簡易檢索 / 詳目顯示

研究生: 李堅境
Felix
論文名稱: 改善固態電解膜之新穎硫基添加劑應用於高電壓系鋰離子電池之研究
Investigation on Novel Sulfured-Based Additives for Solid Electrolyte Interface (SEI) Improver in High Voltage Lithium Ion Battery Application
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 杜景順
Jing-Shan Do
周澤川
Tse-Chuan Chou
王復民
Fu-Ming Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 122
中文關鍵詞: 鋰離子電池高電壓電解液硫基添加劑固態電解質膜
外文關鍵詞: Lithium ion battery, high voltage electrolyte, surfur-based additive, SEI
相關次數: 點閱:227下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硫基化合物於文獻中已被提出能有效應用於高電壓系電解液中,本研究亦選擇了多種不同之硫基化合物做為添加劑以期能形成較佳之固態電解質膜(SEI)。此SEI膜能防止現行商用電解液之分解以及正電材料之錳離子溶解。添加劑分別以不同重量百分比加入商用電解液中並進行評估其電化學效能及相容性。結果顯示,1,3 Propanediol Cyclic Sulfate (PCS)於全電池測試中具有最佳之電化學表現,於30圈循環充放電後,仍有第一圈放電電容量之85%。而molecular energy理論計算以及循環伏安法亦證實了PCS能比ethylene carbonate (EC)較早還原並可能形成較佳之SEI結構。XPS、SEM以及EDS之分析也發現PCS的加入能大幅抑制錳離子沉積於負極表面之情形。結果顯示,加入1,3 propanediol cyclic sulfate 添加劑之電解液能做為一具有潛力應用於高功率鋰離子電池之選擇


    The sulfured-based materials, which have been demonstrated to have an effective application in high voltage electrolyte system, are adapted as an additive to form better solid electrolyte interface (SEI) in this work. This SEI could help prevent the current electrolyte from decomposition and the manganese ion dissolution of positive electrode. Various weight ratios of these additives were added into commercial carbonate-based electrolyte to evaluate their performance and compatibility. The results imply that 1 wt.% PCS (1,3 Propanediol Cyclic Sulfate) in electrolyte exhibits the best electrochemical performance in the full-cell test. After 30 cycles, the discharge capacity is maintained at 85% of 1st discharge. The molecular energy calculation and cyclic voltammetry (CV) both prove the PCS was reduced earlier than the ethylene carbonate (EC), which may implied a better SEI was formed. The XPS, SEM and EDS analysis reveal the addition of PCS is capable of suppressing the manganese ion deposition onto the anode side. Therefore, it is verified that 1,3 propanediol cyclic sulfate additive in electrolyte is a competitive option in high power lithium ion battery

    Table of Contents ABSTRACT i 摘要 ii Acknowledgements iii Table of Contents iv List of Figures vii List of Tables xiii Chapter I Introduction 1 I.1. Background 1 I.2. Challenge in Real Application 4 I.3. Problems Formulation 7 I.4. Research Purposes 7 Chapter II Literature Review 8 II.1. Principle of Lithium Ion Battery 8 II.2. Cell Design Consideration 9 II.3. Electrode Materials 10 II.3.1. Cathode Materials 10 II.3.1.1. Three Dimensional Spinel Framework as Second Generation Lithium Battery 12 II.3.2. Anode Materials 16 II.3.2.1. Surface Film on Carbon Anodes 18 II.4. Principle of SEI Formation 21 II.4.1. SEI Layer on Carbon Anode 21 II.4.2. Carbon SEI on Elevated Temperature 23 II.4.3. SEI Layer on Cathode Materials 24 II.5. Electrolyte 27 II.5.1. Oxidation and Reduction of Electrolyte 30 II.6. Electrolyte Additives 33 II.6.1. Additives for Surface Chemistry Improvement 34 II.6.1.1. Additives for Anode SEI 35 II.6.1.2. Role of Carbonate and Sulfite as Additives 37 II.6.1.2.1. Reduction Mechanism of Vinylene Carbonate Additive 38 II.6.1.2.2. Reduction Mechanism of Ethylene Sulfite Additive 43 II.6.1.3. Additives for Cathode SEI 45 Chapter III Research Methodology 47 III.1. Research Design 47 III.2. Materials 49 III.3. Equipments 49 III.4. Experimental Procedure 50 III.4.1. Preliminary Experiment 50 III.4.1.1. Cathode Synthesis 50 III.4.1.2. Anode Preparation 51 III.4.1.3. Additives Evaluation 52 III.4.2. Electrochemical Measurement 52 III.4.2.1. Electrode Coating 52 III.4.2.2. Battery Coin Cell Assembling 53 III.4.3. Sample Characterization 54 III.4.3.1. X-Ray Diffraction 54 III.4.3.2. Scanning Electron Microscopy 54 III.4.3.3. Fourier Transform Infrared Spectroscopy 55 III.4.3.4. X-Ray Photoelectron Spectroscopy 55 Chapter IV Results and Discussion 56 IV.1. Preliminary Test 56 IV.1.1. Synthesized Li1.02Ni0.5Mn1.5O4 56 IV.1.2. Additives Evaluation 59 IV.2. Electrochemical Performance 64 IV.2.1. Additives Amount Determination 64 IV.2.2. Additives Effects on Half Cell 73 IV.3. Analysis 79 IV.3.1. EIS and SEM Results 79 IV.3.2. FTIR and XPS Results 89 IV.4. Possible Additive Mechanism 101 Chapter V Conclusions 102 Bibliography 103 Appendix 109

    Bibliography

    1. Katerina E. Aifantis, S.A.H., and R. Vasant Kumar, High Energy Density Lithium Batteries2010, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.
    2. Marcy Lowe, S.T., Tali Trigg and Gary Gereffi Batteries for Electric Vehicles: THE U.S. VALUE CHAIN. 2010. 76.
    3. Hitachi, L. Lithium-Ion Batteries for Hybrid Electric Vehicles. 2009.
    4. Energy, D.o. Plug-In Hybrid Electric Vehicle R&D Plan. 2007.
    5. Jeong, G., et al., Prospective materials and applications for Li secondary batteries. Energy & Environmental Science, 2011. 4(6): p. 1986-2002.
    6. Group, T.B.C., Batteries for Electric Cars Challenges, Opportunities, and the Outlook to 2020. 2009.
    7. Hwang, B.J., et al., Influence of synthesis conditions on electrochemical properties of high-voltage Li1.02Ni0.5Mn1.5O4 spinel cathode material. Journal of Power Sources, 2009. 193(2): p. 828-833.
    8. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries+. Chemistry of Materials, 2009. 22(3): p. 587-603.
    9. Ramadass, P., et al. Capacity fade studies on spinel based Li-ion cells. in Battery Conference on Applications and Advances, 2002. The Seventeenth Annual. 2002.
    10. Luo, J.Y. and Y.Y. Xia, Aqueous Lithium-ion Battery LiTi2(PO4)3/LiMn2O4 with High Power and Energy Densities as well as Superior Cycling Stability**. Advanced Functional Materials, 2007. 17(18): p. 3877-3884.
    11. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev, 2004(104): p. 4303-4417.
    12. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
    13. Wang, Y., et al., Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries:  How Does Vinylene Carbonate Play Its Role as an Electrolyte Additive? Journal of the American Chemical Society, 2002. 124(16): p. 4408-4421.
    14. Chen, G., et al., Anodic Polymerization of Vinyl Ethylene Carbonate in Li-Ion Battery Electrolyte. Electrochemical and Solid-State Letters, 2005. 8(7): p. A344-A347.
    15. Yu, B.T., et al., A study on sulfites for lithium-ion battery electrolytes. Journal of Power Sources, 2006. 158(2): p. 1373-1378.
    16. Chen, R., et al., Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries. Journal of Power Sources, 2007. 172(1): p. 395-403.
    17. Xu, M., W. Li, and B.L. Lucht, Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries. Journal of Power Sources, 2009. 193(2): p. 804-809.
    18. Pistoia, G.-A.N.a.G., Lithium Batteries Science and Technology2009, New York: Springer.
    19. Yamamoto, M.W.a.O., Lithium Ion Batteries Fundamentals and Performance1998, Tokyo: Kodansha Ltd.
    20. Palacin, M.R., Recent advances in rechargeable battery materials: a chemist's perspective. Chemical Society Reviews, 2009. 38(9): p. 2565-2575.
    21. Whittingham, M.S., Lithium Batteries and Cathode Materials. Chem. Rev, 2004. 104: p. 4271-4301.
    22. Li, C., et al., Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta, 2006. 51(19): p. 3872-3883.
    23. Aoshima, T., et al., Mechanisms of manganese spinels dissolution and capacity fade at high temperature. Journal of Power Sources, 2001. 97-98(0): p. 377-380.
    24. Wang, E., et al., Stability of Lithium Ion Spinel Cells. III. Improved Life of Charged Cells. Journal of The Electrochemical Society, 2000. 147(11): p. 4023-4028.
    25. Yamada, A. and M. Tanaka, Jahn-Teller structural phase transition around 280K in LiMn2O4. Materials Research Bulletin, 1995. 30(6): p. 715-721.
    26. Ozawa, K., Lithium Ion Rechargeable Batteries2009, Weinheim: WILEY-VCH Verlag GmbH & Co.KGaA.
    27. Cho, J., et al., Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell. Angewandte Chemie International Edition, 2001. 40(18): p. 3367-3369.
    28. Hu, S.-K., et al., Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. Journal of Power Sources, 2009. 188(2): p. 564-569.
    29. Hwang, B.J., et al., Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. Journal of Power Sources, 2010. 195(13): p. 4255-4265.
    30. Wu, H.M., et al., Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. Journal of Power Sources, 2010. 195(9): p. 2909-2913.
    31. Scrosati, W.A.v.S.a.B., Advances in Lithium-Ion Batteries, 2002, Kluwer Academic/Plenum Publisher: New York.
    32. Besenhard, J., Handbook of Battery Materials 1999, Weinheirn Wiey-VCH.
    33. Endo, M., et al., Recent development of carbon materials for Li ion batteries. Carbon, 2000. 38(2): p. 183-197.
    34. Burchell, T.D., Carbon Materials for Advanced Technologies1999, Oxford: Elsevier Science Ltd.
    35. Wang, P.B.B.a.Y., LITHIUM-ION BATTERIES: SOLID-ELECTROLYTE INTERPHASE2004, London: Imperial College Press.
    36. Jeong, S.-K., et al., Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: Electrolyte-concentration dependence of electrochemical lithium intercalation reaction. Journal of Power Sources, 2008. 175(1): p. 540-546.
    37. Xu, K., Electrolyte: Overview. Elsevier B.V., 2004: p. 51-70.
    38. Xu, K. and A. von Cresce, Interfacing electrolytes with electrodes in Li ion batteries. Journal of Materials Chemistry, 2011. 21(27): p. 9849-9864.
    39. Zhang, S.S., K. Xu, and T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta, 2006. 51(8-9): p. 1636-1640.
    40. Andersson, A.M. and K. Edstrom, Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite. Journal of The Electrochemical Society, 2001. 148(10): p. A1100-A1109.
    41. Kanamura, K., H. Tamura, and Z.-i. Takehara, XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts. Journal of Electroanalytical Chemistry, 1992. 333(1-2): p. 127-142.
    42. Wu, C., Y. Bai, and F. Wu, Fourier-transform infrared spectroscopic studies on the solid electrolyte interphase formed on Li-doped spinel Li1.05Mn1.96O4 cathode. Journal of Power Sources, 2009. 189(1): p. 89-94.
    43. Ostrovskii, D., et al., A FTIR and Raman study of spontaneous reactions occurring at the LiNiyCo(1-y)O2 electrode/non-aqueous electrolyte interface. Journal of Power Sources, 2001. 94(2): p. 183-188.
    44. Matsui, M., K. Dokko, and K. Kanamura, Dynamic behavior of surface film on LiCoO2 thin film electrode. Journal of Power Sources, 2008. 177(1): p. 184-193.
    45. Park, Y., et al., Characterization of the passivating layer on Li[Ni0.31Co0.32Mn0.28Al0.09]O2 cathode in the overcharge state. Journal of Molecular Structure, 2010. 974(1-3): p. 139-143.
    46. Wang, Z., Y. Hu, and L. Chen, Some studies on electrolytes for lithium ion batteries. Journal of Power Sources, 2005. 146(1-2): p. 51-57.
    47. Aurbach, D., et al., Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochimica Acta, 2004. 50(2-3): p. 247-254.
    48. Chusid, D.A.a.O., Electrolyte: Additive. Elsevier B.V., 2009: p. 92-111.
    49. Santner, H.J., et al., Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups. Journal of Power Sources, 2003. 119-121: p. 368-372.
    50. Abe, K., et al., Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochimica Acta, 2004. 49(26): p. 4613-4622.
    51. Xu, M., et al., Experimental and theoretical investigations on 4,5-dimethyl-[1,3]dioxol-2-one as solid electrolyte interface forming additive for lithium-ion batteries. Electrochimica Acta, 2010. 55(22): p. 6743-6748.
    52. Yao, W., et al., Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries. Energy & Environmental Science, 2009. 2(10): p. 1102-1108.
    53. Park, M.H., et al., Low Li+ binding affinity: An important characteristic for additives to form solid electrolyte interphases in Li-ion batteries. Journal of Power Sources, 2011. 196(11): p. 5109-5114.
    54. Ota, H., et al., Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochimica Acta, 2004. 49(4): p. 565-572.
    55. Xing, L., et al., The reductive mechanism of ethylene sulfite as solid electrolyte interphase film-forming additive for lithium ion battery. Journal of Power Sources, 2011. 196(16): p. 7044-7047.
    56. El Ouatani, L., et al., The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries. Journal of The Electrochemical Society, 2009. 156(2): p. A103-A113.
    57. Zhang, X., J.K. Pugh, and P.N. Ross, Computation of Thermodynamic Oxidation Potentials of Organic Solvents Using Density Functional Theory. Journal of The Electrochemical Society, 2001. 148(5): p. E183-E188.
    58. Ota, H., et al., TPD-GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries. Journal of Power Sources, 2001. 97-98: p. 107-113.
    59. Xu, M.Q., et al., Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive. Journal of Power Sources, 2007. 174(2): p. 705-710.
    60. Park, G., et al., The important role of additives for improved lithium ion battery safety. Journal of Power Sources, 2009. 189(1): p. 602-606.
    61. Zuo, X., et al., Electrochemical Reduction of 1,3-Propane Sultone on Graphite Electrodes and Its Application in Li-Ion Batteries. Electrochemical and Solid-State Letters, 2006. 9(4): p. A196-A199.
    62. Abouimrane, A., I. Belharouak, and K. Amine, Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochemistry Communications, 2009. 11(5): p. 1073-1076.
    63. Sun, X. and C.A. Angell, Doped sulfone electrolytes for high voltage Li-ion cell applications. Electrochemistry Communications, 2009. 11(7): p. 1418-1421.
    64. Sun, X.-G. and C.A. Angell, New sulfone electrolytes for rechargeable lithium batteries.: Part I. Oligoether-containing sulfones. Electrochemistry Communications, 2005. 7(3): p. 261-266.
    65. Watanabe, Y., et al., Electrochemical properties and lithium ion solvation behavior of sulfone–ester mixed electrolytes for high-voltage rechargeable lithium cells. Journal of Power Sources, 2008. 179(2): p. 770-779.
    66. von Cresce, A. and K. Xu, Electrolyte Additive in Support of 5 V Li Ion Chemistry. Journal of The Electrochemical Society, 2011. 158(3): p. A337-A342.
    67. Ariyoshi, K., et al., Topotactic Two-Phase Reactions of Li[Ni[sub 1/2]Mn[sub 3/2]]O[sub 4] (P4[sub 3]32) in Nonaqueous Lithium Cells. Journal of The Electrochemical Society, 2004. 151(2): p. A296-A303.
    68. Feng, X.Y., et al., Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance. Journal of Alloys and Compounds, 2011. 509(8): p. 3623-3626.
    69. Besenhard, J.O., et al., Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 1995. 54(2): p. 228-231.
    70. Verma, P., P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010. 55(22): p. 6332-6341.
    71. Zhao, M., ELECTROCHEMICAL STUDIES OF LITHIUM-ION BATTERY ANODE MATERIALS IN LITHIUM-ION BATTERY ELECTROLYTES in Department of Chemistry and Biochemistry2001, College of Arts and Sciences of Ohio University: Ohio.
    72. He, Y.-B., et al., Effects of current densities on the formation of LiCoO<sub>2</sub>/graphite lithium ion battery. Journal of Solid State Electrochemistry, 2011. 15(9): p. 1977-1985.
    73. D, B., iR elimination in electrochemical cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1978. 88(3): p. 309-352.
    74. Amatucci, G., et al., The elevated temperature performance of the LiMn2O4/C system: failure and solutions. Electrochimica Acta, 1999. 45(1-2): p. 255-271.
    75. Lee, H., et al., SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5 V Li-ion batteries. Electrochemistry Communications, 2007. 9(4): p. 801-806.
    76. Yamada, H., et al., Rate capability of lithium intercalation into nano-porous graphitized carbons. Solid State Ionics, 2008. 179(27-32): p. 1706-1709.
    77. Nyman, A., et al., Analysis of the Polarization in a Li-Ion Battery Cell by Numerical Simulations. Journal of The Electrochemical Society, 2010. 157(11): p. A1236-A1246.
    78. Huang, H., C.A. Vincent, and P.G. Bruce, Correlating Capacity Loss of Stoichiometric and Nonstoichiometric Lithium Manganese Oxide Spinel Electrodes with Their Structural Integrity. Journal of The Electrochemical Society, 1999. 146(10): p. 3649-3654.
    79. Gummow, R.J., A. de Kock, and M.M. Thackeray, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics, 1994. 69(1): p. 59-67.
    80. Yang, L., M. Takahashi, and B. Wang, A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling. Electrochimica Acta, 2006. 51(16): p. 3228-3234.
    81. Jang, D.H., Y.J. Shin, and S.M. Oh, Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/Li[sub x]Mn[sub 2]O[sub 4] Cells. Journal of The Electrochemical Society, 1996. 143(7): p. 2204-2211.
    82. Wang, L.-F., et al., Study of Mn Dissolution from LiMn[sub 2]O[sub 4] Spinel Electrodes Using Rotating Ring-Disk Collection Experiments. Journal of The Electrochemical Society, 2003. 150(7): p. A905-A911.
    83. Xia, Y., Y. Zhou, and M. Yoshio, Capacity Fading on Cycling of 4 V Li/LiMn[sub 2]O[sub 4] Cells. Journal of The Electrochemical Society, 1997. 144(8): p. 2593-2600.
    84. Aurbach, D., et al., The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries. Journal of The Electrochemical Society, 1995. 142(9): p. 2882-2890.
    85. Aurbach, D., et al., A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate-Dimethyl Carbonate Mixtures. Journal of The Electrochemical Society, 1996. 143(12): p. 3809-3820.
    86. Coates, J., Interpretation of Infrared Spectra, A Practical Approach, R.A. Meyers, Editor 2000, JohnWiley & Sons Ltd, Chichester.
    87. C.-P. Sherman Hsu, P.D., Handbook of Instrumental Techniques for Analytical Chemistry, F. Settle, Editor 1997, Prentice Hall.
    88. Aurbach, D., Y. Gofer, and J. Langzam, The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems. Journal of The Electrochemical Society, 1989. 136(11): p. 3198-3205.
    89. Aurbach, D., et al., Failure and Stabilization Mechanisms of Graphite Electrodes. The Journal of Physical Chemistry B, 1997. 101(12): p. 2195-2206.
    90. Blyth, R.I.R., et al., XPS studies of graphite electrode materials for lithium ion batteries. Applied Surface Science, 2000. 167(1-2): p. 99-106.
    91. Edström, K., M. Herstedt, and D.P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. Journal of Power Sources, 2006. 153(2): p. 380-384.
    92. Leroy, S., et al., Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study. Applied Surface Science, 2007. 253(11): p. 4895-4905.
    93. Nesbitt, H.W. and D. Banerjee, Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. American Mineralogist, 1998. 83(3-4): p. 305-315.
    94. Ota, H., et al., XAFS and TOF-SIMS analysis of SEI layers on electrodes. Journal of Power Sources, 2003. 119-121: p. 567-571.
    95. Kanamura, K., et al., Morphology and chemical compositions of surface films of lithium deposited on a Ni substrate in nonaqueous electrolytes. Journal of Electroanalytical Chemistry, 1995. 394(1-2): p. 49-62.
    96. Ota, H., et al., TPD–GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries. Journal of Power Sources, 2001. 97-98(0): p. 107-113.
    97. Contarni S., R.J.W., J. Electron Spectrosc. Relat. Phenom. 35, 1985: p. 191

    QR CODE