簡易檢索 / 詳目顯示

研究生: 沈芹安
Chin-An Shen
論文名稱: 以溶劑熱法合成銅鋅錫硫四元化合物於碳材料基板作為鋰電池陽極之研究
Solvothermal Synthesis of CuxZnySnzS Nanostructures on Carbon-based Material utilized as High-Performance Anode Electrode for Lithium-ion Batteries
指導教授: 戴 龑
Yian Tai
口試委員: 陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 117
中文關鍵詞: 鋰電池銅鋅錫硫碳材料基版陽極材料溶劑熱法
外文關鍵詞: lithium-ion battery, CZTS, carbon-based material, anode material, solvothermal method
相關次數: 點閱:181下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,以新穎之溶劑熱法合成出銅鋅錫硫四元半導體材料,改進相對嚴苛的製程方式和製造成本,並且對於不同碳基材進行最佳成長CZTS奈米結構之調控。最佳化方面,本研究發現結合銅鋅錫硫莫耳比例為2:1:1:2之介面層以及比例為2:1:1:5之結構層,可擁有最完整之奈米牆結構,而為確保成長於碳基材上之均勻性,合成中添加金屬鉬片於背面,藉由金屬鉬本身之觸媒特性,成功使CZTS奈米結構均勻成長於不同碳基材表面。
    而就表面型態、成分特性等特性分析,發現無論成長於何種碳基材表面,性質皆無太大差異。電化學方面,觀察到CZTS之氧化還原反應未受集電板不同而有所影響,反倒於連續循環充放電測試中,碳纖維布(Carbon Cloth, CC)擁有最高起始電容值1804mAh/g。而穩定性由碳奈米纖維(Carbon Nano Fiber, CNF)為最佳,充放電20圈後從起始之1034mAh/g緩慢上升至1139mAh/g。比較電化學與碳基材本身之電性分析,發現兩者並無直接相關性,故初步判斷活性材料之電容值與穩定性並非集電板本身電性高低帶來之效應。本論文之分析結果所示,作為鋰電池陽極材料,CNF為三種碳基材中最適成長CZTS奈米結構之集電板,後續若針對表面型態、結晶程度等進行最適化調控,相信能為鋰電池陽極材料帶來更佳之效應。


    In this work, quaternary CuxZnySnzS (CZTS) nanostructures were synthesized by a novel solvothermal approach. To improve the manufacturing procedures and costs of semiconductor materials, CZTS was applied as anode material in Lithium-ion Batteries (LIBs) while using various carbon-based current collectors. The best nanowall structure of CZTS was found in the combination of Cu:Zn:Sn:S=2:1:1:2 for seed layer and Cu:Zn:Sn:S=2:1:1:5 for the structure layer. In order to confirm the uniformity of CZTS on the surface of carbon-based current collector, Molybdenum foil was adopted to be the cover on the back side. With the unique properties of Molybdenum, uniform CZTS was successfully synthesized on carbon-based current collector.
    The correlation between the properties of current collectors and the morphology of CZTS was weak. In the electrochemical part, the reactions between electrode and electrolyte of various current collectors were similar. However, in the battery cycle test, carbon cloth (CC) had the maximum initial capacity 1804 mAh/g. Moreover, Carbon nanofiber (CNF) had the highest stability than other two carbon-based materials. The capacity of CNF started with 1034 mAh/g and slowly increased to 1139 mAh/g within 20 cycles. Again, the correlation between this result and the electrical properties of current collector was low. To be utilized as high-performance anode electrode for LIBs, CNF is the best current collector when synthesizing CZTS on carbon-based material. In the future, optimizing the morphology and crystallinity of CZTS might be a good way for further development of LIBs.

    中文摘要 I Abstract II 致謝 III 目錄 V 圖目錄 IX 表目錄 XV 名詞解釋表 XVI 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 3 第二章 文獻回顧 6 2-1鋰電池的發展 6 2-2鋰離子二次電池之組成 8 2-2-1陰極材料 9 2-2-2陽極材料 12 2-2-3隔離膜 14 2-2-4 電解質液系統 15 2-3 鋰離子二次電池的特性 17 2-4 陽極材料發展趨勢 18 2-4-1 鋰金屬 18 2-4-2 碳材 19 2-4-3 錫氧化物 21 2-4-4 金屬硫族化合物 24 2-5 銅鋅錫硫四元化合物 (CZTS) 25 2-5-1 基本性質 25 2-5-2 合成方法 27 2-5-3 溶劑熱合成法 29 第三章 實驗設備與方法 32 3-1 儀器設備 32 3-2 實驗藥品與器材 33 3-3 實驗步驟 35 3-3-1 實驗流程圖 35 3-3-2 石墨烯泡沫之製備 35 3-3-3 CZTS四元化合物之合成 37 3-4 材料鑑定與分析 40 3-4-1 接觸角測量儀 (Contact Angle) 40 3-4-2 霍爾量測儀 (Hall Measurement) 40 3-4-3 四點探針 (Four Point Probe) 43 3-4-4 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope, FE-SEM) 44 3-4-5 拉曼震動光譜儀 (Raman Spectrum) 45 3-5 鈕扣型電池組裝 46 3-6 電化學分析 48 3-6-1 CV 循環伏安分析 48 3-6-2 鈕扣型電池充放電測試分析 48 第四章 實驗結果與討論 49 4-1 CZTS四元化合物薄膜特性分析 49 4-1-1 介面層對CZTS之影響 50 4-1-2 不同成分比例CZTS之分析 54 4-1-3 增添Mo基板 (集電板:碳纖維布CC) 58 4-1-3-1 介面層之影響 58 4-1-3-2 不同成分比例CZTS之性質分析 62 4-1-3-3 不同成分比例CZTS之電化學分析 67 4-2 固定成分比例合成CZTS於不同集電板之特性分析 71 4-2-1 集電板:奈米碳纖維CNF 71 4-2-1-1調控CZTS最適合成參數之性質分析 71 4-2-1-2 CZTS於CNF之電化學分析 76 4-2-2 集電板:石墨烯泡沫GF 78 4-2-2-1調控GF乘載基板之性質分析 78 4-2-2-2調控GF成長參數之性質分析 82 4-2-2-3 CZTS於GF之電化學分析 86 4-3 固定比例合成CZTS於不同集電板之比較 90 4-3-1表面型態分析 90 4-3-2成分特性分析 92 4-3-3 電化學分析 92 第五章 結論 96 參考文獻 97

    [1]. J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, M. Arakawa, J. Power Source, 74, 219-227, 1998
    [2]. K. Sekai, H. Azuma, A. Omaru, S. Fujita, H. Imoto, T. Endo, K. Yamaura, Y. Nishi, J. Power Source, 43-44, 241-244, 1993
    [3]. M. Mohri, N. Yanagisawa, Y. Tajima, H. Tanaka, T. Mitaie, J. Power Source, 26, 545-551, 1989
    [4]. Kazunari Kobayashi (Sanyo, Taiwan), Proceeding of 2004 Taipei international power Forum
    [5]. K Mizushima, P.C. Jones, P. J. Wiseman, J.B. Goodenough, Material Research Bulletin, 15,6, 783-789, 1980
    [6]. 姚慶意, 工業材料, 第131期, 161-166, 1997
    [7]. Yoshio Nishi, (Sony Corporation, Japan), Proceedings of 2004 Taipei international power Forum
    [8]. Akira Yoshino, “These Ten Years and Feature of Rechargeable Battery Materials”, 110, 2003
    [9]. K. M. Abraham, J. Power Source, 179, 1985
    [10]. E. J. Plichta, W. K. Behl, J. Electrochemical Society, 140, 46, 1993
    [11]. D. Guyomard and J. M.Tarascon, J. Electrochemical Society, 140, 3071, 1993
    [12]. J. Barthel, R. Neueder, Journal of Electroanalytical Chemistry, 344, 1-2, 249, 1993.
    [13]. 洪為民, 小型二次電池市場與技術專輯, 工業材料系列叢書, 第7期, 58-63, 1996
    [14]. H. Shi, J. Barker, M. Y. Saidi, R. Koksbang, J. Electrochemical Society, 143,3466, 1996
    [15]. 吳典熹, 國立臺灣大學化學工程學研究所博士論文, 88學年度
    [16]. 吳宇平, 萬春榮, 姜長印, 李建軍, 電源技術, 第二十三卷, 第3期, 6, 1999
    [17]. R.Retoux, T. Brousse, D. M. Schleich, J. Electrochemical Society, 146, 7, 2472-2476, 1999
    [18]. I. A. Courtney, J. R. Dahn, J. Electrochemical Society, 144, 9, 2943-2948, 1997
    [19]. I. A. Courtney, J. R. Dahn, J. Electrochemical Society, 144, 6, 2045-2052, 1997
    [20]. K. Ankur, W. W. Andrew, M. A. Lauren, J. N. David ,S. A. Eray, Chemical Communications, 47, 11721-11723, 2011
    [21]. J. Chang, E.R. Waclawik, RSC Advances, 4, 23505-23527, 2014
    [22]. S. Chen, A. Walsh, Y. Luo, J.-H. Yang, X. Gong, S.-H. Wei, Physical Review B, 82, 195-203, 2010
    [23]. X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, International Journal of Photoenergy, 2014
    [24]. P. Fernandes, P. Salomé, A. Da Cunha, B.-A. Schubert, Thin Solid Films, 519, 7382-7385 , 2011
    [25]. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Applied physics express,1 , 041201, 2008
    [26]. F. Liu, Y. Li, K. Zhang, B. Wang, C. Yan, Y. Lai, Z. Zhang, J. Li, Y. Liu, Solar Energy Materials and Solar Cells, 94, 2431-2434 , 2010
    [27]. N. Momose, M.T. Htay, T. Yudasaka, S. Igarashi, T. Seki, S. Iwano, Y. Hashimoto, K. Ito, Japanese Journal of Applied Physics, 50, 2011
    [28]. T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa, Journal of Physics and Chemistry of Solids, 66, 1978-1981, 2005
    [29]. Y. Wang, H. Gong, Journal of the Electrochemical Society, 158, H800-H803, 2011
    [30]. Z.-H. XIONG, L. WANG, J.-G. ZHOU, J.-M. LIU, J.-Y. RAN, L.-J. ZHAO, Y.-Y. LIU, P.-K. CHEN, J.-H. LUO, G. ZHOU, Acta Phys Chim Sin, 26, 2890-2898, 2010
    [31]. H. Araki, A. Mikaduki, Y. Kubo, T. Sato, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Thin Solid Films, 517, 1457-1460 ,2008
    [32]. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Solar Energy Materials and Solar Cells, 49, 407-414 ,1997
    [33]. B.A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H.W. Schock, Progress in Photovoltaics: Research and Applications, 19, 93-96, 2011
    [34]. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Progress in Photovoltaics: Research and Applications, 21, 72-76, 2013
    [35]. H. Kim, A. Pique, J. Horwitz, H. Murata, Z. Kafafi, C. Gilmore, D. Chrisey, Thin Solid Films, 377, 798-802, 2000
    [36]. K. Moriya, K. Tanaka, H. Uchiki, Japanese Journal of Applied Physics, 46, 5780 ,2007
    [37]. K. Moriya, K. Tanaka, H. Uchiki, Japanese Journal of Applied Physics, 47, 602 ,2008
    [38]. L. Sun, J. He, H. Kong, F. Yue, P. Yang, J. Chu, Solar Energy Materials and Solar Cells, 95, 2907-2913, 2011
    [39]. K. Ramasamy, M.A. Malik, P. O'Brien, Chemical Science, 2, 1170-1172 ,2011
    [40]. T. Washio, T. Shinji, S. Tajima, T. Fukano, T. Motohiro, K. Jimbo, H. Katagiri, Journal of Materials Chemistry,22, 4021-4024 (2012).
    [41]. K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology, William Andrew, 2001
    [42]. J.D. Hoffman, G.T. Davis, J.I. Lauritzen Jr, Treatise on solid state chemistry, Springer, 497-614, 1976
    [43]. J. Lothe, G.M. Pound, The Journal of Chemical Physics, 36, 2080-2085, 1962
    [44]. Y. Cao, C.R. Wang, J.Q. Hu, Advanced Materials Research, 347, 848-851, 2012
    [45]. Y. F. Du, W.-H. Zhou, Y.-L. Zhou, P.-W. Li, J.-Q. Fan, J.-J. He, S.-X. Wu, Materials Science in Semiconductor Processing, 15, 214-217, 2012
    [46]. Z. Yan, A. Wei, Y. Zhao, J. Liu, X. Chen, Materials Letters, 111, 120-122, 2013
    [47]. Y.-L. Zhou, W.-H. Zhou, Y.-F. Du, M. Li, S.-X. Wu, Materials Letters, 65, 1535-1537, 2011
    [48]. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H. M. Cheng, Nature Materials, 10, 424-428, 2011
    [49]. 施敏, 李明逵, 曾俊元, 半導體元件物理與製作技術: 第三版, 初版. 新竹市: 國立交通大學出版社, 102AD.
    [50]. P.V. Zant, Microchip Fabrication, 3rd, McGraw-Hill, New York, 1996
    [51]. R.C. Jaeger, Introduction to Microelectronic Fabrication, Prentice Hall, New Jersey, 2001
    [52]. Y. Li, Q. Meng, J. Ma, C. Zhu, J. Cui, Z. Chen, Z. Guo, T. Zhang, S. Zhu, D. Zhang, ACS Appl. Mater. Interfaces, 7, 11146-11154, 2015
    [53]. A. Walsh, S. Chen, S.H. Wei, X.G. Gong, Advanced Energy Materials, 2, 400-409, 2012
    [54]. X. Yin, C. Tang, M. Chen, S. Adams, H. Wang, H. Gong, Journal of Materials Chemistry, 1, 7927-7932, 2013
    [55]. J. Hodkiewicz, Thermo Fisher Scientific, Madison, WI, USA, Application, 51946, 2010
    [56]. Z. Yan and A. R. Barron, OpenStax-CNX and licensed under the Creative Commons Attribution License, 3, 1-4, 2007
    [57]. A. Das, B. Chakraborty, A. K. Sood, Materials Science, 2007

    QR CODE