簡易檢索 / 詳目顯示

研究生: Mulugeta-Tesemma Kassa
Mulugeta-Tesemma Kassa
論文名稱: 氟基和氰基取代苯二馬來醯亞胺基電解質添加劑對鋰離子電池的影響研究
Studies on the Effects of Fluoro and Nitrile Substitution Phenylenedimaleimide Based Electrolyte Additives in Lithium Ion Battery
指導教授: 陳崇賢
Chorng-Shyan Chern
王復民
Fu-Ming Wang
口試委員: 陳崇賢
Chorng-Shyan Chern
王復民
Fu-Ming Wang
許榮木
Jung-Mu Hsu
楊純誠
Chun-Chen Yang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 191
中文關鍵詞: 鋰離子電池MCMB陽極LiCoO2陰極固體-電解液相馬來酰亞胺偶極矩立體配位氟官能化腈官能化吸電子電荷-偶極相互作用非水系電解質電化學測試
外文關鍵詞: Lithium ion battery, MCMB anode, iCoO2 cathode, Solid electrolyte interphase, Maleimide, Dipole moment, Stereoscopic coordination, Fluorofunctionalized, Nitrile functionalized, Electron withdrawing, Charge-dipole interaction, Non-aqueous electrolyte, Electrochemical test
相關次數: 點閱:391下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在鋰離子電池中,石墨陽極電極表面的催化特性導致非水系有機碳酸鹽溶劑/電解液的分解過量,促進了不可逆反應,並在SEI上形成緻密的離子絕緣產物,且增加了電池內部電阻阻抗,另外,SEI與電解液的反應以及電解液的分解產物(二次反應)引起了SEI的劣化,使得鋰離子電池的功率密度與能量密度下降。
    本文的首要動機是,進行鋰離子電池中具功能化的苯二甲基亞胺基電解液添加劑的合成與開發以及電解液添加劑之結構闡述,並通過對新添加劑的分子軌道性質進行理論研究來推斷其可還原性並評估其電化學特性。以陽極表面高勢下以1.1M LiPF6 -(EC / PC / DEC(2:3:5 v / v))電解液,在半電池與全電池系統中使用MCMB負極與LiCoO2正極所形成優質的SEI與CEI的可還原能力。因此,成功地合成了吸電子最多的官能團氟(F)和腈(-C≡N)取代苯二甲酰亞胺(MI),作為鋰離子電池中的電解液添加劑結構(F-MI 2F-MI與CN-MI)。
    第二個動機是研究顯著消除兩個電極的界面阻抗中的氟取代效應,由於減少了固液界面中LiF和Li2CO3的含量而提高了電池的性能。此研究表明,在雙馬來酰亞胺結構中氟取代的對稱設計(兩個氟取代)與非對稱設計(一個氟取代)之間,對稱設計有效地抑制了石墨表面上雙馬來酰亞胺中-C = C-的直接電化學還原,並根據偶極矩的高強度與碳酸亞乙酯反應。在循環伏安法電池測試中表明,由於添加了對稱氟取代修飾的雙馬來酰亞胺,因此取得了顯著改善。電池性能證明,通過對稱氟取代修飾的雙馬來酰亞胺能夠分別將陽極半電池的電容量和全電池在2 C時,C-rate的性能提高7%和164%。這些新穎的電解液添加劑不僅預防了在電解液與固體界面中不必要的生成反應,且還增強了固液界面在陰極電解液界面與兩電極表面中的離子擴散性與電化學反應的可逆性。最後通過電化學石英晶體微天平以及使用ATR模式對電解質中MI的影響進行了臨場傅里葉轉換紅外光光譜分析,並對所有電解液系統進行了電解液與固體界面所形成的動力學分析。
    在第三種動機中,研究了氟取代和腈取代的效果比較,由於在較高的還原電動勢(相對於Li / Li +)下,SEI層所形成原因如下:1)取決於電壓的事先還原所產生的電解液成分; 2)取代基的電負性效應會引起偶極環狀碳酸溶劑中電荷-偶極相的強烈相互作用,以及在非水體系中不可避免的雜質與鹽類的分解產物(根據添加劑的高極性); 3)在陰極表面化學吸附的添加劑分子,用於抑制高電壓下電解液的分解與共嵌入以及電解液的氧化。因此,在該電化學表徵中,具有CN-MI添加劑的MCMB陽極半電池在LiCoO2 / MCMB全電池研究中顯示出最低的阻抗具極高的可逆電容量,但性能卻不及F-MI。
    通過掃描式電子顯微鏡、X光射線電子能譜及核磁共振試驗陽極電極的形態和固體與電解液中間相的化學組成,以瞭解添加劑對MCMB電極表面形態組成之影響。因此,研究結果表示,由於在石墨陽極電池性能上優異的鈍化SEI之形成,得氟-腈取代的苯二甲基亞胺添加劑為合適的添加劑。
    關鍵字:鋰離子電池、MCMB陽極、LiCoO2陰極、固體-電解液相、馬來酰亞胺、偶極矩、立體配位、氟官能化、腈官能化、吸電子、電荷-偶極相互作用非水系電解質、電化學測試。


    Abstract
    In lithium ion battery, the catalytic nature of graphite anode electrode surface cause decomposition of non-aqueous organic carbonate solvents/electrolytes more than required, at the same time fostering irreversible reaction and formation of dense and ionic insulating products on SEI increases total cell impedance, in addition, the reaction of SEI with electrolytes and the decomposition products of electrolytes (secondary reaction) cause deterioration of SEI, ultimately decay of power density and energy density of lithium ion battery.
    The first motivation of this thesis is, carry out synthesis and development of functionalized phenylenedimaleimide based electrolyte additives in lithium ion battery, i.e. structural elucidations of electrolyte additives, evaluation of its electrochemical features through theoretical study of molecular orbital nature of new additives to deduce prior reducible ability at higher potential on anode surface and formation of quality SEI and CEI as well using MCMB as negative and LiCoO2 positive electrodes in half and full cell battery system in the presence of 1.1M LiPF6-(EC/PC/DEC(2:3:5 v/v)) electrolyte. Therefore, the most electron withdrawing functional groups, fluorine (F) and nitrile (-C≡N) substitution phenylenedimaleimide (MI) was successfully synthesized as F-MI 2F-MI and CN-MI used as an electrolyte additives in lithium ion batteries
    The second motivation is investigation of significantly eliminating effects of fluorosubstitution in the interface impedances of the two electrodes and improves the rate performance of batteries because of the reduced LiF and Li2CO3 content in a solid electrolyte interphase. This study indicates that, between the symmetric (two fluorosubstitutions) and asymmetric (one fluoro substitution) designs of fluorosubstitution in bismaleimide structures, the symmetric design effectively inhibits the direct electrochemical reduction of –C=C- in bismaleimide on a graphite surface and reacts with ethylene carbonate in accordance with the high strength of the dipole moment. Cyclic voltammetry and battery measurements indicate considerable improvements due to the addition of bismaleimide modified through symmetric fluorosubstitution. Battery performance demonstrated that the addition of bismaleimide modified through symmetric fluorosubstitution was able to increase the capacity for anode half-cells and c-rate performance for full cells at 2 C by 7% and 164%, respectively. These novel electrolyte additives not only prevented unnecessary compound formations in the solid electrolyte interphase but also enhanced the ionic diffusivity and reversibility of the electrochemical reaction in the solid electrolyte interphase, cathode electrolyte interphase, and two-electrode surfaces. A kinetic analysis of solid electrolyte interphase formation was also performed on all electrolyte systems through an electrochemical quartz crystal microbalance and ex situ Fourier-Transform Infrared Spectroscopy analysis of the effect of MI in an electrolyte using ATR mode.
    In the third motivation, the comparative effects of fluoro and nitrile substitutions are investigated, which arise from the SEI layer formation at higher reduction potential vs Li/Li+ due to 1) voltage dependent prior reduction to electrolyte component; 2) strong charge-dipole interactions with dipolar cyclic carbonated solvents, with unavoidable impurities in non-aqueous systems and decomposition products of salt in accordance with high polarity of additives arise from electronegativity effect of substituents; 3) chemisorbed additive molecules on the surface of cathode, which is used to suppressing the decomposition and co-intercalation of electrolytes and electrolyte oxidation at high charging voltage. Thus, in this electrochemical characterizations, MCMB anode half-cell battery with CN‐MI additive showed, the lowest impedance growth and higher reversible capacity but less perform than F-MI in LiCoO2/MCMB full-cell study
    The morphology of the anode electrode and chemical composition of the solid electrolyte interphase were examined through scanning electron microscopy, X-ray photoelectron spectroscopy, and nuclear magnetic resonance in order to understand the effects of additive on the morphology and composition of MCMB electrode surface. Therefore the result of the study show that fluoro and nitrile substituted phenylenedimaleimide additives are suitable additives due to its excellent passivating SEI formation on graphite anode based battery performance improvement endeavors.

    Keywords: Lithium ion battery, MCMB anode, LiCoO2 cathode, Solid electrolyte interphase, Maleimide, Dipole moment, Stereoscopic coordination, Fluorofunctionalized, Nitrile functionalized, Electron withdrawing, Charge-dipole interaction, Non-aqueous electrolyte, Electrochemical test.

    Table of Contents 摘要 i Abstract iii Acknowledgments vi Table of Contents viii List of Figures xii List of schemes xvi List of Tables xvii List of Abbreviations and Symbols Used xviii Chapter I Introduction 1 1.1 Background 1 1.2 Lithium Ion Battery Cell Components 9 1.2.1 Cathode Materials in Lithium Ion battery 10 1.2.2 Anode Materials in Lithium Ion Battery 13 1.2.3 Electrolytes in Lithium Ion Battery 17 1.2.3.1 Electrolyte Solvents in Lithium Ion Battery 19 1.2.4 Separator in Lithium Ion Battery 22 Chapter II Literature Review 24 2.1 Electrolyte Additives in Lithium Ion Battery 24 2.1.1 Cathode Protection Additives 25 2.1.2 Safety Protection Additives in Lithium-Ion Batteries 28 2.1.3 Additive to Lower the Flammability of the Liquid Electrolytes in Lithium Ion Battery 30 2.1.4 Electrolyte Additive to Safety Concern with Lithium Salts in Lithium Ion Battery 31 2.1.5 Solid Electrolyte Interphase (SEI) and Electrolyte Additives That Improve Its Formation 33 2.1.6 Reduction-Type Additive 39 2.1.7 Reaction-Type Additive 42 2.1.8 Maleimide Based Electrolyte Additives in Lithium Ion Battery 44 2.2. Functional Groups Effect on Maleimide Based Electrolyte Additives 47 2.2.1 Fluoro Functionalized Maleimide based Electrolyte Additives in Lithium Ion Battery 48 2.2.2 Nitrile Functionalized Maleimide based Electrolyte Additives in Lithium Ion Battery 50 2.3 Research Innovation 51 Chapter III Methodology 54 3.1 Research Design 54 3.2 Materials and Reagents 55 3.3 Equipment 56 3.4 Experimental Procedure 57 3.4.1 Synthesis of Functionalized Electrolyte Additives 57 3.4.1.1 Hydrogenation steps for synthesis of 4-Fluoro-ortho-phenylenedimaleimide (F-MI) 57 3.4.1.2 Hydrogenation steps for synthesis procedure of 4, 5-difluoro-ortho phenylenedimaleimide (2FMI) 59 3.4.1.3 Dehydration (cyclization) steps for synthesis of 4-cyano-ortho-phenylenedimaleimide (CN-MI) 60 3.4.2 Density Functional Theory (DFT) calculations 61 3.4.3 Electrolyte and Electrode Preparation 62 3.4.4 Electrochemical Measurements and Characterizations 63 3.4. 4.1 Electrochemical Measurements 63 3.4. 4.2 Cyclic voltammetry measurements 65 3.4.4.3 Electrochemical Impedance Spectroscopy (EIS) Analysis 67 3.4.4.4 Electrochemical quartz crystal microbalance (EQCM) 69 3.5 Analytical Spectroscopic and Electron Microscopic Characterization of SEI 71 3.5.1 Fourier-Transform Infrared Spectroscopy (FTIR) Analysis 71 3.5.2 Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS) 74 3.5.3 X-ray Photoelectron Spectroscopy (XPS) 74 3.5.4 Nuclear Magnetic Resonance (NMR) Spectroscopy 76 Chapter IV Analytical Spectroscopic Characterization of Electrolyte Additives for Molecular Structure Elucidation 78 4.1 Structural Elucidation of 4-Fluoro-1, 2-Phenylenediamine and 4-Fluoro Phenylenedimaleimide (FMI) 78 4.2 Structural Elucidation of 4, 5-difluoro-phenylenediamine and 4, 5-difluoro-phenylenedimaleimide (2FMI) 82 4.3 Structural Elucidation of 4-Cyano-phenylenedimaleimide (CN-MI) 85 4.4 ATR-FTIR Spectra Analysis of Functionalized Phenylenemaleimide Based Electrolyte Additive Molecules 88 Chapter V Investigation of the Dipole Moment Effects of Fluorofunctionalized Electrolyte Additives in a Lithium Ion Battery 89 5.1 Introduction 89 5.2 Results and Discussion 91 5.2.1 Cyclic Voltammetry Analysis of Electrolytes 91 5.2.2 Battery Performance and EIS Analysis of MCMB Half Cells 94 5.2.3. Ex Situ Fourier-Transform Infrared Spectroscopy Analysis of the Effect of MI in an Electrolyte 96 5.2.4 SEM and XPS Analysis of the MCMB Surface 100 5.2.5 EQCM and NMR Analysis of SEI 103 5.2.6 EIS Analysis and c-Rate Measurements of a Full Cell 106 5.2.7 Proposed Reaction Mechanism of the SEI 107 5.3 Conclusion 108 Chapter VI Studies on Comparative Effects of Fluoro and Nitrile Functional Group Substitution Phenylenemaleimide Based Electrolyte Additives in Lithium Ion Battery 109 6.1 Introduction 109 6.2 Results and discussions 112 6.2.1 Cyclic Voltammetry Analysis of Substituent Induced Property of Electrolytes and MI Additives 112 6.2.2 Charge Discharge Characteristics of Li/MCMB Half-Cell with Additives 115 6.2.3 Cycle-Ability Analysis of Li/MCMB Half-Cell Using MI Additives 117 6.2.4 Analysis of Electrochemical Impedance Spectroscopy 119 6.2.5 Cell Performance of LiCoO2/MCMB Full Cell with Additives 120 6.2.6 Cycle-Ability Analysis of LiCoO2/MCMB Full Cell LIB with Additives 121 6.2.7 Rate Capability Analysis of LiCoO2/MCMB Full Cell 123 6.2.8 Electrochemical Impedance Spectroscopy Studies on LiCoO2/MCMB Full Cell 124 6.2.9 SEM analysis of MCMB surface 126 6.2.10 Surface composition analysis of the MCMB electrodes 127 6.3 Conclusions 130 Chapter VII Conclusion and Future work 131 References 134 Appendix 163 CURRICULUM VITAE 167

    References
    [1] S. Pachauri, D. Spreng, Energy use and energy access in relation to poverty, Economic and Political weekly, (2004) 271-278.
    [2] G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives, Renewable and Sustainable Energy Reviews, 89 (2018) 292-308.
    [3] N. Panwar, S. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable and Sustainable Energy Reviews, 15 (2011) 1513-1524.
    [4] N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double‐layer capacitors, Angewandte Chemie International Edition, 51 (2012) 9994-10024.
    [5] T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage, Energy & Environmental Science, 11 (2018) 2696-2767.
    [6] R.E. Hester, R.M. Harrison, Energy Storage Options and Their Environmental Impact, Royal Society of Chemistry, 2018.
    [7] D.N. Buckley, C. O'Dwyer, N. Quill, R.P. Lynch, Electrochemical energy storage, Energy Storage Options and Their Environmental Impact, 46 (2018) 115.
    [8] H. Shao, P. Narayanasamy, K.M. Razeeb, R.P. Lynch, F.M. Rhen, Electrical Storage, Energy Storage Options and Their Environmental Impact, 46 (2018) 150.
    [9] A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, in: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific, 2011, pp. 148-159.
    [10] M. Winter, R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?(Chem. Rev. 2003, 104, 4245− 4269. Published on the Web 09/28/2004.), Chemical reviews, 105 (2005) 1021-1021.
    [11] W. Xue, L. Miao, L. Qie, C. Wang, S. Li, J. Wang, J. Li, Gravimetric and volumetric energy densities of lithium-sulfur batteries, Current Opinion in Electrochemistry, 6 (2017) 92-99.
    [12] D. Deng, Li‐ion batteries: basics, progress, and challenges, Energy Science & Engineering, 3 (2015) 385-418.
    [13] B. Scrosati, Recent advances in lithium ion battery materials, Electrochimica Acta, 45 (2000) 2461-2466.
    [14] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science, 334 (2011) 928-935.
    [15] E.M. Erickson, E. Markevich, G. Salitra, D. Sharon, D. Hirshberg, E. de la Llave, I. Shterenberg, A. Rosenman, A. Frimer, D. Aurbach, Development of advanced rechargeable batteries: a continuous challenge in the choice of suitable electrolyte solutions, Journal of The Electrochemical Society, 162 (2015) A2424-A2438.
    [16] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, in: Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 2011, pp. 171-179.
    [17] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Insertion electrode materials for rechargeable lithium batteries, Advanced materials, 10 (1998) 725-763.
    [18] D. Deng, M.G. Kim, J.Y. Lee, J. Cho, Green energy storage materials: Nanostructured TiO 2 and Sn-based anodes for lithium-ion batteries, Energy & Environmental Science, 2 (2009) 818-837.
    [19] P. Yang, J.-M. Tarascon, Towards systems materials engineering, Nature materials, 11 (2012) 560.
    [20] J. Wen, Y. Yu, C. Chen, A review on lithium-ion batteries safety issues: existing problems and possible solutions, Materials express, 2 (2012) 197-212.
    [21] C. Laslau, A. Gandolfo, K. See, D. Frankel, Crossing the Line: Li-ion Battery Cost Reduction and Its Effect on Vehicles and Stationary Storage, Lux Research, (2015).
    [22] M. Lazzari, B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes, Journal of The Electrochemical Society, 127 (1980) 773-774.
    [23] K. Abraham, Prospects and limits of energy storage in batteries, The journal of physical chemistry letters, 6 (2015) 830-844.
    [24] T.B. Reddy, Linden's handbook of batteries, McGraw-hill New York, 2011.
    [25] M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries, Chemical reviews, 113 (2013) 5364-5457.
    [26] L.S. Roselin, R.-S. Juang, C.-T. Hsieh, S. Sagadevan, A. Umar, R. Selvin, H.H. Hegazy, Recent Advances and Perspectives of Carbon-Based Nanostructures as Anode Materials for Li-ion Batteries, Materials, 12 (2019) 1229.
    [27] K. Richa, C.W. Babbitt, G. Gaustad, X. Wang, A future perspective on lithium-ion battery waste flows from electric vehicles, Resources, Conservation and Recycling, 83 (2014) 63-76.
    [28] L.A.W. Ellingsen, G. Majeau‐Bettez, B. Singh, A.K. Srivastava, L.O. Valøen, A.H. Strømman, Life cycle assessment of a lithium‐ion battery vehicle pack, Journal of Industrial Ecology, 18 (2014) 113-124.
    [29] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials today, 18 (2015) 252-264.
    [30] N. Kim, S. Chae, J. Ma, M. Ko, J. Cho, Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes, Nature communications, 8 (2017) 812.
    [31] H. Honbo, K. Takei, Y. Ishii, T. Nishida, Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding, Journal of Power Sources, 189 (2009) 337-343.
    [32] Z. Li, J. Huang, B.Y. Liaw, V. Metzler, J. Zhang, A review of lithium deposition in lithium-ion and lithium metal secondary batteries, Journal of power sources, 254 (2014) 168-182.
    [33] M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, R. Staniewicz, Main aging mechanisms in Li ion batteries, Journal of power sources, 146 (2005) 90-96.
    [34] M. Petzl, M.A. Danzer, Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries, Journal of Power Sources, 254 (2014) 80-87.
    [35] W. Lu, C.M. López, N. Liu, J.T. Vaughey, A. Jansen, Overcharge effect on morphology and structure of carbon electrodes for lithium-ion batteries, Journal of the Electrochemical Society, 159 (2012) A566-A570.
    [36] C. Uhlmann, J. Illig, M. Ender, R. Schuster, E. Ivers-Tiffée, In situ detection of lithium metal plating on graphite in experimental cells, Journal of Power Sources, 279 (2015) 428-438.
    [37] N. Legrand, B. Knosp, P. Desprez, F. Lapicque, S. Raël, Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling, Journal of Power Sources, 245 (2014) 208-216.
    [38] J. Burns, D. Stevens, J. Dahn, In-situ detection of lithium plating using high precision coulometry, Journal of The Electrochemical Society, 162 (2015) A959-A964.
    [39] M. Tang, P. Albertus, J. Newman, Two-dimensional modeling of lithium deposition during cell charging, Journal of The Electrochemical Society, 156 (2009) A390-A399.
    [40] Q. Liu, C. Du, B. Shen, P. Zuo, X. Cheng, Y. Ma, G. Yin, Y. Gao, Understanding undesirable anode lithium plating issues in lithium-ion batteries, RSC Advances, 6 (2016) 88683-88700.
    [41] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, Journal of power sources, 208 (2012) 210-224.
    [42] D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid state ionics, 148 (2002) 405-416.
    [43] A. Manthiram, Materials for High-energy Density Batteries, in: Energy Harvesting Technologies, Springer, 2009, pp. 365-385.
    [44] K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chemical reviews, 114 (2014) 11503-11618.
    [45] M.-K. Song, S. Park, F.M. Alamgir, J. Cho, M. Liu, Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives, Materials Science and Engineering: R: Reports, 72 (2011) 203-252.
    [46] C. Daniel, D. Mohanty, J. Li, D.L. Wood, Cathode materials review, in: AIP Conference Proceedings, AIP, 2014, pp. 26-43.
    [47] A. Kraytsberg, Y. Ein‐Eli, Higher, Stronger, Better… ︁ A Review of 5 Volt Cathode Materials for Advanced Lithium‐Ion Batteries, Advanced Energy Materials, 2 (2012) 922-939.
    [48] J. Ma, P. Hu, G. Cui, L. Chen, Surface and interface issues in spinel LiNi0. 5Mn1. 5O4: insights into a potential cathode material for high energy density lithium ion batteries, Chemistry of Materials, 28 (2016) 3578-3606.
    [49] A. Manthiram, J.C. Knight, S.T. Myung, S.M. Oh, Y.K. Sun, Nickel‐rich and lithium‐rich layered oxide cathodes: progress and perspectives, Advanced Energy Materials, 6 (2016) 1501010.
    [50] W. Li, B. Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries, Chemical Society Reviews, 46 (2017) 3006-3059.
    [51] B. Qiu, M. Zhang, Y. Xia, Z. Liu, Y.S. Meng, Understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries, Chemistry of Materials, 29 (2017) 908-915.
    [52] L. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density, Chemical Society Reviews, 47 (2018) 6505-6602.
    [53] M. Xie, T. Hu, L. Yang, Y. Zhou, Synthesis of high-voltage (4.7 V) LiCoO 2 cathode materials with Al doping and conformal Al 2 O 3 coating by atomic layer deposition, Rsc Advances, 6 (2016) 63250-63255.
    [54] A. Mishra, A. Mehta, S. Basu, S.J. Malode, N.P. Shetti, S.S. Shukla, M.N. Nadagouda, T.M. Aminabhavi, Electrode materials for lithium-ion batteries, Materials Science for Energy Technologies, 1 (2018) 182-187.
    [55] M. Thackeray, Lithium-ion batteries: An unexpected conductor, Nature materials, 1 (2002) 81.
    [56] K. Zaghib, F. Brochu, A. Guerfi, K. Kinoshita, Effect of particle size on lithium intercalation rates in natural graphite, Journal of power sources, 103 (2001) 140-146.
    [57] K. Fukuda, K. Kikuya, K. Isono, M. Yoshio, Foliated natural graphite as the anode material for rechargeable lithium-ion cells, Journal of power sources, 69 (1997) 165-168.
    [58] M. Herstedt, L. Fransson, K. Edström, Rate capability of natural Swedish graphite as anode material in Li-ion batteries, Journal of power sources, 124 (2003) 191-196.
    [59] S. Yang, H. Song, X. Chen, Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries, Electrochemistry communications, 8 (2006) 137-142.
    [60] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, Journal of power sources, 257 (2014) 421-443.
    [61] S. Megahed, B. Scrosati, Lithium-ion rechargeable batteries, Journal of Power Sources, 51 (1994) 79-104.
    [62] T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, Solvated Li-ion transfer at interface between graphite and electrolyte, Journal of The Electrochemical Society, 151 (2004) A1120-A1123.
    [63] J. Yao, G. Wang, J.-h. Ahn, H.-K. Liu, S. Dou, Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells, Journal of power sources, 114 (2003) 292-297.
    [64] M.-D. Fang, T.-H. Ho, J.-P. Yen, Y.-R. Lin, J.-L. Hong, S.-H. Wu, J.-J. Jow, Preparation of advanced carbon anode materials from mesocarbon microbeads for use in high C-rate lithium ion batteries, Materials, 8 (2015) 3550-3561.
    [65] J. Yang, X.-y. Zhou, J. Li, Y.-l. Zou, J.-j. Tang, Study of nano-porous hard carbons as anode materials for lithium ion batteries, Materials Chemistry and Physics, 135 (2012) 445-450.
    [66] K. Guérin, M. Ménétrier, A. Février-Bouvier, S. Flandrois, B. Simon, P. Biensan, A 7Li NMR study of a hard carbon for lithium–ion rechargeable batteries, Solid State Ionics, 127 (2000) 187-198.
    [67] H. Li, Z. Wang, L. Chen, X. Huang, Research on advanced materials for Li‐ion batteries, Advanced materials, 21 (2009) 4593-4607.
    [68] A. Mabuchi, K. Tokumitsu, H. Fujimoto, T. Kasuh, Charge‐discharge characteristics of the mesocarbon miocrobeads heat‐treated at different temperatures, Journal of the Electrochemical Society, 142 (1995) 1041-1046.
    [69] D. Billaud, E. McRae, A. Hérold, Synthesis and electrical resistivity of lithium-pyrographite intercalation compounds (stages I, II and III), Materials Research Bulletin, 14 (1979) 857-864.
    [70] D. Fauteux, R. Koksbang, Rechargeable lithium battery anodes: alternatives to metallic lithium, Journal of applied electrochemistry, 23 (1993) 1-10.
    [71] A. Shukla, T.P. Kumar, Materials for next-generation lithium batteries, Current science, 94 (2008) 314-331.
    [72] N. Dimov, Y. Xia, M. Yoshio, Practical silicon-based composite anodes for lithium-ion batteries: fundamental and technological features, Journal of Power Sources, 171 (2007) 886-893.
    [73] M. Winter, J.O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochimica Acta, 45 (1999) 31-50.
    [74] W. Qi, J.G. Shapter, Q. Wu, T. Yin, G. Gao, D. Cui, Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives, Journal of Materials Chemistry A, 5 (2017) 19521-19540.
    [75] D. Deng, J.Y. Lee, Meso-oblate spheroids of thermal-stabile linker-free aggregates with size-tunable subunits for reversible lithium storage, ACS applied materials & interfaces, 6 (2014) 1173-1179.
    [76] J.R. Szczech, S. Jin, Nanostructured silicon for high capacity lithium battery anodes, Energy & Environmental Science, 4 (2011) 56-72.
    [77] L. Xia, L. Yu, D. Hu, G.Z. Chen, Electrolytes for electrochemical energy storage, Materials Chemistry Frontiers, 1 (2017) 584-618.
    [78] Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy & Environment, 1 (2016) 18-42.
    [79] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical reviews, 104 (2004) 4303-4418.
    [80] Y. Sasaki, Organic electrolytes of secondary lithium batteries, Electrochemistry, 76 (2008) 2-15.
    [81] D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.-J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochimica Acta, 50 (2004) 247-254.
    [82] T.R. Jow, K. Xu, O. Borodin, M. Ue, Electrolytes for lithium and lithium-ion batteries, Springer, 2014.
    [83] H.-B. Han, S.-S. Zhou, D.-J. Zhang, S.-W. Feng, L.-F. Li, K. Liu, W.-F. Feng, J. Nie, H. Li, X.-J. Huang, Lithium bis (fluorosulfonyl) imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties, Journal of Power Sources, 196 (2011) 3623-3632.
    [84] Y. Hu, H. Li, X. Huang, L. Chen, Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries, Electrochemistry communications, 6 (2004) 28-32.
    [85] R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li–metal, Li–O 2, and Li–S, Energy & Environmental Science, 8 (2015) 1905-1922.
    [86] H. Yang, G.V. Zhuang, P.N. Ross Jr, Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6, Journal of Power Sources, 161 (2006) 573-579.
    [87] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science, 4 (2011) 3243-3262.
    [88] D. Yaakov, Y. Gofer, D. Aurbach, I.C. Halalay, On the study of electrolyte solutions for Li-ion batteries that can work over a wide temperature range, Journal of The Electrochemical Society, 157 (2010) A1383-A1391.
    [89] G. Zeng, Y. An, S. Xiong, J. Feng, Non-flammable Fluorinated Carbonate Electrolyte with High Salt-to-solvent Ratios Enables Stable Silicon-based Anode for Next Generation Lithium-ion Batteries, ACS Applied Materials & Interfaces, (2019).
    [90] P. Arora, R.E. White, M. Doyle, Capacity fade mechanisms and side reactions in lithium‐ion batteries, Journal of the Electrochemical Society, 145 (1998) 3647-3667.
    [91] R. Kannan, D. Rajan, P.K. Terala, P.L. Moss, M.H. Weatherspoon, Analysis of the Separator Thickness and Porosity on the Performance of Lithium-Ion Batteries, International Journal of Electrochemistry, 2018 (2018).
    [92] D. Carvalho, N. Loeffler, G.-T. Kim, S. Passerini, High temperature stable separator for lithium batteries based on SiO2 and hydroxypropyl guar gum, Membranes, 5 (2015) 632-645.
    [93] Y. Wang, S. Zhu, D. Sun, Y. Jin, Preparation and evaluation of a separator with an asymmetric structure for lithium-ion batteries, RSC Advances, 6 (2016) 105461-105468.
    [94] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy & Environmental Science, 7 (2014) 3857-3886.
    [95] L. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, H. Wu, Surface modifications of electrode materials for lithium ion batteries, Solid State Sciences, 8 (2006) 113-128.
    [96] R.S. Baldwin, W.R. Bennet, E.K. Wong, M.R. Lewton, M.K. Harris, Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries, (2010).
    [97] C.J. Weber, S. Geiger, S. Falusi, M. Roth, Material review of Li ion battery separators, in: AIP Conference Proceedings, AIP, 2014, pp. 66-81.
    [98] W.L. Wang, E.M. Jin, H.-B. Gu, Electrochemical performance of lithium iron phosphate by adding graphite nanofiber for lithium ion batteries, Transactions on Electrical and Electronic Materials, 13 (2012) 121-124.
    [99] K. Xu, Electrolytes and interphasial chemistry in Li ion devices, Energies, 3 (2010) 135-154.
    [100] S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources, 162 (2006) 1379-1394.
    [101] E. Wang, D. Ofer, W. Bowden, N. Iltchev, R. Moses, K. Brandt, Stability of lithium ion spinel cells. III. Improved life of charged cells, Journal of The Electrochemical Society, 147 (2000) 4023-4028.
    [102] M.-J. Lee, S. Lee, P. Oh, Y. Kim, J. Cho, High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries, Nano letters, 14 (2014) 993-999.
    [103] K. Edström, T. Gustafsson, J.O. Thomas, The cathode–electrolyte interface in the Li-ion battery, Electrochimica Acta, 50 (2004) 397-403.
    [104] T. Huang, X. Zheng, G. Fang, Y. Pan, W. Wang, M. Wu, A novel electrolyte additive for improving the interfacial stability of LiMn 2 O 4 cathode lithium-ion batteries at elevated temperature, RSC advances, 8 (2018) 38831-38835.
    [105] M.Y. Saidi, F. Gao, J. Barker, C. Scordilis-Kelley, Additive to stabilize electrochemical cell, in, Google Patents, 1998.
    [106] K. Takechi, A. Koiwai, T. Shiga, Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery, in, Google Patents, 2000.
    [107] W. Li, B.L. Lucht, Inhibition of solid electrolyte interface formation on cathode particles for lithium-ion batteries, Journal of Power Sources, 168 (2007) 258-264.
    [108] H. Zhao, X. Yu, J. Li, B. Li, H. Shao, L. Li, Y. Deng, Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook, Journal of Materials Chemistry A, 7 (2019) 8700-8722.
    [109] Y.P. Stenzel, F. Horsthemke, M. Winter, S. Nowak, Chromatographic Techniques in the Research Area of Lithium Ion Batteries: Current State-of-the-Art, Separations, 6 (2019) 26.
    [110] D. Aurbach, M. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider, R. Oesten, Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques, Journal of Power Sources, 81 (1999) 472-479.
    [111] R. Hausbrand, D. Becker, W. Jaegermann, A surface science approach to cathode/electrolyte interfaces in Li-ion batteries: Contact properties, charge transfer and reactions, Progress in Solid State Chemistry, 42 (2014) 175-183.
    [112] J. Zhang, L. Zhang, F. Sun, Z. Wang, An overview on thermal safety issues of lithium-ion batteries for electric vehicle application, IEEE Access, 6 (2018) 23848-23863.
    [113] Z. Chen, Y. Qin, K. Amine, Redox shuttles for safer lithium-ion batteries, Electrochimica Acta, 54 (2009) 5605-5613.
    [114] A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science, 9 (2016) 1955-1988.
    [115] S. Narayanan, S. Surampudi, A. Attia, C. Bankston, Analysis of Redox Additive‐Based Overcharge Protection for Rechargeable Lithium Batteries, Journal of the electrochemical Society, 138 (1991) 2224-2229.
    [116] G. GirishKumar, W.H. Bailey, B.K. Peterson, W.J. Casteel, Electrochemical and Spectroscopic Investigations of the Overcharge Behavior of StabiLife Electrolyte Salts in Lithium-Ion Batteries, Journal of The Electrochemical Society, 158 (2011) A146-A153.
    [117] T. Kashiwagi, J.W. Gilman, K.M. Butler, R.H. Harris, J.R. Shields, A. Asano, Flame retardant mechanism of silica gel/silica, Fire and materials, 24 (2000) 277-289.
    [118] A. Granzow, Flame retardation by phosphorus compounds, Accounts of Chemical Research, 11 (1978) 177-183.
    [119] X. Wang, E. Yasukawa, S. Kasuya, Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties, Journal of The Electrochemical Society, 148 (2001) A1058-A1065.
    [120] X. Yao, S. Xie, C. Chen, Q. Wang, J. Sun, Y. Li, S. Lu, Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries, Journal of power sources, 144 (2005) 170-175.
    [121] K. Xu, M.S. Ding, S. Zhang, J.L. Allen, T.R. Jow, An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes, Journal of The Electrochemical Society, 149 (2002) A622-A626.
    [122] K. Xu, S. Zhang, J.L. Allen, T.R. Jow, Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate, Journal of The Electrochemical Society, 149 (2002) A1079-A1082.
    [123] T.R. Jow, K. Xu, S. Zhang, M.S. Ding, Nonflammable non-aqueous electrolyte and non-aqueous electrolyte cells comprising the same, in, Google Patents, 2005.
    [124] K. Xu, S. Zhang, J.L. Allen, T.R. Jow, Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: II. Performance in cell, Journal of The Electrochemical Society, 150 (2003) A170-A175.
    [125] X. Li, W. Li, L. Chen, Y. Lu, Y. Su, L. Bao, J. Wang, R. Chen, S. Chen, F. Wu, Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multi-functional flame retardant electrolyte additive for lithium-ion batteries, Journal of Power Sources, 378 (2018) 707-716.
    [126] E. Peled, S. Menkin, SEI: past, present and future, Journal of The Electrochemical Society, 164 (2017) A1703-A1719.
    [127] P. Ping, Q. Wang, J. Sun, H. Xiang, C. Chen, Thermal stabilities of some lithium salts and their electrolyte solutions with and without contact to a LiFePO4 electrode, Journal of the Electrochemical Society, 157 (2010) A1170-A1176.
    [128] X. Chen, W. Xu, M.H. Engelhard, J. Zheng, Y. Zhang, F. Ding, J. Qian, J.-G. Zhang, Mixed salts of LiTFSI and LiBOB for stable LiFePO 4-based batteries at elevated temperatures, Journal of Materials Chemistry A, 2 (2014) 2346-2352.
    [129] D.-T. Shieh, P.-H. Hsieh, M.-H. Yang, Effect of mixed LiBOB and LiPF6 salts on electrochemical and thermal properties in LiMn2O4 batteries, Journal of Power Sources, 174 (2007) 663-667.
    [130] N.N. Sinha, J. Burns, R. Sanderson, J. Dahn, Comparative studies of hardware corrosion at high potentials in coin-type cells with non aqueous electrolytes, Journal of The Electrochemical Society, 158 (2011) A1400-A1403.
    [131] S. Sloop, J. Pugh, S. Wang, J. Kerr, K. Kinoshita, Chemical Reactivity of PF 5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions, Electrochemical and Solid-State Letters, 4 (2001) A42-A44.
    [132] V. Aravindan, J. Gnanaraj, S. Madhavi, H.K. Liu, Lithium‐ion conducting electrolyte salts for lithium batteries, Chemistry–A European Journal, 17 (2011) 14326-14346.
    [133] S. Zhang, K. Xu, T. Jow, A thermal stabilizer for LiPF6-based electrolytes of Li-ion cells, Electrochemical and solid-state letters, 5 (2002) A206-A208.
    [134] S. Zhang, K. Xu, T. Jow, Tris (2, 2, 2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries, Journal of Power Sources, 113 (2003) 166-172.
    [135] X. Wang, H. Naito, Y. Sone, G. Segami, S. Kuwajima, New Additives to Improve the First-Cycle Charge–Discharge Performance of a Graphite Anode for Lithium-Ion Cells, Journal of The Electrochemical Society, 152 (2005) A1996-A2001.
    [136] W. Appel, S. Pasenok, Electrolyte system for lithium batteries and use of said system, and method for increasing the safety of lithium batteries, in, Google Patents, 2000.
    [137] W. Li, C. Campion, B.L. Lucht, B. Ravdel, J. DiCarlo, K. Abraham, Additives for stabilizing LiPF6-based electrolytes against thermal decomposition, Journal of The Electrochemical Society, 152 (2005) A1361-A1365.
    [138] A. Dey, Film formation on lithium anode in propylene carbonate, J. Electrochem. Soc, 117 (1970) C248.
    [139] E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model, Journal of The Electrochemical Society, 126 (1979) 2047-2051.
    [140] E. Peled, D. Golodnitsky, G. Ardel, Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes, Journal of The Electrochemical Society, 144 (1997) L208-L210.
    [141] D. Aurbach, B. Markovsky, M. Levi, E. Levi, A. Schechter, M. Moshkovich, Y. Cohen, New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries, Journal of power sources, 81 (1999) 95-111.
    [142] M. Winter, The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries, Zeitschrift für physikalische Chemie, 223 (2009) 1395-1406.
    [143] P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, 55 (2010) 6332-6341.
    [144] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chemistry of materials, 22 (2009) 587-603.
    [145] J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.-C. Möller, J. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Ageing mechanisms in lithium-ion batteries, Journal of power sources, 147 (2005) 269-281.
    [146] V.A. Agubra, J.W. Fergus, The formation and stability of the solid electrolyte interface on the graphite anode, Journal of Power Sources, 268 (2014) 153-162.
    [147] P. Lu, S.J. Harris, Lithium transport within the solid electrolyte interphase, Electrochemistry Communications, 13 (2011) 1035-1037.
    [148] S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105 (2016) 52-76.
    [149] H. Bryngelsson, M. Stjerndahl, T. Gustafsson, K. Edström, How dynamic is the SEI?, Journal of Power Sources, 174 (2007) 970-975.
    [150] K. Xu, S. Zhang, T.R. Jow, Formation of the graphite/electrolyte interface by lithium bis (oxalato) borate, Electrochemical and solid-state letters, 6 (2003) A117-A120.
    [151] S. Zhang, K. Xu, T. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries, Electrochimica acta, 49 (2004) 1057-1061.
    [152] S. Zhang, K. Xu, T. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery, Electrochimica acta, 51 (2006) 1636-1640.
    [153] A.C. Kozen, C.-F. Lin, A.J. Pearse, M.A. Schroeder, X. Han, L. Hu, S.-B. Lee, G.W. Rubloff, M. Noked, Next-generation lithium metal anode engineering via atomic layer deposition, ACS nano, 9 (2015) 5884-5892.
    [154] M. Morita, M. Ishikawa, Y. Matsuda, Organic electrolytes for rechargeable lithium ion batteries, Lithium Ion Batteries: Fundamentals and Performance, (1998) 156-180.
    [155] P. Peljo, H.H. Girault, Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception, Energy & Environmental Science, 11 (2018) 2306-2309.
    [156] P. Jankowski, W. Wieczorek, P. Johansson, SEI-forming electrolyte additives for lithium-ion batteries: development and benchmarking of computational approaches, Journal of molecular modeling, 23 (2017) 6.
    [157] A.L. Michan, B.S. Parimalam, M. Leskes, R.N. Kerber, T. Yoon, C.P. Grey, B.L. Lucht, Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation, Chemistry of Materials, 28 (2016) 8149-8159.
    [158] B. Zhang, M. Metzger, S. Solchenbach, M. Payne, S. Meini, H.A. Gasteiger, A. Garsuch, B.L. Lucht, Role of 1, 3-propane sultone and vinylene carbonate in solid electrolyte interface formation and gas generation, The Journal of Physical Chemistry C, 119 (2015) 11337-11348.
    [159] G.H. Wrodnigg, J.O. Besenhard, M. Winter, Ethylene Sulfite as Electrolyte Additive for Lithium‐Ion Cells with Graphitic Anodes, Journal of The Electrochemical Society, 146 (1999) 470-472.
    [160] W. Yao, Z. Zhang, J. Gao, J. Li, J. Xu, Z. Wang, Y. Yang, Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries, Energy & Environmental Science, 2 (2009) 1102-1108.
    [161] Z. Ding, X. Li, T. Wei, Z. Yin, X. Li, Improved compatibility of graphite anode for lithium ion battery using sulfuric esters, Electrochimica Acta, 196 (2016) 622-628.
    [162] Z.A. Ghazi, X. He, A.M. Khattak, N.A. Khan, B. Liang, A. Iqbal, J. Wang, H. Sin, L. Li, Z. Tang, MoS2/Celgard separator as efficient polysulfide barrier for long‐life lithium–sulfur batteries, Advanced materials, 29 (2017) 1606817.
    [163] G.V. Zhuang, H. Yang, B. Blizanac, P.N. Ross, A study of electrochemical reduction of ethylene and propylene carbonate electrolytes on graphite using ATR-FTIR spectroscopy, Electrochemical and Solid-State Letters, 8 (2005) A441-A445.
    [164] M. Smart, B. Ratnakumar, S. Surampudi, 196th ECS Meeting Abstracts, Honolulu, Hawaii, October, (1999) 17-22.
    [165] M. Levi, E. Markevich, C. Wang, M. Koltypin, D. Aurbach, The effect of dimethyl pyrocarbonate on electroanalytical behavior and cycling of graphite electrodes, Journal of The Electrochemical Society, 151 (2004) A848-A856.
    [166] Y.-K. Choi, K.-i. Chung, W.-S. Kim, Y.-E. Sung, S.-M. Park, Suppressive effect of Li2CO3 on initial irreversibility at carbon anode in Li-ion batteries, Journal of power sources, 104 (2002) 132-139.
    [167] J.-T. Lee, M.-S. Wu, F.-M. Wang, Y.-W. Lin, M.-Y. Bai, P.-C.J. Chiang, Effects of aromatic esters as propylene carbonate-based electrolyte additives in lithium-ion batteries, Journal of The Electrochemical Society, 152 (2005) A1837-A1843.
    [168] M.D. Bhatt, C. O’Dwyer, Solid electrolyte interphases at Li-ion battery graphitic anodes in propylene carbonate (PC)-based electrolytes containing FEC, LiBOB, and LiDFOB as additives, Chemical Physics Letters, 618 (2015) 208-213.
    [169] Y. Ein‐Eli, S.F. McDevitt, D. Aurbach, B. Markovsky, A. Schechter, Methyl Propyl Carbonate: A Promising Single Solvent for Li‐Ion Battery Electrolytes, Journal of The Electrochemical Society, 144 (1997) L180-L184.
    [170] D. Aurbach, Y. Ein‐Eli, The study of Li‐graphite intercalation processes in several electrolyte systems using in situ X‐ray diffraction, Journal of The Electrochemical Society, 142 (1995) 1746-1752.
    [171] F.-M. Wang, H.-M. Cheng, H.-C. Wu, S.-Y. Chu, C.-S. Cheng, C.-R. Yang, Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries, Electrochimica Acta, 54 (2009) 3344-3351.
    [172] F.-M. Wang, M.-H. Yu, C.-S. Cheng, S.A. Pradanawati, S.-C. Lo, J. Rick, Phenylenedimaleimide positional isomers used as lithium ion battery electrolyte additives: Relating physical and electrochemical characterization to battery performance, Journal of Power Sources, 231 (2013) 18-22.
    [173] M. Zhao, X. Zuo, X. Ma, X. Xiao, L. Yu, J. Nan, Diphenyl disulfide as a new bifunctional film-forming additive for high-voltage LiCoO2/graphite battery charged to 4.4 áV, Journal of Power Sources, 323 (2016) 29-36.
    [174] K.M. Pelzer, L. Cheng, L.A. Curtiss, Effects of functional groups in redox-active organic molecules: a high-throughput screening approach, The Journal of Physical Chemistry C, 121 (2016) 237-245.
    [175] W. Zhao, Y. Ji, Z. Zhang, M. Lin, Z. Wu, X. Zheng, Q. Li, Y. Yang, Recent advances in the research of functional electrolyte additives for lithium-ion batteries, Current Opinion in Electrochemistry, 6 (2017) 84-91.
    [176] T. Böttcher, N. Kalinovich, O. Kazakova, M. Ponomarenko, K. Vlasov, M. Winter, G.-V. Röschenthaler, Novel fluorinated solvents and additives for lithium-ion batteries, in: Advanced fluoride-based materials for energy conversion, Elsevier, 2015, pp. 125-145.
    [177] Y. Zhu, M.D. Casselman, Y. Li, A. Wei, D.P. Abraham, Perfluoroalkyl-substituted ethylene carbonates: novel electrolyte additives for high-voltage lithium-ion batteries, Journal of Power Sources, 246 (2014) 184-191.
    [178] Y.-M. Lee, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, D.-H. Kang, S.-S. Kim, S.-W. Song, Interfacial origin of performance improvement and fade for 4.6 V LiNi0. 5Co0. 2Mn0. 3O2 battery cathodes, The Journal of Physical Chemistry C, 118 (2014) 10631-10639.
    [179] T. Böttcher, B. Duda, N. Kalinovich, O. Kazakova, M. Ponomarenko, K. Vlasov, M. Winter, G.-V. Röschenthaler, Syntheses of novel delocalized cations and fluorinated anions, new fluorinated solvents and additives for lithium ion batteries, Progress in Solid State Chemistry, 42 (2014) 202-217.
    [180] N.L. Hamidah, G. Nugroho, F.M. Wang, Electrochemical analysis of electrolyte additive effect on ionic diffusion for high-performance lithium ion battery, Ionics, 22 (2016) 33-41.
    [181] N.L. Hamidah, F.M. Wang, G. Nugroho, The understanding of solid electrolyte interface (SEI) formation and mechanism as the effect of flouro‐o‐phenylenedimaleimaide (F‐MI) additive on lithium‐ion battery, Surface and Interface Analysis, 51 (2019) 345-352.
    [182] S. Tan, Y.J. Ji, Z.R. Zhang, Y. Yang, Recent Progress in Research on High‐Voltage Electrolytes for Lithium‐Ion Batteries, ChemPhysChem, 15 (2014) 1956-1969.
    [183] H. Duncan, N. Salem, Y. Abu-Lebdeh, Electrolyte formulations based on dinitrile solvents for high voltage Li-ion batteries, Journal of The Electrochemical Society, 160 (2013) A838-A848.
    [184] Y.-S. Kim, H. Lee, H.-K. Song, Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries, ACS applied materials & interfaces, 6 (2014) 8913-8920.
    [185] K. Abe, Y. Ushigoe, H. Yoshitake, M. Yoshio, Functional electrolytes: Novel type additives for cathode materials, providing high cycleability performance, Journal of Power Sources, 153 (2006) 328-335.
    [186] G. Xu, Z. Liu, C. Zhang, G. Cui, L. Chen, Strategies for improving the cyclability and thermo-stability of LiMn 2 O 4-based batteries at elevated temperatures, Journal of Materials Chemistry A, 3 (2015) 4092-4123.
    [187] B. Xie, Y. Mai, J. Wang, H. Luo, X. Yan, L. Zhang, Dinitrile compound containing ethylene oxide moiety with enhanced solubility of lithium salts as electrolyte solvent for high-voltage lithium-ion batteries, Ionics, 21 (2015) 909-915.
    [188] M. Wakihara, L. Guohua, H. Ikuta, Lithium Ion Batteries ed M Wakihara and O Yamamoto, in, Tokyo: Kodansha, 1998.
    [189] C. Mao, M. Wood, L. David, S.J. An, Y. Sheng, Z. Du, H.M. Meyer, R.E. Ruther, D.L. Wood, Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries, Journal of The Electrochemical Society, 165 (2018) A1837-A1845.
    [190] K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety, Science advances, 4 (2018) eaas9820.
    [191] M. Tesemma, F.-M. Wang, A.M. Haregewoin, N.L. Hamidah, P. Muhammad Hendra, S.D. Lin, C.-S. Chern, Q.-T. Pham, C.-H. Su, Investigation of the Dipole Moment Effects of Fluorofunctionalized Electrolyte Additives in a Lithium Ion Battery, ACS Sustainable Chemistry & Engineering, 7 (2019) 6640-6653.
    [192] G.G. Orphanides, Preparation of maleimides and dimaleimides, in, Google Patents, 1979.
    [193] W. Kohn, Nobel Lecture: Electronic structure of matter—wave functions and density functionals, Reviews of Modern Physics, 71 (1999) 1253.
    [194] R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects, Reviews of Modern Physics, 61 (1989) 689.
    [195] M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, revision a. 02, gaussian, Inc., Wallingford, CT, 200 (2009) 28.
    [196] M.J. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision D. 01, Gaussian, Inc.: Wallingford, CT, (2009).
    [197] J.J. Stewart, MOPAC manual. A general molecular orbital package, in, FRANK J SEILER RESEARCH LAB UNITED STATES AIR FORCE ACADEMY CO, 1990.
    [198] K.G. Gallagher, S.E. Trask, C. Bauer, T. Woehrle, S.F. Lux, M. Tschech, P. Lamp, B.J. Polzin, S. Ha, B. Long, Optimizing areal capacities through understanding the limitations of lithium-ion electrodes, Journal of The Electrochemical Society, 163 (2016) A138-A149.
    [199] J. Burns, L. Krause, D.-B. Le, L. Jensen, A. Smith, D. Xiong, J. Dahn, Introducing symmetric Li-ion cells as a tool to study cell degradation mechanisms, Journal of The Electrochemical Society, 158 (2011) A1417-A1422.
    [200] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of Chemical Education, 95 (2017) 197-206.
    [201] R.S. Nicholson, Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics, Analytical chemistry, 37 (1965) 1351-1355.
    [202] A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical methods: fundamentals and applications, wiley New York, 1980.
    [203] J.F. Rusling, S.L. Suib, Characterizing materials with cyclic voltammetry, Advanced Materials, 6 (1994) 922-930.
    [204] J. Wang, Z. Zhang, Analytical chemistry, Trans Tech Publ, 1994.
    [205] K. Izutsu, Electrochemistry in nonaqueous solutions, John Wiley & Sons, 2009.
    [206] M.E. Orazem, B. Tribollet, Electrochemical impedance spectroscopy, John Wiley & Sons, 2017.
    [207] S. Zhang, P. Shi, Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte, Electrochimica Acta, 49 (2004) 1475-1482.
    [208] H. Ma, S. Chen, L. Niu, S. Zhao, S. Li, D. Li, Inhibition of copper corrosion by several Schiff bases in aerated halide solutions, Journal of Applied Electrochemistry, 32 (2002) 65-72.
    [209] M. Mohamedi, D. Takahashi, T. Itoh, I. Uchida, Electrochemical stability of thin film LiMn2O4 cathode in organic electrolyte solutions with different compositions at 55° C, Electrochimica acta, 47 (2002) 3483-3489.
    [210] K. Dokko, M. Mohamedi, M. Umeda, I. Uchida, Kinetic study of Li-Ion extraction and insertion at LiMn2 O 4 single particle electrodes using potential step and impedance methods, Journal of The Electrochemical Society, 150 (2003) A425-A429.
    [211] D.A. Buttry, M.D. Ward, Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance, Chemical Reviews, 92 (1992) 1355-1379.
    [212] G. Sauerbrey, The use of quarts oscillators for weighing thin layers and for microweighing, Z. Phys., 155 (1959) 206-222.
    [213] D. Aurbach, A. Zaban, The Use of EQCM for the Study of Nonactive Metal Electrodes in Propylene Carbonate‐LiAsF6 Solutions Significance of the Data Obtained, Journal of the Electrochemical Society, 142 (1995) L108-L111.
    [214] M.D. Ward, D.A. Buttry, In situ interfacial mass detection with piezoelectric transducers, Science, 249 (1990) 1000-1007.
    [215] F.-M. Wang, D.-T. Shieh, J.-H. Cheng, C.-R. Yang, An investigation of the salt dissociation effects on solid electrolyte interface (SEI) formation using linear carbonate-based electrolytes in lithium ion batteries, Solid State Ionics, 180 (2010) 1660-1666.
    [216] D. Zane, A. Antonini, M. Pasquali, A morphological study of SEI film on graphite electrodes, Journal of power sources, 97 (2001) 146-150.
    [217] K. Edström, M. Herranen, Thermal stability of the HOPG/liquid electrolyte interphase studied by in situ electrochemical atomic force microscopy, Journal of The Electrochemical Society, 147 (2000) 3628-3632.
    [218] K.-i. Morigaki, In situ analysis of the interfacial reactions between MCMB electrode and organic electrolyte solutions, Journal of power sources, 103 (2002) 253-264.
    [219] A.M. Andersson, M. Herstedt, A.G. Bishop, K. Edström, The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes, Electrochimica Acta, 47 (2002) 1885-1898.
    [220] C. Dwivedi, I. Pandey, H. Pandey, P.W. Ramteke, A.C. Pandey, S.B. Mishra, S. Patil, Electrospun nanofibrous scaffold as a potential carrier of antimicrobial therapeutics for diabetic wound healing and tissue regeneration, in: Nano-and Microscale Drug Delivery Systems, Elsevier, 2017, pp. 147-164.
    [221] M. McCluskey, Reference module in chemistry, molecular sciences and chemical engineering. Encyclopedia of Spectroscopy and Spectrometry, in, San Diego, United States: Academic Press, 2017.
    [222] G. Eglinton, Applications of infrared spectroscopy to organic chemistry, An Introduction to Spectroscopic Methods for the Identification of Organic Compounds: Nuclear magnetic resonance and infrared spectroscopy, 1 (1970) 123.
    [223] S.-i. Amma, J. Luo, C.G. Pantano, S.H. Kim, Specular reflectance (SR) and attenuated total reflectance (ATR) infrared (IR) spectroscopy of transparent flat glass surfaces: A case study for soda lime float glass, Journal of Non-Crystalline Solids, 428 (2015) 189-196.
    [224] A.R. Hind, S.K. Bhargava, A. McKinnon, At the solid/liquid interface: FTIR/ATR—the tool of choice, Advances in colloid and interface science, 93 (2001) 91-114.
    [225] H. Kim, K.M. Kosuda, R.P. Van Duyne, P.C. Stair, Resonance Raman and surface-and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions, Chemical Society Reviews, 39 (2010) 4820-4844.
    [226] C. Du, J. Zhou, Evaluation of Soil Fertility Using Infrared Spectroscopy–A Review, in: Climate Change, Intercropping, Pest Control and Beneficial Microorganisms, Springer, 2009, pp. 453-483.
    [227] J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W. Ritchie, J.H.J. Scott, D.C. Joy, Scanning electron microscopy and X-ray microanalysis, Springer, 2017.
    [228] M. Jana, A. Sil, S. Ray, Morphology of carbon nanostructures and their electrochemical performance for lithium ion battery, Journal of physics and chemistry of Solids, 75 (2014) 60-67.
    [229] V.I. Nefedov, X-ray photoelectron spectroscopy of solid surfaces, Springer Science & Business, 1988.
    [230] M. Franinović, X-ray photelectron spectroscopy, in, Seminar, 2012.
    [231] B. Philippe, M. Hahlin, K. Edström, T. Gustafsson, H. Siegbahn, H. Rensmo, Photoelectron spectroscopy for lithium battery interface studies, Journal of The Electrochemical Society, 163 (2016) A178-A191.
    [232] J. Feeney, S. Walker, AN INTRODUCTION TO HIGH RESOLUTION NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, in: An Introduction to Spectroscopic Methods for the Identification of Organic Compounds, Elsevier, 1970, pp. 1-39.
    [233] P. Schmidt, S. Eschig, Hydrophobilization of Furan-Containing Polyurethanes via Diels–Alder Reaction with Fatty Maleimides, Polymers, 11 (2019) 1274.
    [234] V. Gaina, C. Gaina, Bismaleimides and biscitraconimides with bisallyl groups, High Performance Polymers, 19 (2007) 160-174.
    [235] P.R.S. Reddy, K.K. Rao, K.M. Rao, N.S. Reddy, Synthesis of Novel Hydrogels based Poly (4-Hydroxyphenylazo-3-N-(4-hydroxyphenyl) maleimide) for Specific Colon Delivery of Chemotherapeutic Agent, Journal of Applied Pharmaceutical Science, 5 (2015) 021-028.
    [236] F.A. Soto, Y. Ma, J.M. Martinez de la Hoz, J.M. Seminario, P.B. Balbuena, Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries, Chemistry of Materials, 27 (2015) 7990-8000.
    [237] G. Yang, J. Shi, C. Shen, S. Wang, L. Xia, H. Hu, H. Luo, Y. Xia, Z. Liu, Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO 2 F 2) additive, RSC Advances, 7 (2017) 26052-26059.
    [238] X. Yuan, H. Liu, J. Zhang, Lithium-ion batteries: advanced materials and technologies, CRC press, 2011.
    [239] L. Xia, S. Lee, Y. Jiang, Y. Xia, G.Z. Chen, Z. Liu, Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro (oxalato) borate Additive for Stabilizing the Solid Electrolyte Interphase, ACS Omega, 2 (2017) 8741-8750.
    [240] Y. Ren, M. Wang, J. Wang, Y. Cui, Tris (trimethylsilyl) Phosphate as Electrolyte Additive for Lithium-Ion Batteries with Graphite Anode at Elevated Temperature, Int. J. Electrochem. Sci, 13 (2018) 664-674.
    [241] J. Li, H. Li, W. Stone, S. Glazier, J. Dahn, Development of Electrolytes for Single Crystal NMC532/Artificial Graphite Cells with Long Lifetime, Journal of The Electrochemical Society, 165 (2018) A626-A635.
    [242] A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, npj Computational Materials, 4 (2018) 15.
    [243] M. Gauthier, T.J. Carney, A. Grimaud, L. Giordano, N. Pour, H.-H. Chang, D.P. Fenning, S.F. Lux, O. Paschos, C. Bauer, Electrode–electrolyte interface in Li-ion batteries: Current understanding and new insights, The journal of physical chemistry letters, 6 (2015) 4653-4672.
    [244] Y. Okamoto, Y. Kubo, Ab Initio Calculations of the Redox Potentials of Additives for Lithium-Ion Batteries and Their Prediction through Machine Learning, ACS Omega, 3 (2018) 7868-7874.
    [245] D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries, Electrochimica acta, 45 (1999) 67-86.
    [246] L. Benitez, J.M. Seminario, Ion diffusivity through the solid electrolyte interphase in lithium-ion batteries, Journal of The Electrochemical Society, 164 (2017) E3159-E3170.
    [247] H. Kuwata, H. Sonoki, M. Matsui, Y. Matsuda, N. Imanishi, Surface Layer and Morphology of Lithium Metal Electrodes, Electrochemistry, 84 (2016) 854-860.
    [248] M. Nie, D. Chalasani, D.P. Abraham, Y. Chen, A. Bose, B.L. Lucht, Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy, The Journal of Physical Chemistry C, 117 (2013) 1257-1267.
    [249] J. Ming, Z. Cao, W. Wahyudi, M. Li, P. Kumar, Y. Wu, J.-Y. Hwang, M.N. Hedhili, L. Cavallo, Y.-K. Sun, New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases, ACS Energy Letters, 3 (2018) 335-340.
    [250] Q. Shi, W. Liu, Q. Qu, T. Gao, Y. Wang, G. Liu, V.S. Battaglia, H. Zheng, Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries, Carbon, 111 (2017) 291-298.
    [251] J. Gnanaraj, R.W. Thompson, J. DiCarlo, K. Abraham, The role of carbonate solvents on lithium intercalation into graphite, Journal of The Electrochemical Society, 154 (2007) A185-A191.
    [252] X. Zheng, W. Wang, T. Huang, G. Fang, Y. Pan, M. Wu, Evaluation of di (2, 2, 2-trifluoroethyl) sulfite as a film-forming additive on the MCMB anode of lithium-ion batteries, Journal of Power Sources, 329 (2016) 450-455.
    [253] L. Ma, L. Ellis, S. Glazier, X. Ma, J. Dahn, Combinations of LiPO2F2 and Other Electrolyte Additives in Li [Ni0. 5Mn0. 3Co0. 2] O2/Graphite Pouch Cells, Journal of The Electrochemical Society, 165 (2018) A1718-A1724.
    [254] S.-K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe, Z. Ogumi, Surface film formation on a graphite negative electrode in lithium-ion batteries: atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions, Langmuir, 17 (2001) 8281-8286.
    [255] M.-H. Ryou, G.-B. Han, Y.M. Lee, J.-N. Lee, D.J. Lee, Y.O. Yoon, J.-K. Park, Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells, Electrochimica Acta, 55 (2010) 2073-2077.
    [256] S. Tsubouchi, Y. Domi, T. Doi, M. Ochida, H. Nakagawa, T. Yamanaka, T. Abe, Z. Ogumi, Spectroscopic characterization of surface films formed on edge plane graphite in ethylene carbonate-based electrolytes containing film-forming additives, Journal of The Electrochemical Society, 159 (2012) A1786-A1790.
    [257] L. Liao, P. Zuo, Y. Ma, Y. An, G. Yin, Y. Gao, Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode, Electrochimica Acta, 74 (2012) 260-266.
    [258] R. Jung, M. Metzger, D. Haering, S. Solchenbach, C. Marino, N. Tsiouvaras, C. Stinner, H.A. Gasteiger, Consumption of fluoroethylene carbonate (FEC) on Si-C composite electrodes for Li-ion batteries, Journal of The Electrochemical Society, 163 (2016) A1705-A1716.
    [259] E. Markevich, G. Salitra, D. Aurbach, Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries, ACS Energy Letters, 2 (2017) 1337-1345.
    [260] Y. Jin, N.-J.H. Kneusels, L.E. Marbella, E. Castillo-Martínez, P.C. Magusin, R.S. Weatherup, E. Jonsson, T. Liu, S. Paul, C.P. Grey, Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy, Journal of the American Chemical Society, (2018).
    [261] V. Winkler, T. Hanemann, M. Bruns, Comparative surface analysis study of the solid electrolyte interphase formation on graphite anodes in lithium‐ion batteries depending on the electrolyte composition, Surface and Interface Analysis, 49 (2017) 361-369.
    [262] Q. Shi, S. Heng, Q. Qu, T. Gao, W. Liu, L. Hang, H. Zheng, Constructing an elastic solid electrolyte interphase on graphite: a novel strategy suppressing lithium inventory loss in lithium-ion batteries, Journal of Materials Chemistry A, 5 (2017) 10885-10894.
    [263] Y.-H. Li, M.-L. Lee, F.-M. Wang, C.-R. Yang, P.P. Chu, J.-P. Pan, Electrochemical characterization of a branched oligomer as a high-temperature and long-cycle-life additive for lithium-ion batteries, Electrochimica Acta, 85 (2012) 72-77.
    [264] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, Comparative study on the solid electrolyte interface formation by the reduction of alkyl carbonates in lithium ion battery, Electrochimica Acta, 136 (2014) 274-285.
    [265] Y. Chernyak, Dielectric constant, dipole moment, and solubility parameters of some cyclic acid esters, Journal of Chemical & Engineering Data, 51 (2006) 416-418.
    [266] U. Westerhoff, K. Kurbach, F. Lienesch, M. Kurrat, Analysis of Lithium‐Ion Battery Models Based on Electrochemical Impedance Spectroscopy, Energy Technology, 4 (2016) 1620-1630.
    [267] I.A. Shkrob, Y. Zhu, T.W. Marin, D. Abraham, Reduction of carbonate electrolytes and the formation of solid-electrolyte interface (SEI) in Lithium-Ion Batteries. 2. Radiolytically induced polymerization of ethylene carbonate, The Journal of Physical Chemistry C, 117 (2013) 19270-19279.
    [268] I.A. Shkrob, Y. Zhu, T.W. Marin, D. Abraham, Reduction of carbonate electrolytes and the formation of solid-electrolyte interface (SEI) in lithium-ion batteries. 1. Spectroscopic observations of radical intermediates generated in one-electron reduction of carbonates, The Journal of Physical Chemistry C, 117 (2013) 19255-19269.
    [269] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, A combined experimental and theoretical study of surface film formation: Effect of oxygen on the reduction mechanism of propylene carbonate, Journal of Power Sources, 244 (2013) 318-327.
    [270] R.M. Silverstein, G.C. Bassler, Spectrometric identification of organic compounds, Journal of Chemical Education, 39 (1962) 546.
    [271] G. Shen, M.F.G. Anand, R. Levicky, X-ray photoelectron spectroscopy and infrared spectroscopy study of maleimide-activated supports for immobilization of oligodeoxyribonucleotides, Nucleic acids research, 32 (2004) 5973-5980.
    [272] Y. Ikezawa, T. Ariga, In situ FTIR spectra at the Cu electrode/propylene carbonate solution interface, Electrochimica acta, 52 (2007) 2710-2715.
    [273] D. Aurbach, M. Daroux, P. Faguy, E. Yeager, Identification of surface films formed on lithium in propylene carbonate solutions, Journal of The Electrochemical Society, 134 (1987) 1611-1620.
    [274] Y. Cheng, G. Wang, M. Yan, Z. Jiang, In situ analysis of interfacial reactions between negative MCMB, lithium electrodes, and gel polymer electrolyte, Journal of Solid State Electrochemistry, 11 (2007) 310-316.
    [275] D. Aurbach, O. Chusid, In situ FTIR spectroelectrochemical studies of surface films formed on Li and nonactive electrodes at low potentials in Li salt solutions containing CO 2, Journal of The Electrochemical Society, 140 (1993) L155-L157.
    [276] S.-I. Pyun, In-situ spectroelectrochemical analysis of the passivating surface film formed on a carbon film electrode as a function of the water content in 1 M LiPF6-EC/DEC solution, Fresenius' journal of analytical chemistry, 363 (1999) 38-45.
    [277] D. Bar‐Tow, E. Peled, L. Burstein, A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li‐Ion batteries, Journal of The Electrochemical Society, 146 (1999) 824-832.
    [278] J. Światowska, V. Lair, C. Pereira-Nabais, G. Cote, P. Marcus, A. Chagnes, XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries, Applied Surface Science, 257 (2011) 9110-9119.
    [279] A. Schechter, D. Aurbach, H. Cohen, X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions, Langmuir, 15 (1999) 3334-3342.
    [280] C.-S. Cheng, W.-R. Liu, F.-M. Wang, A novel ionic host solid electrolyte interface formation on reduced graphene oxide of lithium ion battery, Electrochimica Acta, 106 (2013) 425-431.
    [281] A.M. Andersson, A. Henningson, H. Siegbahn, U. Jansson, K. Edström, Electrochemically lithiated graphite characterised by photoelectron spectroscopy, Journal of Power Sources, 119 (2003) 522-527.
    [282] M. Lu, H. Cheng, Y. Yang, A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells, Electrochimica Acta, 53 (2008) 3539-3546.
    [283] K.-i. Morigaki, A. Ohta, Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy, Journal of power sources, 76 (1998) 159-166.
    [284] K. Edström, M. Herstedt, D.P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, Journal of Power Sources, 153 (2006) 380-384.
    [285] F.-M. Wang, M.-H. Yu, Y.-J. Hsiao, Y. Tsai, B.-J. Hwang, Y.-Y. Wang, C.-C. Wan, Aging effects to solid electrolyte interface (SEI) membrane formation and the performance analysis of lithium ion batteries, Int. J. Electrochem. Sci, 6 (2011) e1026.
    [286] M. Sina, R. Thorpe, S. Rangan, N. Pereira, R.A. Bartynski, G.G. Amatucci, F. Cosandey, Investigation of SEI layer formation in conversion iron fluoride cathodes by combined STEM/EELS and XPS, The Journal of Physical Chemistry C, 119 (2015) 9762-9773.
    [287] C.-S. Cheng, F.-M. Wang, J. Rick, Aqueous additive for lithium ion batteries: promotes novel solid electrolyte interface (SEI) layer with overall cost reduction, Int. J. Electrochem. Sci, 7 (2012) 8676-8687.
    [288] M.G. Giorgini, K. Futamatagawa, H. Torii, M. Musso, S. Cerini, Solvation structure around the Li+ ion in mixed cyclic/linear carbonate solutions unveiled by the Raman noncoincidence effect, The Journal of Physical Chemistry Letters, 6 (2015) 3296-3302.
    [289] D.M. Seo, D. Chalasani, B.S. Parimalam, R. Kadam, M. Nie, B.L. Lucht, Reduction reactions of carbonate solvents for lithium ion batteries, ECS Electrochemistry Letters, 3 (2014) A91-A93.
    [290] J.H. Yun, S. Park, J.H. Heo, H.-S. Lee, S. Yoon, J. Kang, S.H. Im, H. Kim, W. Lee, B. Kim, Enhancement of charge transport properties of small molecule semiconductors by controlling fluorine substitution and effects on photovoltaic properties of organic solar cells and perovskite solar cells, Chemical science, 7 (2016) 6649-6661.
    [291] J.A. Pople, M. Gordon, Molecular orbital theory of the electronic structure of organic compounds. I. Substituent effects and dipole moments, Journal of the American Chemical Society, 89 (1967) 4253-4261.
    [292] M. Leskes, G. Kim, T. Liu, A.L. Michan, F. Aussenac, P. Dorffer, S. Paul, C.P. Grey, Surface-sensitive NMR detection of the solid electrolyte interphase layer on reduced graphene oxide, The journal of physical chemistry letters, 8 (2017) 1078-1085.
    [293] L. Gireaud, S. Grugeon, S. Laruelle, S. Pilard, J.-M. Tarascon, Identification of Li battery electrolyte degradation products through direct synthesis and characterization of alkyl carbonate salts, Journal of the Electrochemical Society, 152 (2005) A850-A857.
    [294] Y.-M. Liu, B. G. Nicolau, J.L. Esbenshade, A.A. Gewirth, Characterization of the cathode electrolyte interface in lithium ion batteries by desorption electrospray ionization mass spectrometry, Analytical chemistry, 88 (2016) 7171-7177.
    [295] S. Nowak, M. Winter, The role of cations on the performance of lithium ion batteries: a quantitative analytical approach, Accounts of chemical research, 51 (2018) 265-272.
    [296] H. Zhao, X. Yu, J. Li, B. Li, H. Shao, L. Li, Y. Deng, Film-forming electrolyte additives for rechargeable lithium ion batteries: progress and outlooks, Journal of Materials Chemistry A, (2019).
    [297] W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, Journal of Power Sources, 196 (2011) 13-24.
    [298] F.-M. Wang, S.-C. Lo, C.-S. Cheng, J.-H. Chen, B.-J. Hwang, H.-C. Wu, Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery, Journal of Membrane Science, 368 (2011) 165-170.
    [299] M. Tesemma, F.M. Wang, A.M. Haregewoin, N.L. Hamidah, M.H. Pebrianto, S.D. Lin, C.-S. Chern, Q.-T. Pham, C.-H. Su, Investigations of dipole moment effects of fluorofunctionalized electrolyte additives in a lithium ion battery, ACS Sustainable Chemistry & Engineering, (2019).
    [300] M.D. Halls, K. Tasaki, High-throughput quantum chemistry and virtual screening for lithium ion battery electrolyte additives, Journal of Power Sources, 195 (2010) 1472-1478.
    [301] S.-D. Xu, Q.-C. Zhuang, J. Wang, Y.-Q. Xu, Y.-B. Zhu, New insight into vinylethylene carbonate as a film forming additive to ethylene carbonate-based electrolytes for lithium-ion batteries, Int. J. Electrochem. Sci, 8 (2013) 8058-8076.
    [302] M. Herstedt, H. Rensmo, H. Siegbahn, K. Edström, Electrolyte additives for enhanced thermal stability of the graphite anode interface in a Li-ion battery, Electrochimica acta, 49 (2004) 2351-2359.
    [303] M. Egashira, S. Okada, J.-i. Yamaki, On the cycle behavior of various graphitic negative electrodes in a propylene carbonate-based electrolyte for lithium ion batteries, Journal of power sources, 124 (2003) 237-240.
    [304] J. Collins, G. Gourdin, M. Foster, D. Qu, Carbon surface functionalities and SEI formation during Li intercalation, Carbon, 92 (2015) 193-244.
    [305] Y. Li, Y. Lu, P. Adelhelm, M.-M. Titirici, Y.-S. Hu, Intercalation chemistry of graphite: alkali metal ions and beyond, Chemical Society Reviews, 48 (2019) 4655-4687.
    [306] L. Li, B. Xie, H. Lee, H. Li, X. Yang, J. McBreen, X. Huang, Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries, Journal of Power Sources, 189 (2009) 539-542.
    [307] Y.-H. Li, M.-L. Lee, F.-M. Wang, C.-R. Yang, P.P. Chu, S.-L. Yau, J.-P. Pan, Electrochemical performance and safety features of high-safety lithium ion battery using novel branched additive for internal short protection, Applied Surface Science, 261 (2012) 306-311.
    [308] G. Zhao, Z. Wei, N. Zhang, K. Sun, Enhanced low temperature performances of expanded commercial mesocarbon microbeads (MCMB) as lithium ion battery anodes, Materials Letters, 89 (2012) 243-246.
    [309] F.-M. Wang, M.-H. Yu, Y.-J. Hsiao, Y. Tsai, B.-J. Hwang, Y.-Y. Wang, C.-C. Wan, Aging effects to solid electrolyte interface (SEI) membrane formation and the performance analysis of lithium ion batteries, Int. J. Electrochem. Sci, 6 (2011) 1014-1026.
    [310] L. Zhang, J. Huang, K. Youssef, P.C. Redfern, L.A. Curtiss, K. Amine, Z. Zhang, Molecular engineering toward stabilized interface: an electrolyte additive for high-performance Li-ion battery, Journal of The Electrochemical Society, 161 (2014) A2262-A2267.
    [311] W. Zhao, Y. Ji, Z. Zhongru, M. Lin, Z. Wu, X. Zheng, Q. Li, Y. Yang, Recent advances in the research of functional electrolyte additives for Lithium-ion batteries, 2017.
    [312] M. Guoqiang, W. Li, Z. Janjun, C. Huichuang, H. Xiangming, D. Yuansheng, Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive, PROGRESS IN CHEMISTRY, 28 (2016) 1299-1312.
    [313] H.M. Jung, S.-H. Park, J. Jeon, Y. Choi, S. Yoon, J.-J. Cho, S. Oh, S. Kang, Y.-K. Han, H. Lee, Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate, Journal of Materials Chemistry A, 1 (2013) 11975-11981.
    [314] Y.-S. Kim, T.-H. Kim, H. Lee, H.-K. Song, Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries, Energy & Environmental Science, 4 (2011) 4038-4045.
    [315] W.Y. Xuan, Lithium-ion batteries: solid-electrolyte interphase, World Scientific, 2004.
    [316] X. Zuo, X. Deng, X. Ma, J. Wu, H. Liang, J. Nan, 3-(Phenylsulfonyl) propionitrile as a higher voltage bifunctional electrolyte additive to improve the performance of lithium-ion batteries, Journal of Materials Chemistry A, 6 (2018) 14725-14733.
    [317] X. Deng, X. Zuo, H. Liang, L. Zhang, J. Liu, J. Nan, (Phenylsulfonyl) acetonitrile as a High-Voltage Electrolyte Additive to Form a Sulfide Solid Electrolyte Interface Film to Improve the Performance of Lithium-Ion Batteries, The Journal of Physical Chemistry C, (2019).
    [318] G.-Y. Kim, R. Petibon, J. Dahn, Effects of succinonitrile (SN) as an electrolyte additive on the impedance of LiCoO2/graphite pouch cells during cycling, Journal of The Electrochemical Society, 161 (2014) A506-A512.
    [319] H. Zhi, L. Xing, X. Zheng, K. Xu, W. Li, Understanding how nitriles stabilize electrolyte/electrode interface at high voltage, The journal of physical chemistry letters, 8 (2017) 6048-6052.
    [320] Y.-S. Kim, S.-H. Lee, M.-Y. Son, Y.M. Jung, H.-K. Song, H. Lee, Succinonitrile as a corrosion inhibitor of copper current collectors for overdischarge protection of lithium ion batteries, ACS applied materials & interfaces, 6 (2014) 2039-2043.
    [321] S. Chai, S.-H. Wen, K.-L. Han, Understanding electron-withdrawing substituent effect on structural, electronic and charge transport properties of perylene bisimide derivatives, Organic electronics, 12 (2011) 1806-1814.
    [322] C. Korepp, H. Santner, T. Fujii, M. Ue, J. Besenhard, K.-C. Möller, M. Winter, 2-Cyanofuran—A novel vinylene electrolyte additive for PC-based electrolytes in lithium-ion batteries, Journal of power sources, 158 (2006) 578-582.
    [323] N. Kumar, D.J. Siegel, Interface-induced renormalization of electrolyte energy levels in magnesium batteries, The journal of physical chemistry letters, 7 (2016) 874-881.
    [324] D. Chopra, Is organic fluorine really “not” polarizable?, Crystal Growth & Design, 12 (2012) 541-546.
    [325] D. Braeunling, F. Deubel, M. Kratzl, Nitriles and amines as electrolyte components for lithium-ion batteries, in, Google Patents, 2017.
    [326] P. Hu, J. Chai, Y. Duan, Z. Liu, G. Cui, L. Chen, Progress in nitrile-based polymer electrolytes for high performance lithium batteries, Journal of Materials Chemistry A, 4 (2016) 10070-10083.
    [327] L. Hunter, The C–F bond as a conformational tool in organic and biological chemistry, Beilstein journal of organic chemistry, 6 (2010) 38.

    無法下載圖示 全文公開日期 2024/12/03 (校內網路)
    全文公開日期 2024/12/03 (校外網路)
    全文公開日期 2024/12/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE