簡易檢索 / 詳目顯示

研究生: 蘇映嘉
Ying-Chia Su
論文名稱: 氧化鋅與二硫化鎢複合結構在高能隙薄膜材料之氫氣感測分析
ZnO and WS2 Hybrid Nanostructures on High Bandgap Materials for Hydrogen Sensing Studies
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 張守進
Shou-Jin Zhang
周賢鎧
Xian-Kai Zhou
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 243
中文關鍵詞: 氧化鋅奈米柱二硫化鎢奈米片奈米鑽石氧化鎵高能隙氫氣感測
外文關鍵詞: ZnO nanorods, WS2 nanosheets, N-UNCD, β-Ga2O3, High bandgap, Hydrogen gas
相關次數: 點閱:333下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以簡單及低成本的製程技術製備高響應值的氫氣感測元件,內文分為四個部分。第一部分為不同濃度及縮短製程時間的氧化鋅奈米柱(ZNR)之氫氣感測特性及分析;第二部分則是以前面氧化鋅奈米柱之氫氣感測分析最好的濃度作為基底,再以不同的製程手法參雜二硫化鎢奈米片(WS2 nanosheets)並進行氫氣感測及特性分析;第三部分為第二部分中二硫化鎢最佳克數參雜氧化鋅奈米柱的結果,成長在不同時間的超奈米鑽石薄膜(N-UNCD)上之氫氣感測及特性分析;第四部分則是將第二部分的最佳結果,成長在濺鍍不同瓦數的氧化鎵(Ga2O3)薄膜上,並進行氫氣感測及特性分析。
    研究顯示,ZNR-WS2(0.03g)從光激發螢光(photoluminescence, PL)所得到INBE/IDLE為0.62其氧缺陷為87.24%,此時在500ppm的氫氣流量下,響應值為40.04%;而ZNR/WS2(0.03g) 從PL所得到INBE/IDLE為2.01其氧缺陷為75.99%,此時在500ppm的氫氣流量下,響應值為32.04%,造成響應值提升,其原因為整體的比表面積較大,加上摻雜二硫化鎢後之氧化鋅奈米柱的氧空位相較未摻雜的大,導致更多的氧氣吸附。
    由於奈米鑽石結晶與氧化鎵薄膜都是寬能隙的材料,與氧化鋅與二硫化鎢去做複合結構,可以發現在500ppm的氫氣流量下,ZNR-WS2/N-UNCD(5min)靈敏度為24.06%,ZNR-WS2/N-UNCD_A400靈敏度為57.61%,ZNR/WS2/N-UNCD(5min)靈敏度為42.29%, ZnO/WS2/β-Ga2O3(80W)氫氣靈敏度最高響應為52.93%,其響應時間為27.25秒,恢復時間為100.82秒,相較ZNR/WS2/N-UNCD(5min)響應時間快約10秒,恢復時間快約25秒,其選擇性氣體量測也是較好的。


    There are four subobjectives in this study with simple and low-cost process technology. The zinc oxide nanorod (ZNR) with different concentrations in a hydrothermal process of 30 mins is used as the base materials in the beginning; Then ZNR/WS2 and ZNR-WS2 are adapted for the 2nd nanostructures. The ZNR/WS2/UNCD and ZNR-WS2/UNCD structures are studied in the 3rd subobjectives. Finally, ZNR/WS2/β-Ga2O3 is fabricated for analysis.
    Studies have shown that it achieves an INBE/IDLE value of 0.62 from PL and an oxygen defect percentage of 87.24% for the ZNR-WS2 (0.03 g) sample. For this sample, the hydrogen response is 40.04% under a hydrogen flow of 500 ppm. On the other hand, while the ZNR/WS2 (0.03 g) sample achieves an INBE/IDLE value of 2.01 from PL and an oxygen defect percentage of 75.99%, the hydrogen response becomes 32.04% under a hydrogen flow of 500 ppm. This phenomenon may due to the larger overall specific surface area and more oxygen adsorption for both types of zinc oxide nanorods hybrid structures (ZNR-WS2 and ZNR/WS2).
    Furthermore, ultra-nanocrystalline diamond and gallium oxide films are used as substrates for ZNR-WS2/N-UNCD and ZnO/WS2/β-Ga2O3 hybrid structure studies. Studies have shown that under a hydrogen flow of 500 ppm, the sensitivity of ZNR-WS2/N-UNCD (5 min), ZNR-WS2/N-UNCD_A400, ZNR/WS2/N-UNCD (5 min), and ZnO/WS2/β-Ga2O3 (80W) are 24.06%, 57.61%, 42.29%, and 52.93% respectively.
    It is noted that the ZnO/WS2/β-Ga2O3 (80W) hybrid structures achieves high hydrogen sensitivity of 52.93% with response time of 27.25 s and recovery time of 100.82 s. However, the hydrogen sensitivity of 42.29 % with response time and recovery time of 37.08 s and 125.26 s are for the ZNR/WS2/N-UNCD (5 min) hybrid structures; Moreover, the selectivity to a target gas (H2) is also better for the ZnO/WS2/β-Ga2O3 (80W) hybrid structures.

    摘要......i Abstract......ii 致謝......iii 目錄......iv 圖目錄......xi 表目錄......1 第一章 緒論......5 1-1前言......5 1-2研究動機......7 第二章 文獻探討......8 2.1氧化鋅材料特性簡介......8 2.1.1 氧化鋅基本性質與結構......8 2.1.2水熱法成長機制......11 2.1.3電化學沉積法成長機制......12 2.1.4化學氣相沉積法成長機制......13 2.2二硫化鎢材料特性簡介......15 2.2.1二硫化鎢基本性質與結構......15 2.2.2液相剝離法(LPE)......16 2.2.3化學氣相沉積法(CVD)......17 2.3鑽石薄膜之特性簡介......18 2.3.1鑽石薄膜基本性質與結構......18 2.3.2超奈米鑽石成長機制......20 2.3.3奈米鑽石結晶......21 2.3.4奈米鑽石摻雜......22 2.4氧化鎵薄膜特性簡介......22 2.4.1氧化鎵薄膜基本性質與結構......23 2.4.2氧化鎵薄膜沉積技術......25 2.5氣體感測器介紹......27 2.5.1金屬氧化物半導體型......28 2.5.2電化學固態電解質型......29 2.5.3觸媒燃燒型氣體感測器......29 2.5.4氧化鋅不同結構之氣體感測......30 2.5.5氧化鋅之氫氣感測機制......33 第三章 實驗方法......36 3.1實驗設計與流程......36 3.2 製備之材料介紹......41 3.3 基板清洗......42 3.4超聲波震盪(液相剝離法)製備二硫化鎢......43 3.5 水熱法(Hydrothermal method)成長氧化鋅奈米柱......44 3.5.1 製備氧化鋅晶種層......44 3.5.2 成長氧化鋅奈米柱......46 3.5.3 製備摻雜二硫化鎢之氧化鋅晶種層......47 3.6微波電漿化學氣相沉積法成長奈米鑽石......48 3.6.1以鑽石粉及鈦金屬粉末震盪製備種子層......48 3.6.2以微波電漿化學氣相沉積法成長奈米鑽石薄膜......48 3.7濺鍍氧化鎵薄膜......50 3.8 鈀金(Pd)電極參數......50 3.9儀器設備與材料分析方法......51 3.9.1場發射掃描式電子顯微鏡(FE-SEM)......51 3.9.2 能量分散光譜儀(Energy Dispersive Spectrometer, EDS)......52 3.9.3紫外光-可見光光譜儀(UV/VIS Spectrophotometer)......52 3.9.4 光激發螢光頻譜儀(Photoluminescence, PL)......53 3.9.5 X射線繞射儀(X-ray Diffraction, XRD)......54 3.9.6拉曼光譜儀(Raman spectrum)......56 3.9.7 高真空量測系統(Gas Sensor, GS)......57 3.9.8 場發射槍穿透式電子顯微鏡(300kV)(FEG-TEM )......58 第四章 氧化鋅與二硫化鎢奈米柱之氫氣感測特性分析......59 4.1 氧化鋅奈米柱(ZNR)之特性分析......59 4.1.1 不同成長濃度之氧化鋅奈米柱(ZNR)表面型態分析......59 4.1.2 成長時間縮短之不同濃度氧化鋅奈米柱(ZNR)表面型態分析......62 4.1.3 氧化鋅奈米柱(ZNR)之拉曼光譜儀分析......64 4.1.4 氧化鋅奈米柱(ZNR)之X-ray繞射儀分析......66 4.1.5 氧化鋅奈米柱(ZNR)之紫外光-可見光光譜儀分析......68 4.1.6 氧化鋅奈米柱(ZNR)之光激發螢光頻譜儀分析......71 4.1.7 氧化鋅奈米柱(ZNR)之氫氣感測分析......73 4.1.8 氧化鋅奈米柱(ZNR)之場發射槍穿透式電子顯微鏡分析......85 4.1.9 氧化鋅奈米柱(ZNR)之小總結......86 4.2二硫化鎢奈米片(WS2 nanosheet)之特性分析......87 4.2.1 二硫化鎢奈米片(WS2 nanosheet)之表面型態分析......87 4.2.2 二硫化鎢奈米片(WS2 nanosheet)之拉曼光譜儀分析......87 4.2.3 二硫化鎢奈米片(WS2 nanosheet)之X-ray繞射儀分析......88 4.2.4 二硫化鎢奈米片(WS2 nanosheet)之紫外光-可見光光譜儀分析......90 4.2.5 二硫化鎢奈米片(WS2 nanosheet)之場發射槍穿透式電子顯微鏡分析......91 4.3氧化鋅-二硫化鎢奈米柱(ZNR-WS2) 之氫氣感測特性分析......92 4.3.1氧化鋅-二硫化鎢奈米柱(ZNR-WS2)之表面型態分析......92 4.3.2氧化鋅-二硫化鎢奈米柱(ZNR-WS2)之EDS分析......93 4.3.3氧化鋅-二硫化鎢奈米柱(ZNR-WS2)之拉曼光譜儀分析......94 4.3.4氧化鋅-二硫化鎢奈米柱(ZNR-WS2)之X-ray繞射儀分析......95 4.3.5氧化鋅-二硫化鎢奈米柱(ZNR-WS2)之紫外光-可見光光譜儀分析......96 4.3.6氧化鋅-二硫化鎢奈米柱(ZNR-WS2)之光激發螢光頻譜儀分析......99 4.3.7氧化鋅-二硫化鎢奈米柱(ZNR-WS2)之氫氣感氣分析......102 4.3.8氧化鋅奈米柱-二硫化鎢(ZNR-WS2)之場發射槍穿透式電子顯微鏡分析......109 4.3.9氧化鋅奈米柱-二硫化鎢(ZNR-WS2)之小總結......110 4.4氧化鋅/二硫化鎢奈米柱(ZNR/WS2) 之氫氣感測特性分析......110 4.4.1氧化鋅/二硫化鎢奈米柱(ZNR/WS2)之表面型態分析......111 4.4.2氧化鋅/二硫化鎢奈米柱(ZNR/WS2)之EDS分析......112 4.4.3 氧化鋅/二硫化鎢奈米柱(ZNR/WS2)之拉曼光譜儀分析......113 4.4.4 氧化鋅/二硫化鎢奈米柱(ZNR/WS2)之X-ray繞射儀分析......114 4.4.5 氧化鋅/二硫化鎢奈米柱(ZNR/WS2)之紫外光-可見光光譜儀分析......115 4.4.6 氧化鋅/二硫化鎢奈米柱(ZNR/WS2)之光激發螢光頻譜儀分析......117 4.4.7氧化鋅/二硫化鎢奈米柱(ZNR/WS2)之氫氣感氣分析......120 4.4.8氧化鋅/二硫化鎢奈米柱(ZNR/WS2)之場發射槍穿透式電子顯微鏡分析......127 4.4.9氧化鋅/二硫化鎢奈米柱(ZNR/WS2)之小總結......128 4.5氧化鋅與二硫化鎢奈米柱之總結......129 第五章 氧化鋅與二硫化鎢奈米柱於超奈米鑽石結晶之氫氣感測特性分析......130 5.1超奈米鑽石結晶(N-UNCD)之特性分析......130 5.1.1超奈米鑽石結晶(N-UNCD)之表面型態分析......130 5.1.2超奈米鑽石結晶(N-UNCD)之拉曼光譜儀分析......133 5.1.3超奈米鑽石結晶(N-UNCD)之氫氣感測分析......135 5.1.4二硫化鎢/超奈米鑽石結晶(WS2/N-UNCD)之表面型態分析......139 5.1.5二硫化鎢/超奈米鑽石結晶(WS2/N-UNCD)之EDS分析......140 5.1.6二硫化鎢/超奈米鑽石結晶(WS2/N-UNCD)之拉曼光譜儀分析......141 5.1.7二硫化鎢/超奈米鑽石結晶(WS2/N-UNCD)之X-ray繞射儀分析......143 5.1.8二硫化鎢/超奈米鑽石結晶(WS2/N-UNCD)之紫外光-可見光光譜儀分析......144 5.1.9二硫化鎢/超奈米鑽石結晶(WS2/N-UNCD)之氫氣感氣分析......145 5.2氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶(ZNR-WS2/N-UNCD)之氫氣感測特性分析......148 5.2.1 氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶(ZNR-WS2/N-UNCD)之表面型態分析......148 5.2.2 氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶(ZNR-WS2/N-UNCD)之EDS......150 5.2.3 氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶(ZNR-WS2/N-UNCD)之拉曼光譜儀分析......151 5.2.4 氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶(ZNR-WS2/N-UNCD)之X-ray繞射儀分析......153 5.2.5 氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶(ZNR-WS2/N-UNCD)之紫外光-可見光光譜儀分析......154 5.2.6氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶(ZNR-WS2/N-UNCD)之氣體感測分析......156 5.2.7氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶之退火後(ZNR-WS2/N-UNCD_A)之表面型態分析......158 5.2.8氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶之退火後(ZNR-WS2/N-UNCD_A)之表面型態分析......159 5.2.9氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶之退火後(ZNR-WS2/N-UNCD_A)之拉曼光譜儀分析......160 5.2.10氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶之退火後(ZNR-WS2/N-UNCD_A)之X-ray繞射儀分析......162 5.2.11氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶之退火後(ZNR-WS2/N-UNCD_A)之紫外光-可見光光譜儀分析......163 5.2.12氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶之退火後(ZNR-WS2/N-UNCD_A)之氫氣氣體感測分析......165 5.2.13氧化鋅-二硫化鎢奈米柱於超奈米鑽石結晶與退火之小總結......168 5.3氧化鋅/二硫化鎢奈米柱於超奈米鑽石結晶(ZNR/WS2/N-UNCD)之氫氣感測特性分析......169 5.3.1氧化鋅/二硫化鎢奈米柱於超奈米鑽石結晶(ZNR/WS2/N-UNCD)之表面型態分析......169 5.3.2氧化鋅/二硫化鎢奈米柱於超奈米鑽石結晶(ZNR/WS2/N-UNCD)之EDS分析......170 5.3.3 氧化鋅/二硫化鎢奈米柱於超奈米鑽石結晶(ZNR/WS2/N-UNCD)之拉曼光譜儀分析......171 5.3.4 氧化鋅/二硫化鎢奈米柱於超奈米鑽石結晶(ZNR/WS2/N-UNCD)之X-ray繞射儀分析......173 5.3.5 氧化鋅/二硫化鎢奈米柱於超奈米鑽石結晶(ZNR/WS2/N-UNCD)之紫外光-可見光光譜儀分析......174 5.3.6氧化鋅/二硫化鎢奈米柱於超奈米鑽石結晶(ZNR/WS2/N-UNCD)之氫氣氣感分析......176 5.4氧化鋅與二硫化鎢於超奈米鑽石結晶之總結......182 第六章 氧化鋅/二硫化鎢/氧化鎵複合材料之氫氣感測特性分析......184 6.1氧化鎵薄膜(β-Ga2O3)之特性分析......184 6.1.1氧化鎵薄膜(β-Ga2O3)之表面型態分析......184 6.1.2氧化鎵薄膜(β-Ga2O3)之EDS分析......186 6.1.3氧化鎵薄膜(β-Ga2O3)之X-ray繞射儀分析......187 6.1.4氧化鎵薄膜(β-Ga2O3)之紫外光-可見光光譜儀分析......188 6.1.5氧化鎵薄膜(β-Ga2O3)之氫氣感測分析......190 6.2二硫化鎢/氧化鎵(WS2/β-Ga2O3)複合材料之特性分析......192 6.2.1二硫化鎢/氧化鎵(WS2/β-Ga2O3)複合材料之表面型態分析......192 6.2.2二硫化鎢/氧化鎵(WS2/β-Ga2O3)複合材料之EDS分析......194 6.2.3二硫化鎢/氧化鎵(WS2/β-Ga2O3)複合材料之X-ray繞射儀分析......195 6.2.4二硫化鎢/氧化鎵(WS2/β-Ga2O3)複合材料之紫外光-可見光光譜儀分析......196 6.2.5二硫化鎢/氧化鎵(WS2/β-Ga2O3)複合材料之氫氣感氣分析......197 6.3氧化鋅/二硫化鎢/氧化鎵(ZnO/WS2/β-Ga2O3)複合材料之氫氣感測特性分析......199 6.3.1 氧化鋅/二硫化鎢/氧化鎵(ZnO/WS2/β-Ga2O3)複合材料之表面型態分析......199 6.3.2 氧化鋅/二硫化鎢/氧化鎵(ZnO/WS2/β-Ga2O3)複合材料之EDS......201 6.3.3 氧化鋅/二硫化鎢/氧化鎵(ZnO/WS2/β-Ga2O3)複合材料之X-ray繞射儀分析......202 6.3.4 氧化鋅/二硫化鎢/氧化鎵(ZnO/WS2/β-Ga2O3)複合材料之紫外光-可見光光譜儀分析......203 6.3.5氧化鋅/二硫化鎢/氧化鎵(ZnO/WS2/β-Ga2O3)複合材料之氣體感測分析......204 6.4氧化鋅/二硫化鎢/氧化鎵(ZnO/WS2/β-Ga2O3)複合材料之總結......210 6.5氧化鋅/二硫化鎢於高能隙材料(奈米鑽石及氧化鎵)之總結比較......211 第七章 結論與未來展望......212 7.1結論......212 7.2未來展望......215 參考文獻......216

    [1]. Hyun, S.K., et al., Ethanol gas sensing using a networked PbO-decorated SnO2 nanowires. Thin Solid Films, 2017. 637: p. 21-26.
    [2]. Kornyushchenko, A., et al., Two step technology for porous ZnO nanosystem formation for potential use in hydrogen gas sensors. Thin Solid Films, 2016. 604: p. 48-54.
    [3]. Liu, J., et al., Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2018. 222: p. 35-43.
    [4]. Jha, R., S. Santra, and P.K. Guha, Green synthesis route for WS2 nanosheets using water intercalation. Materials Research Express, 2016. 3(9): p. 095014.
    [5]. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 2012. 7(11): p. 699-712.
    [6]. Pataniya, P.M. and C. Sumesh, WS2 nanosheet/graphene heterostructures for paper-based flexible photodetectors. ACS Applied Nano Materials, 2020. 3(7): p. 6935-6944.
    [7]. Kuru, C., et al., High-performance flexible hydrogen sensor made of WS2 nanosheet–Pd nanoparticle composite film. Nanotechnology, 2016. 27(19): p. 195501.
    [8]. Wang, Y., et al., Ultrasensitive Flexible Solar-Blind Photodetectors Based on Graphene/Amorphous Ga2O3 van der Waals Heterojunctions. ACS Applied Materials & Interfaces, 2020. 12(42): p. 47714-47720.
    [9]. Kang, Y., et al., Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics, 2021. 360: p. 115544.
    [10]. Klingshirn, C., The luminescence of ZnO under high one‐and two‐quantum excitation. physica status solidi (b), 1975. 71(2): p. 547-556.
    [11]. Tsai, S.-Y., M.-H. Hon, and Y.-M. Lu, Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors. Solid-State Electronics, 2011. 63(1): p. 37-41.
    [12]. Ko, S.H., et al., Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano letters, 2011. 11(2): p. 666-671.
    [13]. Keis, K., et al., Nanostructured ZnO electrodes for dye-sensitized solar cell applications. Journal of Photochemistry and photobiology A: Chemistry, 2002. 148(1-3): p. 57-64.
    [14]. Xu, J., Q. Pan, and Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical, 2000. 66(1-3): p. 277-279.
    [15]. Ahn, M.-W., et al., Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Applied physics letters, 2008. 93(26): p. 263103.
    [16]. Guo, H., J. Zhou, and Z. Lin, ZnO nanorod light-emitting diodes fabricated by electrochemical approaches. Electrochemistry Communications, 2008. 10(1): p. 146-150.
    [17]. Fang, X., et al., Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p− n homojunction LED fabricated by hydrothermal method. The Journal of Physical Chemistry C, 2009. 113(50): p. 21208-21212.
    [18]. Pearton, S., et al., Recent progress in processing and properties of ZnO. Superlattices and Microstructures, 2003. 34(1-2): p. 3-32.
    [19]. Morkoç, H. and Ü. Özgür, Zinc oxide: fundamentals, materials and device technology. 2008: John Wiley & Sons.
    [20]. Vergés, M.A., A. Mifsud, and C. Serna, Formation of rod-like zinc oxide microcrystals in homogeneous solutions. Journal of the Chemical Society, Faraday Transactions, 1990. 86(6): p. 959-963.
    [21]. Vayssieres, L., et al., Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. The Journal of Physical Chemistry B, 2001. 105(17): p. 3350-3352.
    [22]. Yang, Y., et al., ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement. Chemical physics letters, 2005. 403(4-6): p. 248-251.
    [23]. Cembrero, J., et al., Nanocolumnar ZnO films for photovoltaic applications. Thin Solid Films, 2004. 451: p. 198-202.
    [24]. Mensah, S.L., et al., Formation of single crystalline ZnO nanotubes without catalysts and templates. Applied physics letters, 2007. 90(11): p. 113108.
    [25]. Wagner, a.R. and s.W. Ellis, Vapor‐liquid‐solid mechanism of single crystal growth. Applied physics letters, 1964. 4(5): p. 89-90.
    [26]. Wang, X., C.J. Summers, and Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano letters, 2004. 4(3): p. 423-426.
    [27]. Song, J., et al., Systematic study on experimental conditions for large-scale growth of aligned ZnO nanwires on nitrides. The Journal of Physical Chemistry B, 2005. 109(20): p. 9869-9872.
    [28]. Lu, C., et al., Comparison of MoS2, WS2, and graphene oxide for DNA adsorption and sensing. Langmuir, 2017. 33(2): p. 630-637.
    [29]. Wilson, J.A. and A. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 1969. 18(73): p. 193-335.
    [30]. Cheng, L., et al., PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual‐modal CT/photoacoustic imaging guided photothermal therapy. Advanced materials, 2014. 26(12): p. 1886-1893.
    [31]. Zhang, Y., et al., 2D WS2 nanosheet supported Pt nanoparticles for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017. 42(8): p. 5472-5477.
    [32]. Anichini, C., et al., Chemical sensing with 2D materials. Chemical Society Reviews, 2018. 47(13): p. 4860-4908.
    [33]. Hsu, H.-P., et al., Optical and electrical transport properties of ZnO/MoS2 heterojunction pn structure. Materials Chemistry and Physics, 2018. 220: p. 433-440.
    [34]. Eagleson, M., Concise encyclopedia chemistry. 1994: Walter de Gruyter.
    [35]. Liu, Q., et al., Stable metallic 1T-WS 2 ultrathin nanosheets as a promising agent for near-infrared photothermal ablation cancer therapy. Nano Research, 2015. 8(12): p. 3982-3991.
    [36]. Zhao, W., et al., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS nano, 2013. 7(1): p. 791-797.
    [37]. Nguyen, E.P., et al., Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS2. Chemistry of Materials, 2015. 27(1): p. 53-59.
    [38]. Ramakrishna Matte, H., et al., MoS2 and WS2 analogues of graphene. Angewandte Chemie International Edition, 2010. 49(24): p. 4059-4062.
    [39]. Niu, L., et al., Production of two‐dimensional nanomaterials via liquid‐based direct exfoliation. Small, 2016. 12(3): p. 272-293.
    [40]. Ohl, S.-W., E. Klaseboer, and B.C. Khoo, Bubbles with shock waves and ultrasound: a review. Interface focus, 2015. 5(5): p. 20150019.
    [41]. Adilbekova, B., et al., Liquid phase exfoliation of MoS2 and WS2 in aqueous ammonia and their application in highly efficient organic solar cells. Journal of Materials Chemistry C, 2020. 8(15): p. 5259-5264.
    [42]. Manna, K., et al., Toward understanding the efficient exfoliation of layered materials by water-assisted cosolvent liquid-phase exfoliation. Chemistry of materials, 2016. 28(21): p. 7586-7593.
    [43]. Wang, M., et al., Surface tension components ratio: an efficient parameter for direct liquid phase exfoliation. ACS applied materials & interfaces, 2017. 9(10): p. 9168-9175.
    [44]. Zheng, S., et al., Monolayers of WxMo1− xS2 alloy heterostructure with in-plane composition variations. Applied Physics Letters, 2015. 106(6): p. 063113.
    [45]. Gatensby, R., et al., Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Applied Surface Science, 2014. 297: p. 139-146.
    [46]. Park, J., et al., Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors. Nanoscale, 2015. 7(4): p. 1308-1313.
    [47]. Xu, Z., et al., CVD controlled growth of large-scale WS 2 monolayers. RSC advances, 2019. 9(51): p. 29628-29635.
    [48]. Kang, K., et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015. 520(7549): p. 656-660.
    [49]. Eichfeld, S.M., et al., Highly scalable, atomically thin WSe2 grown via metal–organic chemical vapor deposition. ACS nano, 2015. 9(2): p. 2080-2087.
    [50]. Butler, J.E. and A.V. Sumant, The CVD of nanodiamond materials. Chemical Vapor Deposition, 2008. 14(7‐8): p. 145-160.
    [51]. Matsumoto, S., et al., Vapor deposition of diamond particles from methane. Japanese Journal of applied physics, 1982. 21(4A): p. L183.
    [52]. 曾永華, 陳., 鄭宇明,游銘永. 人造鑽石的合成及應用. 2014.
    [53]. Zhang, D., et al., Ultrahigh EQE (15%) Solar‐Blind UV Photovoltaic Detector with Organic–Inorganic Heterojunction via Dual Built‐In Fields Enhanced Photogenerated Carrier Separation Efficiency Mechanism. Advanced Functional Materials, 2019. 29(26): p. 1900935.
    [54]. Chen, X., et al., Gallium oxide-based solar-blind ultraviolet photodetectors. Semiconductor Science and Technology, 2020. 35(2): p. 023001.
    [55]. Feng, Z., et al., Design and fabrication of field-plated normally off β-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application. Applied Physics Letters, 2020. 116(24): p. 243503.
    [56]. Qiao, G., et al., Nanoplasmonically enhanced high-performance metastable phase α-Ga2O3 solar-blind photodetectors. ACS applied materials & interfaces, 2019. 11(43): p. 40283-40289.
    [57]. Pearton, S., et al., A review of Ga2O3 materials, processing, and devices. Applied Physics Reviews, 2018. 5(1): p. 011301.
    [58]. Bosi, M., et al., Ga2O3 polymorphs: tailoring the epitaxial growth conditions. Journal of Materials Chemistry C, 2020. 8(32): p. 10975-10992.
    [59]. Korotcenkov, G., Gallium Oxide: Technology, Devices and Applications. 2018: Elsevier.
    [60]. Uno, K., M. Ohta, and I. Tanaka, Growth mechanism of α-Ga2O3 on a sapphire substrate by mist chemical vapor deposition using acetylacetonated gallium source solutions. Applied Physics Letters, 2020. 117(5): p. 052106.
    [61]. BAĞCI, M., Optimization of Solid Particle Erosion by ZrN Coating Applied Fiber Reinforced Composites by Taguchi Method. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi. 6(2): p. 185-194.
    [62]. 方辰昱, 基於金屬氧化物氣體感測器快速辨識氣體濃度之特徵萃取分析. 清華大學電機工程學系所學位論文, 2018: p. 1-61.
    [63]. 黃炳照, 固態電解質電化學氣體感測器. 化學, 2001. 59(2): p. 207-217.
    [64]. 惠斯通電橋. 2017; Available from: 維基百科.
    [65]. Choi, S.-W., J.Y. Park, and S.S. Kim, Dependence of gas sensing properties in ZnO nanofibers on size and crystallinity of nanograins. Journal of Materials Research, 2011. 26(14): p. 1662.
    [66]. Righettoni, M., A. Amann, and S.E. Pratsinis, Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today, 2015. 18(3): p. 163-171.
    [67]. Gao, R., et al., Ionic liquid assisted synthesis of snowflake ZnO for detection of NOx and sensing mechanism. Sensors and Actuators B: Chemical, 2020. 303: p. 127085.
    [68]. Xu, J., et al., The crystal facet-dependent gas sensing properties of ZnO nanosheets: Experimental and computational study. Sensors and Actuators B: Chemical, 2017. 242: p. 148-157.
    [69]. Fan, F., et al., Facile synthesis and gas sensing properties of tubular hierarchical ZnO self-assembled by porous nanosheets. Sensors and Actuators B: chemical, 2015. 215: p. 231-240.
    [70]. Leonardi, S.G., Two-dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors, 2017. 5(2): p. 17.
    [71]. Hjiri, M., et al., High Performance CO Gas Sensor Based on ZnO Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2020. 30(10): p. 4063-4071.
    [72]. Pomastowski, P., et al., Zinc Oxide Nanocomposites—Extracellular Synthesis, Physicochemical Characterization and Antibacterial Potential. Materials, 2020. 13(19): p. 4347.
    [73]. Aljaafari, A., et al., Flower-like ZnO Nanorods synthesized by microwave-assisted one-pot method for detecting reducing gases: Structural properties and sensing reversibility. Frontiers in Chemistry, 2020. 8.
    [74]. Selvaraj, B., J.B.B. Rayappan, and K.J. Babu, Influence of calcination temperature on the growth of electrospun multi-junction ZnO nanowires: A room temperature ammonia sensor. Materials Science in Semiconductor Processing, 2020. 112: p. 105006.
    [75]. Singh, P., et al., Sensing performance of gas sensors fabricated from controllably grown ZnO-based nanorods on seed layers. Journal of Materials Science, 2020. 55(21): p. 8850-8860.
    [76]. Luo, P., et al., Nitric oxide sensors using nanospiral ZnO thin film deposited by GLAD for application to exhaled human breath. RSC Advances, 2020. 10(25): p. 14877-14884.
    [77]. Chen, H., et al., Effect of PVP on gas‐sensing properties of ZnO micro/nanostructure materials in SDS‐PVP composite. International Journal of Applied Ceramic Technology, 2020. 17(3): p. 1460-1466.
    [78]. Waikar, M.R., et al., Enhancement in NH3 sensing performance of ZnO thin-film via gamma-irradiation. Journal of Alloys and Compounds, 2020. 830: p. 154641.
    [79]. Ding, J., et al., Aerosol assisted chemical vapour deposition of nanostructured ZnO thin films for NO2 and ethanol monitoring. Ceramics International, 2020. 46(10): p. 15152-15158.
    [80]. Yang, Y., et al., Hydrothermally synthesized porous ZnO nanosheets for methane sensing at lower temperature. Journal of Porous Materials, 2020. 27: p. 1363-1368.
    [81]. Li, C., et al., Nucleation density and pore size tunable growth of ZnO nanowalls by a facile solution approach: growth mechanism and NO2 gas sensing properties. RSC Advances, 2020. 10(6): p. 3319-3328.
    [82]. Chen, Y., et al., Enhancing gas-sensing property and sensing mechanism at molecule level of the hollow microspheres assembled with ZnO nanoflakes exposing {001} facets. Journal of Materials Science: Materials in Electronics, 2020. 31(8): p. 6118-6129.
    [83]. Yu, Z., et al., Fabrication of Lettuce-Like ZnO Gas Sensor with Enhanced H2S Gas Sensitivity. Crystals, 2020. 10(3): p. 145.
    [84]. Nundy, S., et al., Flower-shaped ZnO nanomaterials for low-temperature operations in NOX gas sensors. Ceramics International, 2020. 46(5): p. 5706-5714.
    [85]. 林鴻明. 超微粒半導體氣體感測材料之性質研究. 2001; Available from: 工程科技通訊第五十九期52-56頁.
    [86]. 林鴻明. 奈米化學感測材料. 2002; Available from: 化工科技與商情No.38,18-28頁.
    [87]. 林鴻明, 曾. 奈米半導體材料之特殊氣體感測性質. 2000; Available from: 工業材料157 期163-169頁.
    [88]. 張宏維, et al., 表面聲波氣體感測器之研製與應用. 化學, 2007. 65(4): p. 487-497.
    [89]. Wang, P., et al., Ultraselective acetone-gas sensor based ZnO flowers functionalized by Au nanoparticle loading on certain facet. Sensors and Actuators B: Chemical, 2019. 288: p. 1-11.
    [90]. Zhao, S., et al., Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor. Sensors and Actuators B: Chemical, 2019. 286: p. 501-511.
    [91]. Yuan, H., et al., ZnO nanosheets abundant in oxygen vacancies derived from metal‐organic frameworks for ppb‐level gas sensing. Advanced Materials, 2019. 31(11): p. 1807161.
    [92]. Kathiravan, D., B.-R. Huang, and A. Saravanan, Self-assembled hierarchical interfaces of ZnO nanotubes/graphene heterostructures for efficient room temperature hydrogen sensors. ACS applied materials & interfaces, 2017. 9(13): p. 12064-12072.
    [93]. Kim, J.-H., et al., Design of supersensitive and selective ZnO-nanofiber-based sensors for H2 gas sensing by electron-beam irradiation. Sensors and Actuators B: Chemical, 2019. 293: p. 210-223.
    [94]. Zhang, X., et al., ZIF-8 derived hierarchical hollow ZnO nanocages with quantum dots for sensitive ethanol gas detection. Sensors and Actuators B: Chemical, 2019. 289: p. 144-152.
    [95]. Zhang, D., et al., Hierarchical nanoheterostructure of tungsten disulfide nanoflowers doped with zinc oxide hollow spheres: benzene gas sensing properties and first-principles study. ACS applied materials & interfaces, 2019. 11(34): p. 31245-31256.
    [96]. 高解析度場發射掃描式電子顯微鏡. Available from: 國立台灣科技大學貴儀中心.
    [97]. 紫外光-可見光光譜儀系統. Available from: 國立台灣科技大學材料系.
    [98]. 光激發螢光頻譜儀量測系統. Available from: 國立虎尾科技大學光電系.
    [99]. X-ray繞射儀 (BRUKER, D8 DISCOVER). Available from: 國立台灣科技大學X光繞射儀實驗室.
    [100]. 拉曼光譜分析量測系統. Available from: 國立台灣科技大學材料系.
    [101]. 場發射槍穿透式電子顯微鏡示意圖. Available from: 國立台灣大學材料系.
    [102]. Yang, G., et al., Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale, 2015. 7(34): p. 14217-14231.
    [103]. Kumar, M., et al., Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network. Nanotechnology, 2017. 28(36): p. 365502.
    [104]. Postica, V., et al., Individual Bi 2 O 3-Functionalized ZnO Microwire for Hydrogen Gas Detection, in Advanced Nanotechnologies for Detection and Defence against CBRN Agents. 2018, Springer. p. 445-450.
    [105]. Navale, Y., et al., Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors. Ceramics International, 2019. 45(2): p. 1513-1522.
    [106]. Guzmán-Soto, I., et al., Mimicking biofilm formation and development: Recent progress in In Vitro and In Vivo biofilm models. Iscience, 2021: p. 102443.
    [107]. Khmelinskaia, A., A. Wargacki, and N.P. King, Structure-based design of novel polyhedral protein nanomaterials. Current Opinion in Microbiology, 2021. 61: p. 51-57.

    無法下載圖示 全文公開日期 2026/08/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE