簡易檢索 / 詳目顯示

研究生: 黃晶薇
Ching-Wei Huang
論文名稱: 鋰離子電芯老化機理與失效分析
Aging mechanism and degradation analysis of lithium-ion batteries
指導教授: 王復民
Fu-Ming Wang
口試委員: 沈坤昇
Kun-Sheng Shen
李榮川
Jung-Chuan Li
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 97
中文關鍵詞: 鋰離子電芯老化機理失效分析
外文關鍵詞: Lithium-ion battery, degradation mechanisms
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為延長電池使用壽命與掌握電池的安全性,在本研究中,使用商用18650電芯來研究電池容量的衰減和老化機制,包括破壞性的電芯拆解及半破壞性的三極式載具測試。電芯拆解包括電芯內相關參數紀錄與分析、正負極組成、隔離膜材料、罐體設計、電性量測和電化學性質。電芯進行長圈數的老化循環並控制於恆溫40℃,材料的熱化學效應、化學結構和光譜分析也是研究之一,經過了解充放電循環後電芯內極捲的表面形貌、元素組成、電極材料的穩定性與電子價態的變化,透過未經老化之電芯與老化後電芯的比對,由晶體結構、形貌、元素分析和電化學性能來了解商業電池的降解機制。於半電池方面,透過充放電測試、循環伏安法和交流阻抗圖譜(EIS)進行綜合研究。於材料方面,採用掃描電子顯微分析(SEM)、感應耦合電漿原子放射光譜(ICP)、X光繞射(XRD)和傅立葉轉換紅外光譜(FTIR)進行交叉比對。於擬合部方面,利用OCV curve觀察電壓與容量的對應關係。延緩鋰離子電池老化的方式,除了材料改質、電解質改良外,也可以利用控制循環運行條件的方法來延長不同類型電池的壽命。希望透過更深入地了解老化機制以及相關性能測試方法的改進,實現鋰離子電池長期穩定的使用,滿足日益增長的應用需求。


    The performance and lifespan of lithium-ion batteries have always been a key focus of research and development. In this study, commercially available 18650 batteries were used to investigate battery capacity decay and various degradation mechanisms. Over time and with charge-discharge cycles, lithium-ion batteries experience aging effects such as capacity decay and increased internal resistance, which directly impact the battery's performance and safety. In this study, destructive cell dismantling and semi-destructive three-electrode testing were included. The cell dismantling included the recording and analysis of relevant parameters in the cell, cathode and anode electrode composition, separator material, tank design, electrical measurement, and electrochemical properties. In this study, the cell with a constant temperature of 40 degrees C is used for a long time, and the long-term entry and exit of lithium ions will cause irreversible changes, which will reduce the cell usage. The thermochemical effect, chemical structure and spectral analysis of materials are also one of the researches, to understand the surface morphology and element composition of the electrode sheet after charging and discharging, the stability of the electrode material, and the change of the electronic valence state.
    The degradation mechanisms of commercial cell were investigated by comparing the electrochemical performance of fresh and aging electrodes, including crystal structure, morphology, elemental composition, and electrochemical performance. In the half-cell part, a comprehensive study was carried out by charge-discharge procedure, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). In the material part, Scanning Electron Microscopy (SEM), Energy Dispersive spectroscopy (EDS), Inductively coupled plasma (ICP), X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) are used for cross-comparison. In the fitting part, use the OCV table to observe the correspondence between voltage and capacity. The strategy to delay the aging of lithium-ion batteries, in addition to material improvement, suppression of interfacial accumulation, and optimization of electrolytes, is also a method to control the cycle operating conditions of different types of batteries. It is hoped that through a deeper understanding of the aging mechanism and the improvement of related performance testing methods. Achieve long-term stable operation of lithium-ion batteries and meet growing application demands.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章、 緒論 1 1.1研究動機與目的 1 1.2 鋰離子電池背景 1 1.2.1 鋰離子電池發展史 2 1.2.2 鋰離子電池之需求背景 4 1.3 鋰離子電池的發展方向 8 1.3.1 鋰離子電池之於電動載具 9 1.3.2 鋰離子電池之於儲能 14 第二章、 文獻回顧 17 2.1 鋰離子電池之原理 17 2.1.1 正極材料 19 2.1.2 負極材料 19 2.1.3 電解質 22 2.1.4 隔離膜 22 2.2 鋰離子電池老化之研究 25 2.2.1 老化機理與失效原因 26 2.2.2 鋰的損失 27 2.2.3 金屬氧化物正極的損失 28 2.2.4 碳質負極材料的損失 29 2.2.5 降額方法回顧 30 第三章、 實驗方法與儀器設備 32 3.1 樣品介紹 32 3.1.1 樣品規格 32 3.1.2 樣品罐體設計 33 3.2 實驗流程 36 3.2.1 老化樣品製備 36 3.2.2 電芯拆解及半電池組裝流程 37 3.2.3 樣品製備 39 3.3 三極式測試 39 3.3.1 三極式載具設計 40 3.3.2 三極式實驗流程 41 3.4 實驗儀器 42 第四章、 結果與討論 50 4.1 全電池老化測試結果 50 4.1.1全電池容量表現 50 4.1.2全電池交流阻抗分析(Electrochemical impedance spectroscopy, EIS) 53 4.2 材料本質與鑑定分析 55 4.2.1 不同老化程度下之極捲照片 55 4.2.2 正極與負極之掃描式電子顯微鏡分析(Scanning Electron Microscope , SEM) 56 4.2.3 正極與負極之能量散射光譜分析(Energy Dispersive spectroscopy, EDS) 60 4.2.4 正極之感應耦合電漿原子放射光譜結果(Inductively Coupled Plasma, ICP) 61 4.2.5 正極與負極之X光繞射分析(X-ray diffraction analysis, XRD) 62 4.2.6 隔離膜之掃描式電子顯微分析(Scanning Electron Microscope , SEM) 65 4.2.7 隔離膜之能量散射光譜分析(Energy Dispersive spectroscopy, EDS) 70 4.2.8 隔離膜之X光繞射分析(X-ray diffraction analysis, XRD) 72 4.2.9 隔離膜之傅立葉轉換紅外光譜分析(Fourier transform infrared spectroscopy ,(FTIR)-ATR) 74 4.3 半電池之電化學性能分析 77 4.3.1 充放電循環測試 77 4.3.2 A / C capacity ratio 80 4.3.3 交流阻抗測試(Electrochemical impedance spectroscopy, EIS) 83 4.4 全電池與半電池的擬合估計 86 4.4.1 前言 86 4.4.2 OCV curve測試 87 4.4.3 正規化結果 89 4.4.4 擬合結果 91 4.5 三極式測試結果與討論 92 第五章、 結論與未來展望 94 參考資料 95

    [1] "Lithium-ion battery " Wikipedia, The Free Encyclopedia. 19 June 2019, 06:32 UTC. Wikimedia Foundation, Inc. 3 December. 2013.
    [2] Ashish Gogia et al. ”Binder-Free, Thin-Film Ceramic-Coated Separators for Improved Safety of Lithium-Ion Batteries” CS Omega (2021): 4204–4211
    [3] Han, Xuebing, et al. "A review on the key issues of the lithium ion battery degradation among the whole life cycle." ETransportation 1 (2019): 100005
    [4] J. Vetter, P. Novák, M.R. Wagner, et al. ”Ageing mechanisms in lithium-ion batteries” J Power Sources 147 (2005): 269-281
    [5] N. Lin, Z. Jia, Z. Wang, et al. ”Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy” J Power Sources 365 (2017): 235-239
    [6] J. Christensen, J. Newman “Effect of anode film resistance on the charge/ discharge capacity of a lithium-ion battery” J Electrochem Soc 150 (2003): 1416-A1420
    [7] Yirui Zhang, Yu Katayama, et al. ”Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy” Energy Environ (2020):183-199
    [8] L. Patnaik, A. Praneeth, S.S. Williamson “A closed-loop constant-temperature constant-voltage charging technique to reduce charge time of lithium-ion batteries” IEEE Trans. Ind. Electron 66 (2018): 1059-1067
    [9] J. Sieg, J. Bandlow, T. Mitsch, et al. “Fast charging of an electric vehicle lithium-ion battery at the limit of the lithium deposition process” J. Power Sources 427 (2019): 260-270
    [10] U.R. Koleti, T.N.M. Bui, T.Q. Dinh, et al. “The development of optimal charging protocols for lithium-ion batteries to reduce lithium plating” J. Energy Storage 39 (2021): 102573
    [11] Haijun Ruan, Jorge Varela Barreras, Timothy Engstrom, Yu Merla ,et al. “Lithium-ion battery lifetime extension: A review of derating methods” J. Power Sources 563 (2023): 232805
    [12] Victor Agubra, Jeffrey Fergus “Lithium Ion Battery Anode Aging Mechanisms” Materials (2013): 1310–1325.
    [13] Rui Xiong “Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives” Renewable and Sustainable Energy Reviews 131(2020): 110048
    [14] batterywali “Calendar life VS Cycle life” (2018)
    [15] Battery university “BU-304: Why are Protection Circuits Needed?”(2023)
    [16] Christoph R. Birkl, et al. “Degradation diagnostics for lithium ion cells” J. Power Sources 341(2017): 373-386
    [17] Xing Li et al.” Stability of polymeric separators in lithium metal batteries in a low voltage environment” Journal of Materials Chemistry A 12(2018)
    [18] Team Xometry “Polyethylene (PE): Structure, Properties, and Applications”
    [19] Jiuqing Li, Yong Qin, et al. “Structural characteristics and evolution of meta-anthracite to coaly graphite: A quantitative investigation using X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy” Fuel 333 (2023): 126334
    [20] Thomas Waldmann, et al.” Review—Post-Mortem Analysis of Aged Lithium-Ion Batteries : Disassembly Methodology and Physico - Chemical AnalysisTechniques” J The Electrochemical Society 163(2016): 2149-2164
    [21] Pengcheng Zhang, Tao Yuan, et al.” Influence of Current Density on Graphite Anode Failure inLithium-Ion Batteries” J The Electrochemical Society 166 (2019): 5489-5495
    [22] Xuemin Li , Andrew M. Colclasure, et al.” Degradation mechanisms of high capacity 18650 cells containing Si-graphite anode and nickel-rich NMC cathode” Electrochimica Acta 297(2019):1109-1120
    [23] Victor Agubra , Jeffrey Fergus ” Lithium Ion Battery Anode Aging Mechanisms” Materials (2013): 1310-1325
    [24] Han Wang , Jay F. Whitacre. “ Inhomogeneous aging of cathode materials in commercial 18650 lithium ion battery cells ” J Energy Storage 35(2021): 102244
    [25] Peter Keil, Simon F. Schuster, et al.” Calendar Aging of Lithium-Ion Batteries” J. Electrochem 163 (2016): 1872
    [26] Dominik Petz, Volodymyr Baran, et al.” Aging-Driven Composition and Distribution Changes of Electrolyte and Graphite Anode in 18650-Type Li-Ion Batteries” advanced energy materials 12 (2022): 2201652
    [27] Hyungyeon Cha , Jaeseong Hwang, et al.” Calendar Aging of Ni-rich Cathode in High-Energy Lithium-ion Batteries” SSRN (2022)
    [28] Mir Wasim Raja, et al.” The Paper-Based Ceramic Separator for Lithium-Ion Batteries and the Process Scale-Up Strategy” Energy Mater (2022): 5841–5854
    [29] Agus Purwanto, Cornelius Satria Yudha, et al.” NCA cathode material: synthesis methods and performance enhancement efforts.” Materials Research Express(2018): 122001
    [30] Ding, Yuanli, et al. "Automotive Li-ion batteries: current status and future 250 perspectives." Electrochemical Energy Reviews 2.1 (2019): 1-28
    [31] Loveridge, Melanie J., et al. "Looking deeper into the Galaxy (Note 7)." Batteries 4.1 (2018): 3.
    [32] Noori, Mehdi, Stephanie Gardner, and Omer Tatari. "Electric vehicle cost, emissions, and water footprint in the United States: development of a regional optimization model." Energy 89 (2015): 610-625.
    [33] 黃可龍, 王兆翔, 劉素琴「鋰離子電池原理與技術」,五南出版社,2010年5月
    [34] Panasonic ideas for life “NCR18650b lithium-ion / nnp + hrl technology”

    無法下載圖示 全文公開日期 2026/02/02 (校內網路)
    全文公開日期 2034/02/02 (校外網路)
    全文公開日期 2026/02/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE