簡易檢索 / 詳目顯示

研究生: 鄭憲隆
Hsien-Lung Cheng
論文名稱: 一維矽奈米結構於氫氣感測器之應用
One-dimensional silicon nanostructure for hydrogen gas sensor
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyan-Kay Jou
楊文祿
Wen-Lu Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 91
中文關鍵詞: 一維奈米結構濕式蝕刻二次蝕刻氫氣感測器
外文關鍵詞: silicon nanowire structure, wet electroless etching, two-step etching, hydrogen gas sensor.
相關次數: 點閱:401下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   ㄧ維奈米結構有許多種,而其製作方式與應用方面亦有所不同,例如於太陽能電池上將使用其相當高的抗反射特性,用於電子場發射元件主要將強調其奈米結構等級的線端可以使其屏蔽效應明顯改善,而應用於感測器則有相當高的比表面積,而感測器方面則是使用其具有高深寬比之特性。

      我們使用一維矽奈米結構為主要材料以製作氫氣感測器之應用,本研究中我們使用簡單的蝕刻技術創造出不同的蝕刻形貌,藉由場發射電子顯微鏡可以觀察其表面形貌不同,之後再使用拉曼光譜分析矽基板經過蝕刻之後所產生峰值及半高寬之變化,以及使用傅利葉紅外線光譜儀分析,進一步分析其鍵結的狀態。最後再以氣體感測量測系統進行最後的氫氣之量測,並且以電性加以分析。
      本論文在製作過程中,成功的利用二次蝕刻技術將奈米線做一種變化,形成草堆狀結構之矽奈米結構,以產生我們所研究的感測器元件之結構。其中由場發射電子顯微鏡中可以觀察出表面有明顯的分層變化,可以分為上層奈米線以及中間層奈米線以及底層未被蝕刻之矽基板,除長度的變化之外亦可看出其密度的改變,使用傅利葉紅外線光譜儀在1173cm-1中的Si-O-Si鍵結中的峰值強度也有明顯的改變,另外從拉曼的變化亦可觀察到矽基板之峰值產生紅移的情況發生,最後以氫氣量測系統可以發現此結構對感測靈敏度有明顯提升之效用。在產生草堆狀結構之後再運用添加白金金屬粒子幫助氫氣分子解離以及增加分子進入其金屬半導體接面之速度,以提升其感測靈敏度以及回復時間;除此之外亦使用簡單的蝕刻技術使銀粒子沉積於基板上,再以濕式蝕刻技術進一步創造高密度以及高靈敏度的孔洞結構,最後此種孔洞結構亦藉由過氫氣感測器可觀察出具有較佳之靈敏度特性。


    There are many technologies to fabricate one-dimensional silicon nanostructure.
    The silicon nanostructures were used for many applications. For example, the silicon nanostructures have high reflection property in solar cell. In the electron field emission, the silicon nanostructures possess the higher aspect ratio and numerous emission sites. For sensor researching, it has higher surface area to volume ratio that can improve the sensitivity.
    We fabricated the one dimension silicon nanostructure for hydrogen sensor. In this research, we synthesized different morphology of silicon nanostructure using wet electroless etching technique. The field emission scanning electron microscopy (FE-SEM) was used to observe the surface morphology of silicon nanostructure. The micro-Raman and Fourier transform infrared (FT-IR) was used to investigate the bonding of silicon nanostructure. Finally, we carried out the electrical analyze of gas sensor system with hydrogen sensing.
    In this study, we use the two-step wet electroless etching technique to form the straw-like silicon nanowire. It can be observed that some different layers in SEM photographs. The top layer was straw-like silicon nanowire, and the middle layer was straight aligned silicon nanowire, and the bottom layer was silicon base which is the bulk silicon. The straw-like silicon nanowire was found the the bonding of Si-O-Si about 1173cm-1 in FT-IR spectrum. And it also observed some red shift in Raman spectrum. Because of the higher surface area to volume ratio and Si-O-Si bonding, the performance of this straw-like structure hydrogen sensor was improved. Moreover, this hydrogen gas sensor was also modified with Pt nanoparticles, which can enhance the ratio of hydrogen gas dissolve into the metal-semiconductor interface.
    Finally we tried to make the porous structure with high density and high aspect ratio also by wet electroless etching technique. This porous possessed the high surface area which had the superior sensitivity.

    中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 Ⅸ 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 第二章 文獻回顧 3 2-1 奈米線合成技術 3 2-1-1 化學氣相沉積法(Chemical vapor deposition) 3 2-1-2 雷射蒸鍍法(Laser ablation) 4 2-1-3 熱蒸鍍法(Thermal evaporation) 5 2-2 奈米線生長機制 5 2-2-1 氣相-液相-固相 5 2-2-2 固相-液相-固相 8 2-2-3 氣相-固相 10 2-2-4 液相-液相-固相 11 2-3 各種不同氟化氫水溶液化學蝕刻矽奈米線成長機制 13 2-3-1 HF水溶液反應機制 14 2-3-2 HF/Fe(NO3)3水溶液反應機制 14 2-3-3 HF/AgNO3水溶液反應機制 17 2-3-4 HF/H2O2水溶液反應機制 22 第三章 實驗方法 23 3-1 實驗設計與流程 23 3-2 矽基奈米結構之製造 25 3-2-1 矽基板前處理 25 3-2-2 垂直陣列式矽基奈米線結構 26 3-2-3 稻草堆矽基奈米線之結構 27 3-2-4 森林式矽基奈米線之結構 28 3-2-5 白金奈米粒子/稻草堆(森林式)矽基奈米線結構 29 3-2-6 微孔洞矽基奈米線之結構 30 3-3 實驗儀器分析 31 3-3-1 掃描式電子顯微鏡(Scanning electron microscopy , SEM) 31 3-3-2 X-ray繞射儀 (X-ray diffractometer, XRD) 32 3-3-3 顯微拉曼光譜儀(Micro-Raman spectroscopy) 33 3-3-4 傅利葉紅外線光譜儀 (Fourier Transform Infrared spectrometer, FTIR) 33 第四章 結果與討論 35 4-1 垂直陣列式矽奈米線之氫氣感測器之應用 35 4-1-1 奈米線結構之分析 35 4-1-2氫氣感測器之應用 40 4-2 稻草堆矽奈米結構於氫氣感測器之應用 42 4-2-1 奈米線結構之分析 42 4-2-2 氫氣感測器之應用 49 4-3 森林式矽奈米結構於氫氣感測器之應用 52 4-3-1 奈米線結構之分析 52 4-3-2 氫氣感測器之應用 57 4-4 白金粒子於二次蝕刻奈米結構之氫氣感測器之應用 61 4-4-1 白金奈米粒子之分析 61 4-4-2 白金奈米粒子之影響 63 4-4-3 白金奈米粒子/稻草堆(森林式)奈米結構之之氫氣感 測應用 66 4-5 微孔洞結構之氣體感測器之應用 70 4-5-1 奈米結構之分析 74 第五章 結論與未來展望 84 5.1 結論 84 5.2 未來展望 85 參考文獻 86

    1 J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, J. Vac. Sci. Technol.
    15, p554 (1997)
    2 盧永坤, “奈米科技概論”,滄海書局(2005)
    3 T. Guo﹐P. Nikolaev﹐A. Thess﹐D. T. Colbert﹐R. E. Smalley﹐Chem. Phys. Lett.
    243, 49 (1995)
    4 A. M. Morales, C. M. Lieber, Science 279, p208(1998)
    5 N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, S. T. Lee, Appl. Phys. Lett. 73, p.3902 (1998)
    6 D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang,Y. H. Zou,
    W.Qian, G. C. Xiong, H. T. Zhou, S. Q. Feng, Appl. Phys. Lett., 72, p.3458 (1998)
    7 Y. F. Zhang, Y. H. Tang, C. Lam, N. Wang, C. S. Lee, I. Bello, S. T.Lee, J. Cryst. Growth 212, p115(2000)
    8 C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State
    Chem. 31, p5 (2003)
    9 R.S. Wagner and W.C. Ellis. “Vapor Liquid Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett., Vol. 4 ,pp. 89-90 (1964)
    10 Y Wu and P Yang “Direct Observation of Vapor− Liquid− Solid Nanowire Growth”, J. Am. Chem. Soc., pp. 3165–3166 (2001)
    11 H. F. Yan, Y. J. Xing, Q. L. Hanga, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and
    S.Q. Feng. ”Growth of amorphous silicon nanowires via a solid–liquid–solid
    mechanism”, Chemical Physics Letters, pp. 224–228 (2000)

    12 Y.J. Xing, D.P. Yu, Z.H. Xi, and Z.Q. Xue. “Silicon nanowires grown from
    Au-coated Si substrate”, Appl. Phys. A, Vol. 76, pp. 551–553 (2003)
    13 D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q.
    Feng. ”Controlled growth of oriented amorphous silicon nanowires via a
    solid–liquid–solid (SLS) mechanism”, Physica E, pp. 305-309 (2001)
    14 Gang Gu, Bo Zheng, W. Q. Han, Siegmar Roth, and Jie Liu. “Tungsten Oxide
    Nanowires on Tungsten Substrates”, Nano Lett., Vol. 2, No. 8 pp. 849-851 (2002)
    15 Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano,
    Patrick C. Gibbons, and William E. Buhro. “Solution-Liquid-Solid Growth of
    Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth”,
    Science, Vol. 270, pp. 1791 (1995)
    16 X. Lu, T. Hanrath, K.P. Johnston, and A.B. Korgel. “Growth of Single Crystal
    Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a
    Silicon Substrate”, Nano Lett., pp. 93-99 (2003)
    17 K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J.
    Zhu, Adv. Funct. Mater.16, pp. 387-394 (2006)
    18 A. Jones, Chemical Principles
    19 B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81,p. 757 (2002)
    20 Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291,p. 1947 (2001)
    21 J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, J. Vac. Sci.
    Technol.B 15,p. 554 (1997)
    22 A. I. Hochbaum, R. Fan, R. R. He, P. D. Yang, Nano Lett. 5, p. 457 (2005)
    23 P. Gorostiza, R. Diaz, J. Servat, F. Sanz, J. R. Morante, J. Electrochem.Soc.
    144, p. 909 (1997)
    24 P. Gorostiza, M. A. Kulandainathan,R. Diaz, F. Sanz, P. Allongue, J. R.
    Morante, J. Electrochem. Soc. 147, p. 1026 (2000)
    25 S. Ye, T. Ichihara, K. Uosaki, J. Electrochem. Soc. 148, p.421 (2001)
    26 G. J. Norga, M. Platero, K. A. Black, A J. Reddy, J. Michel, L. C. Kimerling, J.
    Electrochem. Soc. 144, 2801 (1997)
    27 V. Bertagna, C. Plougonven, F. Rouelle, M. Chemla, J. Electrochem. Soc.
    143, p.3532 (1996)
    28 L. A. Porter, H. C. Choi, A. E. Ribbe, J. M. Buriak, Nano Lett. 2, p.1067 (2002)
    29 C. Carraro, L. Magagnin, R. Maboudian, Electrochem. Acta 47, p.2583 (2002)
    30 L. Magagnin, R. Maboudian, C. Carraro, J. Phys. Chem. B 106, p.401 (2002)
    31 K. Q. Peng, Y. J. Yan, S. P. Gao, J. Zhu, Adv. Funct. Mater. 13, p.12 (2003)
    32 Kui-Qing Peng, Xin Wang, Shuit-Tong Lee.”Gas sensing properties of single
    crystalline porous silicon nanowire” Appl. Phys. Lett. 95, pp.234112 1-3
    (2009).
    33 Jin-Seo Noh, Hyunsu Kim, Beom Seok Kim, Eunyoung Lee, Hyung Hee Cho,
    and Wooyoung Lee. J.Mater.Chem.,21,pp.15935-15039 (2011)
    34 F. Demami, L. Ni, R. Rogel, A.C. Salaun, L.Pichon.”Silicon nanowires based
    resistors as gas sensors.” Sensor and Actuators B. (2011)
    35 J. Mizsei.”Gas sensor applications of porous Si layers.” Thin Solid Film. 515,
    pp.8310-8315(2007)
    36 N.K. Ali, M.R. Hashim, A. Abdul Aziz, Solid-State Electronics. 52,
    pp.1071-1074(2008)
    37 M. Ramanathan, G. Skudlarek, H.H.WANG, S.B. Darling.”Crossover behavior
    in the hydrogen sensing mechanism for palladium ultrathin
    films.”Nanotechnology.21,pp.125501-125506 (2010)
    38 Karl Skucha, Zhiyong Fan, Kanghoon Jeon, Ali Javey, Bernhard
    Boser.”Palladium/silicon nanowire Schottky barrier-based hydrogen
    sensors.”Sensor and Actuators B. 145,pp.232-238 (2010)
    39 Kang-San Kim, Gwiy-Sang Chung.”Characterization of porous cubic silicon
    carbide deposited with Pd and Pt nanoparticles as a hydrogen senor.” Sensor
    and Actuators B.157, pp.482-487 (2011)
    40 Mitsuhiro Inouea, Toshiharu Nishimurab, Satoshi Akamarub, Akira Taguchib,
    Minoru Umedaa, Takayuki Abeb.” CO oxidation on non-alloyed Pt and Ru
    electrocatalysts prepared by the polygonal barrel-sputtering method.”
    Electrochimica Acta.54,pp. 4764–4771 (2009)
    41 Zhifeng Sui, Patrick P. Leong, and Irving P. Herman.”Raman analysis of
    light-emitting porous silicon.” Appl. Phys. Lett. 60,pp.2086-2088 (1992)
    42 Chun Li, Guojia Fang, Su Sheng, Zhiqiang Cheng, Jianbo Wang, Shuang Ma,
    Xingzhong Zhao.”Raman spectroscopy and field electron emission properties
    of aligned silicon nanowire arrays.” Physica E.30,pp.169-173.(2005)
    43 J. Kanungo, H. Saha. S. Basu.”Effect of porosity on the performance of surface
    modified porous silicon hydrogen sensors.” Sensor and Actuators B.
    147,pp.145-151 (2010)
    44 Hideki Hasegawa and Hideo Ohno.”Unified disorder induced gap state model
    for insulator-semiconductor and metal-semiconductor interfaces.” J. Vac. Scl.
    Technol. 4, pp.1130-1138 (1986)
    45 Kevin Luongo, Altagrace Sine, Shekhar Bhansali.”Development of a highly
    sensitivity porous Si-based hydrogen sensor using Pd nano-structures.” Sensor
    and Actuators B. 111-112,pp.125-129 (2005)
    46 K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. ZhuAdv.”
    Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon
    Surface with Catalytic Metal Particles” Funct. Mater., 16, p. 387 (2006)
    47 Wanli Xu, Sri Sai S.Vegunta, John C. Flake.”Surface-modified silicon nanowire
    anodes for lithium-ion batteries.” Journal of Power Sources., 196,pp.8583-8589 (2011)
    48 Changyong Zhan, Paul K. Chu, Ding Ren, Yunchang Xin, Kaifu Huo, Yu Zou, N.K. Huang.”Release of hydrogen during transformation from porous silicon to silicon oxide at normal temperature.” International Journal of Hydrogen energy. 36, pp.4513-4517 (2011)
    49 S. Basu, A. Dutta.” Room temperature hydrogen sensors based on ZnO.” Mater.
    Chem. Phys. 47, pp. 93–96 (1997)
    50 S.K. Hazra, S. Basu.” High sensitivity and fast response hydrogen sensors basedon electrochemically etched porous titania thin films.” Sensor and Actuators B. 115403–411 (2006)
    51 D. Deresmes, V. Marissael, D. Stievenard, C. Ortega.” Electrical behaviour of
    aluminium-porous silicon junctions.” Thin Solid Film 255,pp. 258–261(1995)
    52 V.M. Aroutiounian.” Metal oxide hydrogen, oxygen and carbon mono oxide
    sensors for hydrogen setups and cells.” Int. J. Hydrogen Energy. 32 pp.1145–1158 (2007)
    53 S. Srivastava, S. Kumar, V.N. Singh, M. Sigh, Y.K. Vijay.” Synthesis and
    characterization of TiO2 doped polyaniline composites for hydrogen gas
    sensing.” Int. J. Hydrogen Energy, 36,pp. 6343–6355(2011)
    54 C.S. Rout, M. Hegde, C.N.R. Rao.” H2S sensors based on tungsten oxide
    Nanostructures.” Sensor and Actuators B. 128, pp. 488–493(2008)
    55 Z. Zhao, M.A. Carpenter, H. Xia, D. Welch.” All-optical hydrogen sensor based
    on a high alloy content palladium thin film.” Sensor and Actuators B. 113,
    pp.532–538 (2006)
    56 J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai.”
    Nanotube molecular wires as chemical sensors.” Science, 287,pp. 622–625 (2000)
    57 T. Qiu, X.L. Wu, G.G. Siu, P.K. Chu, J. Electron. Mater. 35 p.1879 (2006)
    58 Hui Fang, Xudong Li, Shuang Song, Ying Xu and Jing Zhu.” Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications.” Nanotechnology, 19,pp. 255703- 255708 (2008)
    59 Z. P. Huang , T. Shimizu , S. Senz , Z. Zhang , X. X. Zhang , W. Lee ,
    N. Geyer , U. Gösele , Nano Lett., 9 ,p. 2519 (2009)
    60 Subodh Srivastavaa, S.S. Sharmaa, Shweta Agrawal, Sumit Kumar, M. Singh,
    Y.K. Vijay.” Study of chemiresistor type CNT doped polyaniline gas sensor.” Synthetic Metals.,160, pp.529-534 (2010).

    QR CODE