2004)
    12. L.-Y. Chen, Y.-T. Yin, C.-H. Chen, and J.-W. Chiou, The Journal of Physical Chemistry C, 115, 20913 (2011)
    13. M. Zheng, L. Zhang, G. Li, and W. Shen, Chemical Physics Letters, 363, 123 (2002)
    14. C.-Y. Zhang, X.-M. Li, X. Zhang, W.-D. Yu, and J.-L. Zhao, Journal of crystal growth, 290, 67 (2006)
    15. M. Breedon, M. B. Rahmani, S.-H. Keshmiri, W. Wlodarski, and K. Kalantar-zadeh, Materials Letters, 64, 291 (2010)
    16. S.-Y. Liu, T. Chen, J. Wan, G.-P. Ru, B.-Z. Li, and X.-P. Qu, Applied Physics A, 94, 775 (2009)
    17. L. A. Silva, S. Y. Ryu, J. Choi, W. Choi, and M. R. Hoffmann, The Journal of Physical Chemistry C, 112, 12069 (2008)
    18. Y. Gu, J. P. Romankiewicz, J. K. David, J. L. Lensch, and L. J. Lauhon, Nano Letters, 6, 948 (2006)
    19. X.-Y. Chen, T. Ling, and X.-W. Du, Nanoscale, 4, 5602 (2012)
    20. Y. H. Lee, S. H. Im, J. H. Rhee, J.-H. Lee, and S. I. Seok, ACS applied materials & interfaces, 2, 1648 (2010)
    21. G. Xu, S. Ji, C. Miao, G. Liu, and C. Ye, Journal of Materials Chemistry, 22, 4890 (2012)
    22. S. Khanchandani, S. Kundu, A. Patra, and A. K. Ganguli, The Journal of Physical Chemistry C, 116, 23653 (2012)
    23. E. Edri, E. Rabinovich, O. Niitsoo, H. Cohen, T. Bendikov, and G. Hodes, The Journal of Physical Chemistry C, 114, 13092 (2010)
    24. E. D. Spoerke, M. T. Lloyd, Y.-j. Lee, T. N. Lambert, B. B. McKenzie, Y.-B. Jiang, D. C. Olson, T. L. Sounart, J. W. Hsu, and J. A. Voigt, The Journal of Physical Chemistry C, 113, 16329 (2009)
    25. H. Khallaf, I. O. Oladeji, G. Chai, and L. Chow, Thin Solid Films, 516, 7306 (2008)
    26. V. Senthamilselvi, K. Saravanakumar, N. J. Begum, R. Anandhi, A. Ravichandran, B. Sakthivel, and K. Ravichandran, Journal of Materials Science: Materials in Electronics, 23, 302 (2012)
    27. C. Persson, Journal of Applied Physics, 107, 053710 (2010)
    28. X. Lu, Z. Zhuang, Q. Peng, and Y. Li, Chemical Communications, 47, 3141 (2011)
    29. W. Xinkun, L. Wei, C. Shuying, L. Yunfeng, and J. Hongjie, Journal of Semiconductors, 33, 022002 (2012)
    30. D.-H. Kuo and M. Tsega, Japanese Journal of Applied Physics, 53, 035801 (2014)
    31. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, and T. Motohiro, Applied Physics Express, 1, 041201 (2008)
    32. B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, Progress in Photovoltaics: Research and Applications, 21, 72 (2013)
    33. A. Moholkar, S. Shinde, A. Babar, K.-U. Sim, H. K. Lee, K. Rajpure, P. Patil, C. Bhosale, and J. Kim, Journal of Alloys and Compounds, 509, 7439 (2011)
    34. K. Moriya, K. Tanaka, and H. Uchiki, Japanese Journal of Applied Physics, 46, 5780 (2007)
    35. H. Katagiri, N. Ishigaki, T. Ishida, and K. Saito, Japanese Journal of Applied Physics, 40, 500 (2001)
    36. M. T. Htay, Y. Hashimoto, N. Momose, K. Sasaki, H. Ishiguchi, S. Igarashi, K. Sakurai, and K. Ito, Japanese Journal of Applied Physics, 50, 2301 (2011)
    37. T. Washio, T. Shinji, S. Tajima, T. Fukano, T. Motohiro, K. Jimbo, and H. Katagiri, Journal of Materials Chemistry, 22, 4021 (2012)
    38. J. J. Scragg, D. M. Berg, and P. J. Dale, Journal of Electroanalytical Chemistry, 646, 52 (2010)
    39. A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kotschau, H.-W. Schock, R. Schurr, A. Holzing, S. Jost, and R. Hock, Thin Solid Films, 517, 2511 (2009)
    40. Q. Guo, G. M. Ford, W.-C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, and R. Agrawal, Journal of the American Chemical Society, 132, 17384 (2010)
    41. T. Maeda, S. Nakamura, and T. Wada, Japanese Journal of Applied Physics, 50 (2011)
    42. Y. Cao, M. S. Denny Jr, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, and D. Radu, Journal of the American Chemical Society, 134, 15644 (2012)
    43. B. Flynn, W. Wang, C. h. Chang, and G. S. Herman, Physica Status Solidi (a), 209, 2186 (2012)
    44. J. W. Cho, A. Ismail, S. J. Park, W. Kim, S. Yoon, and B. K. Min, ACS applied materials & interfaces, 5, 4162 (2013)
    45. G. Wang, W. Zhao, Y. Cui, Q. Tian, S. Gao, L. Huang, and D. Pan, ACS applied materials & interfaces, 5, 10042 (2013)
    46. Y. Sun, Y. Zhang, H. Wang, M. Xie, K. Zong, H. Zheng, Y. Shu, J. Liu, H. Yan, and M. Zhu, Journal of Materials Chemistry A, 1, 6880 (2013)
    47. Y. Zhang, T. Yoshihara, and A. Yamada, Applied Physics Express, 5, 012301 (2012)
    48. S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, and D. B. Mitzi, Energy & Environmental Science, 5, 7060 (2012)
    49. K. Woo, Y. Kim, and J. Moon, Energy & Environmental Science, 5, 5340 (2012)
    50. C. M. Sutter-Fella, J. A. Stuckelberger, H. Hagendorfer, F. La Mattina, L. Kranz, S. Nishiwaki, A. R. Uhl, Y. E. Romanyuk, and A. N. Tiwari, Chemistry of Materials, (2014)
    51. Z. Su, K. Sun, Z. Han, H. Cui, F. Liu, Y. Lai, J. Li, X. Hao, Y. Liu, and M. A. Green, Journal of Materials Chemistry A, 2, 500 (2014)
    52. C.-L. Wang, C.-C. Wang, B. Reeja-Jayan, and A. Manthiram, RSC Advances, 3, 19946 (2013)
    53. X. Liu, C. Wang, J. Xu, X. Liu, R. Zou, L. Ouyang, X. Xu, X. Chen, and H. Xing, CrystEngComm, 15, 1139 (2013)
    54. D. Lee and K. Yong, Nanotechnology, 25, 065401 (2014)
    55. D. Pradhan, F. Niroui, and K. Leung, ACS Applied Materials & Interfaces, 2, 2409 (2010)
    56. O. Zelaya-Angel, F. d. L. Castillo-Alvarado, J. Avendano-Lopez, A. Escamilla-Esquivel, G. Contreras-Puente, R. Lozada-Morales, and G. Torres-Delgado, Solid State Communications, 104, 161 (1997)

    QR CODE