簡易檢索 / 詳目顯示

研究生: 姜亭雁
Ting-Yen Chiang
論文名稱: 氧化鋅奈米柱摻雜石墨相氮化碳於矽基板上之氫氣感測研究
The Studies of g-C3N4 Doped ZnO Nanorods Grown on Si Substrates for H2 Sensing Applications
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyan-Kay Jou
施文欽
Wen-Ching Shih
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 116
中文關鍵詞: 氧化鋅奈米柱石墨相氮化碳金字塔結構氫氣感測器
外文關鍵詞: ZnO nanorods, Graphite carbon nitride, Pyramid structure, Hydrogen gas sensor
相關次數: 點閱:366下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以簡單與低成本的製程技術製備高效能的氫氣感測元件,內文將分為兩個部分。第一部分探討不同成長溶液濃度的氧化鋅奈米柱在平面結構矽基板之氫氣感測及物性分析。接著在摻雜不同條件的石墨相氮化碳於氧化鋅奈米柱,並且成長於平面結構矽基板之氫氣感測及物性分析。第二部分則是將前述摻雜石墨相氮化碳的氧化鋅奈米柱成長在立體的金字塔結構上,再做氫氣感測及物性分析。此外,針對氫氣感測最好的試片,將其進行穩定性、重複性及選擇性量測。
    研究發現,氧化鋅奈米柱在成長溶液濃度為20 mM時,擁有最小的INBE/IDLE比值,在500 ppm的氫氣濃度下,響應值為25.92%。接著在溶膠凝膠法中添加不同參數的石墨相氮化碳,旋塗在基板上作為晶種層,以此進行水熱法成長氧化鋅奈米柱,響應值明顯地提升,在500 ppm的氫氣濃度下,響應值為46.51%。造成提升的因素可能如下,第一個是石墨相氮化碳附著在氧化鋅奈米柱的表面,使整體的比表面積提升,可以為氣體吸附提供更多的活性位點,導致更好的響應值;第二個是氧化鋅與石墨相氮化碳之間形成的異質接面,因為氧化鋅與石墨相氮化碳的晶格參數不同,大量的缺陷提供了潛在的活性位點,因此與純的氧化鋅奈米柱相比,複合元件的響應值更高。
    除此之外,利用濕式蝕刻法得到不同尺寸的金字塔結構,配合溶膠凝膠法與水熱法成長摻雜了石墨相氮化碳的氧化鋅奈米柱於其上。當柱體之間不再緊密相連,氣體吸附於表面的機會提升,得到更好的響應值,在500 ppm的氫氣濃度下,響應值為52.75%。


    In this study, a structure of graphite carbon nitride (g-C3N4) doped zinc oxide nanorods (ZNR) was synthesized using a simple and cost-effective method. Through this method, g-C3N4 were successfully doped with ZNR. Various analyses were used to confirm the successful formation of the gCN-ZNR structure. The hydrogen sensing properties of gCN-ZNR were investigated, which shows that remarkably improved H2 sensing performances for gCN doped ZNR. In addition, the gCN-ZNR composites also exhibited outstanding stability, repeatability and selectivity.
    In our experiments, we found that the response of the sensor to H2 was remarkably improved. The results about improved H2 sensing behaviors can be mainly attributed to two factors. First, the gCN-ZNR structure effectively increased the surface area that provides more active sites. This leads to rapid gas adsorption/desorption, thereby exhibit a higher response than that of pure ZNR. Another possible reason for the improved H2 response of the nanocomposite sensors may be attributed to the heterojunction between g-C3N4 and ZnO. Because of the different lattice parameters, this nanocomposite consists of defects that create enough oxygen vacancies (influence the chemical adsorption/desorption process). It was revealed that gCN-ZNR based H2 sensor exhibit response of 46.51% compared to pure ZNR (25.92%) based hydrogen sensor.
    In addition to silicon plane structure, we have also studied silicon pyramid structure and grown gCN-ZNR on it. This nanocomposite sensor exhibits the superior response of 52.75%, which is better than pure ZNR (25.92%) and gCN-ZNR (46.51%). This can be attributed to the above-mentioned gCN-ZNR properties as well as three-dimensional structure of silicon pyramid substrate, which further improves the chemisorption process.

    目錄 中文摘要 I 英文摘要 II 致謝 II 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻探討 3 2.1 氧化鋅材料特性簡介 3 2.1.1 水熱法成長機制 5 2.1.2 VLS法成長機制 6 2.1.3 電化學沉積法 8 2.3 石墨相氮化碳(g-C3N4)特性簡介 10 2.4 製備金字塔結構之機制 12 2.5 氣體感測器介紹 14 2.5.1 金屬氧化物半導體型 14 2.5.2 電化學固態電解質型 15 2.5.3 觸媒燃燒型 15 2.5.4 表面聲波型 16 2.6 氧化鋅與氫氣感測 17 第三章 實驗方法 18 3.1 實驗設計與流程 18 3.2 製備之材料介紹 21 3.3 基板清洗 22 3.4 化學氣相沉積法(CVD)製備石墨相氮化碳 23 3.5 水熱法(Hydrothermal method)成長氧化鋅奈米柱 24 3.5.1 製備氧化鋅晶種層 24 3.5.2 成長氧化鋅奈米柱 25 3.5.3 製備摻雜石墨相氮化碳之氧化鋅晶種層 26 3.6 金字塔結構製備 27 3.7 儀器設備與材料分析方法 28 3.7.1 場發射掃描式電子顯微鏡 (Scanning Electron Microscope, FE-SEM) 28 3.7.2 能量分散光譜儀(Energy Dispersive Spectrometer, EDS) 29 3.7.3 X射線繞射儀(X-ray Diffraction, XRD) 29 3.7.4 光激發螢光頻譜儀(Photoluminescence, PL) 31 3.7.5 場發射槍穿透式電子顯微鏡(300kV)(FEG-TEM ) 32 3.7.6 高真空量測系統(Gas Sensor, GS) 33 第四章 氧化鋅奈米柱摻雜石墨相氮化碳於平面結構之氫氣感測研究 34 4.1 氧化鋅奈米柱之特性分析 34 4.1.1 不同成長濃度之氧化鋅奈米柱表面型態分析 34 4.1.2 不同成長時間之氧化鋅奈米柱表面型態分析 40 4.1.3 X-ray繞射儀分析 42 4.1.4 光激發螢光頻譜儀分析 44 4.1.5 氧化鋅奈米柱之氫氣感測分析 46 4.2氧化鋅奈米柱摻雜石墨相氮化碳之特性分析 51 4.2.1 表面型態分析 51 4.2.2 EDS分析 54 4.2.3 X-ray繞射儀分析 56 4.2.4 光激發螢光頻譜儀分析 57 4.2.5 場發射槍穿透式電子顯微鏡分析 59 4.2.6 氧化鋅奈米柱摻雜石墨相氮化碳之氫氣感測分析 60 4.2.7 氧化鋅奈米柱摻雜石墨相氮化碳之重複性分析 64 4.2.8 氧化鋅奈米柱摻雜石墨相氮化碳之選擇性分析 66 4.2.9 氧化鋅奈米柱摻雜石墨相氮化碳之穩定性分析 67 第五章 氧化鋅奈米柱摻雜石墨相氮化碳於金字塔結構之氫氣感測研究 69 5.1 金字塔結構之表面型態分析 69 5.2 氧化鋅奈米柱摻雜石墨相氮化碳於金字塔結構之特性分析 72 5.2.1 表面型態分析 72 5.2.2 EDS分析 78 5.2.3 X-ray繞射儀分析 81 5.2.4 光激發螢光頻譜儀分析 82 5.2.5 氧化鋅奈米柱摻雜石墨相氮化碳於金字塔結構之氫氣感測分析 84 5.2.6 氧化鋅奈米柱摻雜石墨相氮化碳之重複性分析 89 5.2.7 氧化鋅奈米柱摻雜石墨相氮化碳之選擇性分析 91 5.2.7 氧化鋅奈米柱摻雜石墨相氮化碳之穩定性分析 92 第六章 結論與未來展望 95 6.1 結論 95 6.2 未來展望 96 參考文獻 97

    [1]. S. K. Hyun, G. J. Sun, J. K. Lee, C. Lee, W. In Lee, and H. W. Kim, “Ethanol gas sensing using a networked PbO-decorated SnO2 nanowires,” Thin Solid Films, (2017) 21–26.
    [2]. A. S.Kornyushchenko, A. H.Jayatissa, V.V.Natalich, and V. I.Perekrestov, “Two step technology for porous ZnO nanosystem formation for potential use in hydrogen gas sensors,” Thin Solid Films, (2016) 48–54.
    [3]. J. Liu, Q. Jia, J. Long, X. Wang, Z. Gao, and Q. Gu, “Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst,” Appl. Catal. B Environ., (2017) 35–43.
    [4]. J. Wang, Z. Yang, W. Yao, X. Gao, and D. Tao, “Defects modified in the exfoliation of g-C3N4 nanosheets via a self-assembly process for improved hydrogen evolution performance,” Appl. Catal. B Environ., (2018) 629–637.
    [5]. G. Mamba and A. K. Mishra, “Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation,” Appl. Catal. B Environ., 198 (2016) 347–377.
    [6]. R. Zhang, Y. Wang, Z. Zhang, and J. Cao, “Highly sensitive acetone gas sensor based on g-C3N4 decorated MgFe2O4 porous microspheres composites,” Sensors (Switzerland), (2018).
    [7]. F. Gao et al., “Ultraviolet electroluminescence from Au-ZnO nanowire Schottky type light-emitting diodes,” Appl. Phys. Lett., 108(2016) 1–5.
    [8]. J. He et al., “Enhanced field emission of ZnO nanowire arrays by the control of their structures,” Mater. Lett., 216(2018) 182–184.
    [9]. C. L. Hsu, L. F. Chang, and T. J. Hsueh, “A dual-band photodetector based on ZnO nanowires decorated with Au nanoparticles synthesized on a glass substrate,” RSC Adv., 78(2016) 74201–74208.
    [10]. A. Burgos, R. Schrebler, G. Cáceres, E. Dalchiele, and H. Gómez, “Electrodeposition of ZnO nanorods as electron transport layer in a mixed halide perovskite solar cell,” Int. J. Electrochem. Sci., (2018) 6577–6583.
    [11]. X. Deng, L. Zhang, J. Guo, Q. Chen, and J. Ma, “ZnO enhanced NiO-based gas sensors towards ethanol,” Mater. Res. Bull., 90 (2017) 170–174.
    [12]. J. Liu et al., “Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material,” Sensors Actuators, B Chem., 245(2017) 551–559.
    [13]. Z. F. Shi et al., “Photoluminescence performance enhancement of ZnO/MgO heterostructured nanowires and their applications in ultraviolet laser diodes,” Phys. Chem. Chem. Phys., 17(2015) 13813–13820.
    [14]. T. Okada, K. Kawashima, and M. Ueda, “Ultraviolet lasing and field emission characteristics of ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser ablation deposition,” Appl. Phys. A Mater. Sci. Process., 81(2005) 907–910.
    [15]. 徐育婷, 研製氧化鋅材料之共振腔增強式金屬-半導體-金屬紫外光檢測器, 碩士論文, 國立成功大學微電子工程研究所 (2010).
    [16]. Ü. Özgür et al, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys. 98 (2005) 041301.
    [17]. A. Ashrafi and C. Jagadish, “Review of zincblende ZnO: Stability of metastable ZnO phases”, J. Appl. Phys. 102 (2007) 071101.
    [18]. Vladimir L. Solozhenko et al, “Kinetics of the wurtzite-to-rock-salt phase transformation in ZnO at high pressure”, J. Phys. Chem. A. 115 (2011) 4354-4358.
    [19]. Hadis Morkoç andÜmit Özgür, “General properties of ZnO. Zinc Oxide Fundamentals”, Materials and Device Technology (2009) 1-76.
    [20]. Jialun He, Xuanli Zheng, Xuda Hong, Weiping Wang, Yiyan Cao, Ting Chen, Lijing kong, Yaping Wu, Zhiming Wu, Junyong Kang, “Enhanced field emission of ZnO nanowire arrays by the control of their structures”, Materials Letters 216 (2018) 182–184.
    [21]. Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP (111) substrates by molecular-beam epitaxy”, Applied Physics Letters, 83 (2003) 26652668.
    [22]. L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, and U. Gosele, “Silicon nanowhiskers grown on (111) Si substrates by molecular-beam epitaxy”, Applied Physics Letters, 84 (2004) 49684970.
    [23]. S Shaikh et al, “Chemical bath deposited ZnO thin film based UV photoconductive detector”, Journal of Alloys and Compounds 664 (2016) 242-249.
    [24]. D. C. Look and D. C. Reynolds Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy.Appl. Phys. Lett. 81, (2002) 1830.
    [25]. D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, and A. Schulte, “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method”, Physical B, 403 (2008) 37133717.
    [26]. S. Dalui, S. N. Das, R. K. Roy, R. N. Gayen, and A. K. Pal, “Aligned Zinc Oxide nanorods by hybrid wet chemical route and their field emission properties”, Thin Solid Films, 516 (2008) 82198226.
    [27]. M. Eskandari, V. Ahmadi, and S. H. Ahmadi, “Low temperature synthesis of ZnO nanorods by using PVP and their characterization”, Physical B, 404 (2009) 19241928.
    [28]. S. R. Hejazi, H. R. M. Hosseini, and M. S. Ghamsari, “The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor-liquid-solid (VLS) mechanism”, Journal of Alloys and Compounds, 455 (2008) 353357.
    [29]. O. Gunawan and S. Guha, “Characteristics of vapor–liquid–solid grown silicon nanowire solar cells”, Solar Energy Materials and Solar Cells, 93 (2009) 13881393.
    [30]. Vergés, M. Andrés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions”, Journal of the Chemical Society, Faraday Transactions86.6 (1990) 959-963.
    [31]. Vayssieres, Lionel, et al. “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO”, The Journal of Physical Chemistry B105.17 (2001) 3350-3352.
    [32]. Y.H. Yang et al, “ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement”, Chem. Phys. Lett. 252 (2005) 248-251.
    [33]. Mensah, Samuel L., et al. “Formation of single crystalline ZnO nanotubes without catalysts and templates”, Applied physics letters 90.11 (2007) 113108.
    [34]. R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid mechanism of single crystal growth”, Applied Physics Letters, 4 (1964) 8991.
    [35]. N. Wang, Y. Cai, and R.Q. Zhang, “Growth of nanowires”, Materials Science and Engineering R, 60 (2008) 151.
    [36]. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, 292 (2001) 18971899.
    [37]. Cembrero, J, et al. “Nanocolumnar ZnO films for photovoltaic application”, Thin Solid Films 451 (2004) 198-202.
    [38]. J. Liu, Q. Jia, J. Long, X. Wang, Z. Gao, and Q. Gu, “Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst,” Appl. Catal. B Environ., (2017) 35–43.
    [39]. G. Mamba and A. K. Mishra, “Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation,” Appl. Catal. B Environ., (2016) 347–377.
    [40]. Y. Yang, J. Chen, Z. Mao, N. An, D. Wang, and B. D. Fahlman, “Ultrathin g-C3N4 nanosheets with an extended visible-light-responsive range for significant enhancement of photocatalysis,” RSC Adv., (2017) 2333–2341.
    [41]. F. Dong, Y. Sun, L. Wu, M. Fu, and Z. Wu, “Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance,” Catal. Sci. Technol., (2012) 1332–1335.
    [42]. F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, “Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts,” J. Mater. Chem., (2011) 15171–15174.
    [43]. Y. Cao, A. Liu, H. Li, Y. Liu, F. Qiao, Z. Hu, Y. Sang. “Fabrication of silicon wafer with ultra low reflectance by chemical etching method”. Applied Surface Science,257, (2011) 7411-7414.
    [44]. X. Li, B. K.Tay, P. Miele, A. Brioude, D. Cornu. “Fabrication of silicon pyramid/nanowire binary structure with superhydrophobicity”. Applied Surface Science,255, (2009) 7147-7152.
    [45]. K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, J. ZhuAdv. “Fabrication of single crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles”.Funct.Mater, 16, (2006) 387.
    [46]. X. Feng, X. Qi, J. Li, L. Yang, M. Qiu, J. Yin, F. Lu, J. Zhong. “Preparation, structure and photo-catalytic performances of hybrid Bi2SiO5 modified Si nanowire arrays”. Applied Surface Science 257, (2011) 5571–5575.
    [47]. H. Fang, X. Li, S. Song, Y. Xu and J. Zhu. “Fabrication of slantingly-aligned silicon nanowire arrays for solar cellapplications”. Nanotechnology,19, (2008) 255703.
    [48]. H. Seidel, L. Csepregi, A. Heuberger, H. BaumgSrtel. “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions”.J.Electrochem,37, (1990) 3612-3626.
    [49]. G. T. A. Kovacs, N. I. Maluf, K. E. “Petersen. Bulk micromachining of silicon”.IEEE,86, (1998) 1536-1551.
    [50]. S. M. Sze. Semiconductor Device Physics and Technoligy, 2nd edition, John Wiley&Sons. Inc.,New York(1981)
    [51]. 陳一誠, “金屬氧化物半導體型氣體感測器”, 材料與社會, 68, pp. 62-66, 1992.
    [52]. 黃炳照,“固態電解質電化學氣體感測器”, Chemistry (The Chinese Chem.Soc., Taipei), 59, pp. 207-217, 2001.
    [53]. C.sonics , A. D’Amico, P. Verardi, and E. Verona, 1998 IEEE Ultrasonics Symposium Proc., pp. 549-554, 1988.
    [54]. A. D’Amico, A. Plama, and E. Verona, “Surface acoustic wave hydrogen sensor”, Sens. Acuatros, 3, pp. 31-39, 1982.
    [55]. 張宏維,周鈺禎,蔡顯仁,徐慧萍,施正雄, “表面聲波氣體感測器之研製與應用”, Chemistry (The Chinese Chem. Soc., Taipei) December, pp. 487-498, 2007.
    [56]. Deepa Kathiravan, Bohr-Ran Huang and Adhimoorthy Saravanan, “Self-Assembled Hierarchical Interfaces of ZnO Nanotubes/Graphene Heterostructures for Efficient Room Temperature Hydrogen Sensors”, ACS Appl. Mater. Interfaces,9, (2017) 12064−12072.
    [57]. 台灣科技大學半導體量測實驗室(何清華教授)
    [58]. Madhumita Sinha, Rajat Mahapatra, Biswanath Mondal, Takahiro Maruyama, and Ranajit Ghosh, ” Ultrafast and Reversible Gas-Sensing Properties of ZnO Nanowire Arrays Grown by Hydrothermal Technique”, J. Phys. Chem. C, 120, 2016 3019−3025
    [59]. Sunghoon Park, Suyoung Park, Sangmin Lee, Hyoun Woo Kim, Chongmu Lee, “Hydrogen sensing properties of multiple networked Nb2O5/ZnO core–shell nanorod sensors”, Sensors and Actuators B 202 (2014) 840–845.
    [60]. K. Vijayalakshmi, K. Karthick, “Growth of highly c-axis oriented Mg: ZnO nanorods on Al2O3 substrate towards high-performance H2 sensing”, International journal of hydrogen energy 39 (2014) 7165-7172.
    [61]. Vijendra Singh Bhati, Sapana Ranwa, Mattia Fanetti, Matjaz Valantc, Mahesh Kumar, “Efficient hydrogen sensor based on Ni-doped ZnO nanostructures byRF sputtering”, Sensors and Actuators B 255 (2018) 588–597.
    [62]. Vasile Postica, Oleg Lupan, Jorit Gröttrup, Rainer Adelung, “Individual Bi2O3-Functionalized ZnO Microwire for Hydrogen Gas Detection”, Advanced Nanotechnologies for Detection and Defence against CBRN Agents (2018) 445-450.
    [63]. Y. S. Tsai et al., “ZnO/ZnS core-shell nanostructures for hydrogen gas sensing performances,” Ceram. Int., vol. 45, no. 14, , (2019) 17751–17757

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 2025/08/24 (校外網路)
    全文公開日期 2025/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE