簡易檢索 / 詳目顯示

研究生: 林明憲
Ming-Hsien Lin
論文名稱: 高能鋰離子電池電極材料結構衰退機制分析及電化學效能提升之研究
Investigation on structural deterioration mechanisms and performance enhancement of electrode materials for high energy lithium ion batteries
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
杜景順
Jing-Shan Do
吳溪煌
She-huang Wu
葛明德
Ming-Der Ger
劉益銘
Yih-Ming Liu
蘇威年
Wei-Nien Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 190
中文關鍵詞: 高能鋰離子電池過量鋰層狀正極材料矽負極材料結構缺陷表面結構老化石墨烯-無定形碳塗覆水熱法X-ray繞射拉曼光譜X-ray光電子能譜SoftX-ray吸收光譜
外文關鍵詞: High energy lithium ion batteries, Lithium-rich layered material, Si/Carbon anode material, structural defect, surface againg, graphene/amorphous carbon dual-coating, hydrothermal process, XRD, XPS spectrum, Raman spectrum, Soft XAS
相關次數: 點閱:335下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對過量鋰正極材料Li[Li0.2Ni0.2Mn0.6]O2及奈米矽碳負極材料等高電容量先進電極材料進行結構衰退機制及電化學效能分析之研究。針對過量鋰正極材料Li[Li0.2Ni0.2Mn0.6]O2之結構衰退與效能善,研究中藉由晶體結構及表面結構分析方法建立Li[Li0.2Ni0.2Mn0.6]O2過量鋰正極材料結構鑑定程序及萃取細部分析資訊,並由高溫(80 ℃)、高濕(RH 100%)老化實驗得知,Li[Li0.2Ni0.2Mn0.6]O2過量鋰正極材料結構表面的鋰離子易與環境中的水氣及CO2產生反應形成LiOH及Li2CO3沉積,經Raman及XPS分析結果顯示,隨著老化時間的增長,將導致表面結構的老化及沉積物的增加,造成電化學效能的劣化。另以Raman光譜及Soft XAS吸收光譜,針對不同充電截止電壓之充放電策略下的表面結構衰變及電子結構的變化進行分析,經300圈充放電循環測試後可觀察到表面層狀至尖晶狀結構的轉變與錳、氧離子的電子結構變化,由分析結果得知,全程限定4.6 V充電截止電壓可減緩氧活化平台造成的負面影響 (如結構的活化重構、晶格空缺的損耗及結構的扭曲),使電化學循環穩定度獲得改善。對於奈米矽碳負極材料的效能提升與電極結構崩壞抑制,研究中利用靜電吸附自組裝及水熱法雙重碳塗覆程序之策略,發展出具有yolk-shell結構之矽/還原石墨烯氧化物/無定形碳(YS-Si@rGO/a-C)負極材料,所建構之rGO/a-C複合緩衝層不僅能形成3D電子傳遞網路,並具有良好的緩衝彈性,搭配優勢的預置空間,則可承受矽奈米粒子體積膨脹的應力變化,穩定SEI的生成,維持電極結構的完整性,表現出良好的電化學循環效能及電容量穩定性,經101圈充放電循環後,仍可維持1249 mAh/g之電容量,75 %電容量維持率,而低rGO含量的控制,可降低SEI的生成面積,提升可逆電容量的貢獻,獲得76 %的第一圈庫倫效率,1668 mAh/g的第一圈可逆電容量。
    由全電池模組充放電驗證結果得知,以Li[Li0.2Ni0.2Mn0.6]O2過量鋰正極與YS-Si@rGO/a-C負極所建立的全電池模組具有達3.3 V的工作電壓及213 mAh/g的可逆電容量,其能量密度的貢獻皆大於一般典型的商售電池系統(如LiCoO2/MCMB、LiFePO4/MCMB),而4.8 V高工作截止電壓除引發Li[Li0.2Ni0.2Mn0.6]O2結構的衰變外,電解液的催化裂解,亦會促使YS-Si@rGO/a-C負極端SEI的大量生成,造成電容量及電壓平台的快速衰退,而限定4.6 V充電截止電壓之充放電策略則可減緩電容量快速衰退的情形,提升電化學效能穩定性。


    In this study, the mechanisms of structural deterioration and enhancement of electrochemical performance for high-energy advanced lithium ion batteries materials, including Li-rich Li[Li0.2Ni0.2Mn0.6]O2 cathode material and nanostructured Si/C anode material, are investigated. In the issues of structural deterioration and performance improving for Li-rich layered cathode material, the identification process and detail structural information of Li1.2Ni0.2Mn0.6O2 cathode material were confirmed by series phase identification of crystal structure and surface structure analysis. Furthermore, under hot (80 oC) and humid (RH 100%) aging process, the Li-ion on the surface of Li-rich Li[Li0.2Ni0.2Mn0.6]O2 cathode material is prone to react with H2O and CO2 in air and form LiOH and Li2CO3. An increased in surface aged structure and deposition layer as the increased in aging time was evidenced by Raman and XPS analysis, which results in the degradation of the electrochemical performance. Additionally, the surface structure decline and electronic structure evolution for Li1.2Ni0.2Mn0.6O2 cathode material in various cycling protocols were investigated by Raman spectroscopy and soft XAS absorption spectroscopy, the changes for surface layered-to-spinel phase transformation and electronic structure variation of manganese and oxygen ions were observed after 300 cycles. As the results, the protocol of overall restricted 4.6 V charge cut-off voltages could reduce the adverse effects, including the structural reconstruction, the loss of vacancy or hole in lattice and structural distortion, during the oxygen plateau and thus improving the electrochemical cycling stability. In order to improve the electrochemical performance and mitigate the electrode pulverization, an effective strategy based on the synergistic dual-coating process of electrostatic self-assembly and the hydrothermal carbonization of glucose to produce a unique yolk-shell structured rGO/silicon/amorphous carbon (a-C) anode material (YS-Si@ rGO/a-C). The rGO/a-C composite shell of YS-Si@rGO/a-C anode prepared by the developed dual coating process not only confers a 3D electronic conductive network, the strong-integration of rGO and a-C makes the composite rGO/a-C shell more resilient. The incorporated buffer space and rGO/a-C shell give a synergetic effect to help YS-Si@rGO/a-C anode endure the stress changes due to the large volume expansions, while at the same time allowing the formation of a stable SEI on the surface of the electrode, maintaining the structural integrity of electrode during cycling. The overall yolk-shell structure results in good rate capability and better cyclability. As a result, the composite anode exhibits stable capacity retention of 75 % after over 100 cycles, a reversible capacity of 1249 mAh/g at 101 cycles. Meanwhile, the initial reversible capacity ratio of 76 %, a high reversible capacity 1668 mAh/g at the 1st cycle were achieved by limited loading of high-surface-area rGO.
    In the full cell system of Li[Li0.2Ni0.2Mn0.6]O2 cathode /YS-Si@rGO/a-C anode, the remarkable potential window of 3.3 V and reversible capacity of 213 mAh/g deliver higher energy density than other conventional Li-ion batteries (LiCoO2/MCMB, LiFePO4/MCMB). However, a high cut-off voltage of 4.8 V causes the severe voltage decay and fast capacity fading due to the structural deterioration of Li[Li0.2Ni0.2Mn0.6]O2 cathode, electrolyte decomposition and thickening the SEI formation of YS-Si@rGO/a-C anode. Such adverse effects during the high working voltage of 4.8 V were mitigated by restricting the cut-off voltage of 4.6 V, improving the electrochemical cyclability.

    摘要.............................................I Abstract.......................................III 致謝.............................................V 目錄...........................................VII 圖目錄..........................................XI 表目錄..........................................XX 符號索引........................................XXI 第1章 緒論.....................................1 1.1. 前言.....................................1 1.2. 鋰離子二次電池的發展.......................2 1.3. 鋰離子二次電池的組成及機制..................5 1.4. 高能量鋰離子電極材料的發展.................10 1.4.1. 正極(陰極)材料...........................12 1.4.2. 負極(陽極)材料...........................17 1.5. 研究動機與目的...........................21 第2章 文獻回顧.................................24 2.1. 過量鋰層狀正極材料 ........................24 2.1.1. 材料結構特徵與製程發展.....................25 2.1.2. 材料結構變化分析..........................29 2.2. 矽負極材料...............................41 2.2.1. 異狀結構矽負極材料........................42 2.2.2. 奈米矽碳負極材料..........................44 第3章 實驗方法與儀器設備........................50 3.1. 樣品製備.................................51 3.1.1. 過量鋰層狀正極材料(Li1.2Ni0.2Mn0.6O2).....51 3.1.2. Yolk-shell結構還原石墨烯氧化物/矽/無定形碳複合材料之製備..............................................52 3.2. 過量鋰層狀正極材料(Li1.2Ni0.2Mn0.6O2)結構老化及電化學衰退分析程序.....................................55 3.3. 材料結構鑑定與分析儀器設備.................56 3.3.1. FE-SEM場發射掃描式電子顯微鏡..............56 3.3.2. TGA熱重分析..............................57 3.3.3. 拉曼散射光譜分析儀........................57 3.3.4. FTIR紅外光譜分析.........................58 3.3.5. XRD X-ray 繞射分析儀.....................58 3.3.6. Soft XAS 軟X-ray吸收光譜 (同步輻射光源)...58 3.3.7. XPS X-ray光電子能譜 (同步輻射光源)........59 3.4. 鈕扣電池組裝及電化學效能測試...............59 3.4.1. 藥品及設備...............................60 3.4.2. 電極製備.................................61 3.4.3. 電極製備及電池電化學特性測試...............62 第4章 結果與討論...............................67 4.1. 過量鋰正極材料結構特徵鑑定.................67 4.1.1. XRD晶體結構特徵鑑定.......................67 4.1.2. Raman表面結構鑑定與電化學臨場結構分析.......71 4.1.3. XPS表面元素特徵鑑定.......................74 4.1.4. 小結.....................................75 4.2. 高溫濕環境對過量鋰正極材料結構老化之影響.....77 4.2.1. XRD晶體結構差異分析.......................77 4.2.2. Raman表面結構及XPS表面元素差異分析.........78 4.2.3. 電化學效能差異分析 ........................81 4.2.4. 小結.....................................84 4.3. 不同充電截止電壓之充放電循環策略對過量鋰正極材料表面結構衰退之影響......................................87 4.3.1. 過量鋰正極材料結構特徵鑑定.................89 4.3.2. 不同充電截止電壓之電化學效能差異分析........ 92 4.3.3. 不同電化學循環策略之結構衰退變化及電極表面形貌分析..............................................100 4.3.4. 小結....................................109 4.4. 利用雙層塗覆技術製備具有yolk-shell緩衝結構之高效能還原石墨烯氧化物/矽/無定形碳負極材料...................113 4.4.1. 矽奈米粒子表面官能基化及yolk-shell結構矽碳負極材料之結構特徵分析.......................................115 4.4.2. Yolk-shell結構之矽碳負極材料結構形貌觀察...121 4.4.3. 電化學效能測試及分析......................124 4.4.4. 電極衰退形貌觀察及機制分析.................135 4.4.5. 小結....................................139 4.5. 高能量之過量鋰陰極/矽碳負極全電池模組測試....143 第5章 結論.....................................146 參考文獻.........................................150 附錄.............................................165

    參考文獻
    [1] H. D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, "On the challenge of developing advanced technologies for electrochemical energy storage and conversion," Materials Today, vol. 17, pp. 110-121, 2014.
    [2] 黃俊誠 and 陳藹然, "鋰電池Lithium Battery," 科學Online - 科技部高瞻自然科學教學資源平台, 2009.
    [3] 西. 美緒, "鋰電池發展史," 日經技術在線, 2015.
    [4] M. S. Whittingham, "Lithium batteries and cathode materials," Chem Rev, vol. 104, pp. 4271-4301, 2004.
    [5] C. S. Johnson, N. Li, J. T. Vaughey, S. A. Hackney, and M. M. Thackeray, "Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3·(1−x)Li1+yMn2−yO4 (0<x<1, 0⩽y⩽0.33) for lithium batteries," Electrochemistry Communications, vol. 7, pp. 528-536, 2005.
    [6] M.-K. Song, S. Park, F. M. Alamgir, J. Cho, and M. Liu, "Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives," Materials Science and Engineering: R: Reports, vol. 72, pp. 203-252, 2011.
    [7] J. B. Goodenough and K. S. Park, "The Li-ion rechargeable battery: a perspective," J Am Chem Soc, vol. 135, pp. 1167-1176, 2013.
    [8] C. Julien, A. Mauger, K. Zaghib, and H. Groult, "Comparative Issues of Cathode Materials for Li-Ion Batteries," Inorganics, vol. 2, pp. 132-154, 2014.
    [9] J. Zheng, H. Zheng, R. Wang, L. Ben, W. Lu, L. Chen, et al., "3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries," Phys Chem Chem Phys, vol. 16, pp. 13229-13238, 2014.
    [10] http://www.energyandcapital.com/articles/the-holy-grail-of-battery -technology.
    [11] J. P. Mizushima K, Wiseman PJ, Goodenough JB, "LixCoO2 (0≦x≦1): A new cathode material for batteries of high energy density," Materials Research Bulletin, vol. 15, pp. 171-174, 1980.
    [12] J. W. Fergus, "Recent developments in cathode materials for lithium ion batteries," Journal of Power Sources, vol. 195, pp. 939-954, 2010.
    [13] Y. Huang, J. Chen, J. Ni, H. Zhou, and X. Zhang, "A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2," Journal of Power Sources, vol. 188, pp. 538-545, 2009.
    [14] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries," Journal of The Electrochemical Society, vol. 144, pp. 1188-1194, 1997.
    [15] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, "Effect of Structure on the Fe3 +  / Fe2 +  Redox Couple in Iron Phosphates," Journal of The Electrochemical Society, vol. 144, pp. 1609-1613, 1997.
    [16] S. Wang, C. Zhou, Q. Zhou, G. Ni, and J. Wu, "Preparation of LiFePO4/C in a reductive atmosphere generated by windward aerobic decomposition of glucose," Journal of Power Sources,vol. 196, pp. 5143-5146, 2011.
    [17] S.-M. Oh, Oh, S.-W., Yoon, C.-S., Scrosati, B., Amine, K., Sun, Y.-K., "High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries " Advanced Functional Materials, vol. 20, pp. 3260-3265, 2010.
    [18] H. H. Li, Jin, J., Wei, J.P., Zhou, Z., Yan, J., "Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances " Electrochemistry Communications, vol. 11, pp. 95-98, 2009.
    [19] K. a. Saravanan, Vittal, J.J.a , Reddy, M.V.b, Chowdari, B.V.R.b, Balaya, P., "Storage performance of LiFe 1-xMn xPO 4 nanoplates (x=0, 0.5, and 1)," Journal of Solid State Electrochemistry, vol. 14, pp. 1755-1760, 2010.
    [20] Y.-U. P. Jongsoon Kim, Dong-Hwa Seo,Jinsoo Kim, Sung-Wook Kim, and Kisuk Kang, "Mg and Fe Co-doped Mn Based Olivine Cathode Material for High Power Capability," J. Electrochem. Soc., vol. 158, pp. A250-A254, 2011.
    [21] K. Saravanan, Ramar, V., Balaya, P. , Vittal, J.J. , "Li(MnxFe1-x)PO4/C (x = 0.5, 0.75 and 1) nanoplates for lithium storage application," Journal of Materials Chemistry, vol. 21, pp. 14925-14935, 2011.
    [22] K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues, A. Mauge, C. M. Julien, "Safe and fast-charging Li-ion battery with long shelf life for power applications," J. Power Sources, vol. 196, pp. 3949-3954, 2011.
    [23] G. Li, Azuma, H., Tohda, M., "LiMnPO4 as the cathode for lithium batteries," Electrochemical and Solid-State Letters, vol. 5, pp. A135-137, 2002.
    [24] K. Amine, Yasuda, H., Yamachi, M., "Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries," Electrochemical and Solid-State Letters, vol. 3, pp.178-179, 2000.
    [25] J. Wolfenstine, Allen, J., "Ni3+/Ni2+ redox potential in LiNiPO4 " Journal of Power Sources, vol. 142, pp. 389-390, 2005.
    [26] M. M. Thackeray, David, W. I. F., Bruce, P. G. & Goodenough, J. B., "Lithium insertion into manganese spinels," Materials Research Bulletin, vol. 18, pp. 461-472, 1983.
    [27] H. A. Jahn and E. Teller, "Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy," Proc. R. Soc. London, Ser. A, vol. 161, pp. 220-235, 1937.
    [28] J. B. Goodenough and A. L. Loeb, "Theory of Ionic Ordering, Crystal Distortion, and Magnetic Exchange Due to Covalent Forces in Spinels," Phys. Rev., vol. 98, pp. 391-408, 1955.
    [29] D. Aurbach, M. D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, et al., "Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques," Journal of Power Sources, vol. 81–82, pp. 472-479, 1999.
    [30] Y. Xia, Y. Zhou, and M. Yoshio, "Capacity Fading on Cycling of 4 V Li / LiMn2 O 4 Cells," Journal of The Electrochemical Society, vol. 144, pp. 2593-2600, 1997.
    [31] J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang, and Y. K. Sun, "Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures:  Fd3̄m and P4332," Chemistry of Materials, vol. 16, pp. 906-914, 2004.
    [32] J. Molenda, J. Marzec, K. Świerczek, W. Ojczyk, M. Ziemnicki, M. Molenda, et al., "The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel," Solid State Ionics, vol. 171, pp. 215-227, 2004.
    [33] T. Ohzuku, S. Takeda, and M. Iwanaga, "Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries," Journal of Power Sources, vol. 81–82, pp. 90-94, 1999.
    [34] J. B. Goodenough and K.-S. Park, "The Li-Ion Rechargeable Battery: A Perspective," Journal of the American Chemical Society, vol. 135, pp. 1167-1176, 2013.
    [35] E. M. Erickson, C. Ghanty, and D. Aurbach, "New Horizons for Conventional Lithium Ion Battery Technology," J Phys Chem Lett, vol. 5, pp. 3313-3324, 2014.
    [36] M. Zanini, Basu, S., Fischer, J.E., "Alternate synthesis and reflectivity spectrum of stage 1 lithium-graphite intercalation compound " Carbon, vol. 16, 1978.
    [37] B. T. L. ink, "Rechargeable battery " US Patent, 1981.
    [38] F. Su, C. K. Poh, J. S. Chen, G. Xu, D. Wang, Q. Li, et al., "Nitrogen-containing microporous carbon nanospheres with improved capacitive properties," Energy Environ. Sci., vol. 4, pp. 717-724, 2011.
    [39] V. Petkov, A. Timmons, J. Camardese, and Y. Ren, "Li insertion in ball-milled graphitic carbon studied by total x-ray diffraction," J Phys Condens Matter, vol. 23, p. 435003, 2011.
    [40] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, "Review on recent progress of nanostructured anode materials for Li-ion batteries," Journal of Power Sources, vol. 257, pp. 421-443, 2014.
    [41] D. K. Lee, S. H. Park, K. Amine, H. J. Bang, J. Parakash, and Y. K. Sun, "High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method," Journal of Power Sources, vol. 162, pp. 1346-1350, 2006.
    [42] J. Wang, X. Yao, X. Zhou, and Z. Liu, "Synthesis and electrochemical properties of layered lithium transition metal oxides," J. Mater. Chem., vol. 21, pp. 2544-2549, 2011.
    [43] J. Lin, D. Mu, Y. Jin, B. Wu, Y. Ma, and F. Wu, "Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery," Journal of Power Sources, vol. 230, pp. 76-80, 2013.
    [44] A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S. H. Kang, M. M. Thackeray, et al., "Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2," J Am Chem Soc, vol. 128, pp. 8694-8698, 2006.
    [45] J. Hong, D.-H. Seo, S.-W. Kim, H. Gwon, S.-T. Oh, and K. Kang, "Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery," Journal of Materials Chemistry, vol. 20, pp. 10179-10186, 2010.
    [46] N. Yabuuchi, K. Yoshii, S. T. Myung, I. Nakai, and S. Komaba, "Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2," J Am Chem Soc, vol. 133, pp. 4404-4419, 2011.
    [47] H. Wu and Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion batteries," Nano Today, vol. 7, pp. 414-429, 2012.
    [48] S. Yoon, C. W. Lee, Y. S. Bae, I. Hwang, Y.-K. Park, and J. H. Song, "Method of Preparation for Particle Growth Enhancement of LiNi0.8Co0.15Al0.05O2," Electrochemical and Solid-State Letters, vol. 12, pp. A211-A214, 2009.
    [49] S. Hy, H. Liu, D. Qian, M. Zhang, B. J. Hwang, and Y. S. Meng, "Performance and Design Considerations For The lithium Excess Layered Oxide Positive Electrode Materials For Lithium Ion Batteries," Energy Environ. Sci.,vol. 9, pp. 1931-1954, 2016.
    [50] J. Hong, H.-D. Lim, M. Lee, S.-W. Kim, H. Kim, S.-T. Oh, et al., "Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries," Chemistry of Materials, vol. 24, pp. 2692-2697, 2012.
    [51] S. Hy, F. Felix, J. Rick, W. N. Su, and B. J. Hwang, "Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 </= x </= 0.5)," J Am Chem Soc, vol. 136, pp. 999-1007, 2014.
    [52] T. McQueen, Q. Huang, J. W. Lynn, R. F. Berger, T. Klimczuk, B. G. Ueland, et al., "Magnetic structure and properties of the S=5/2 triangular antiferromagnetα−NaFeO2," Physical Review B, vol. 76, pp. 024420 1-7, 2007.
    [53] Z. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, and J. R. Dahn, "Synthesis, Structure, and Electrochemical Behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2," Journal of The Electrochemical Society, vol. 149, pp. A778-A791, 2002.
    [54] M. M. Thackeray, S.-H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, and S. A. Hackney, "Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries," Journal of Materials Chemistry, vol. 17, pp. 3112-3125, 2007.
    [55] C. H. Lei, J. Bareño, J. G. Wen, I. Petrov, S. H. Kang, and D. P. Abraham, "Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy," Journal of Power Sources, vol. 178, pp. 422-433, 2008.
    [56] Y. S. Meng, G. Ceder, C. P. Grey, W. S. Yoon, M. Jiang, J. Bréger, et al., "Cation Ordering in Layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2(0 ≤x≤1/2) Compounds," Chemistry of Materials, vol. 17, pp. 2386-2394, 2005.
    [57] J.-S. Kim, C. S. Johnson, J. T. Vaughey, M. M. Thackeray, S. A. Hackney, W. Yoon, et al., "Electrochemical and Structural Properties ofxLi2M‘O3·(1−x)LiMn0.5Ni0.5O2Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤x⩽ 0.3)," Chemistry of Materials, vol. 16, pp. 1996-2006, 2004.
    [58] M. H. Rossouw and M. M. Thackeray, "Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications," Materials Research Bulletin, vol. 26, pp. 463-473, 1991.
    [59] K. Numata, C. Sakaki, and S. Yamanaka, "Synthesis of Solid Solutions in a System of LiCoO2-Li2MnO3 for Cathode Materials of Secondary Lithium Batteries," Chemistry Letters, pp. 725-726, 1997.
    [60] S. S. Shin, Y. K. Sun, and K. Amine, "Synthesis and electrochemical properties of Li[Li(1−2x)/3NixMn(2−x)/3]O2 as cathode materials for lithium secondary batteries," Journal of Power Sources, vol. 112, pp. 634-638, 2002.
    [61] S. H. Park and Y.-K. Sun, "Synthesis and electrochemical properties of layered Li[Li0.15Ni(0.275−x/2)AlxMn(0.575−x/2)]O2 materials prepared by sol–gel method," Journal of Power Sources, vol. 119-121, pp. 161-165, 2003.
    [62] H. Y. Xu, Q. Y. Wang, and C. H. Chen, "Synthesis of Li[Li0.2Ni0.2Mn0.6]O2 by radiated polymer gel method and impact of deficient Li on its structure and electrochemical properties," Journal of Solid State Electrochemistry, vol. 12, pp. 1173-1178, 2008.
    [63] Y. J. Park, M. G. Kim, Y.-S. Hong, X. Wu, K. S. Ryu, and S. H. Chang, "Electrochemical behavior of Li intercalation processes into a Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cathode," Solid State Communications, vol. 127, pp. 509-514, 2003.
    [64] Y.-S. Hong, Y. J. Park, K. S. Ryu, S. H. Chang, and M. G. Kim, "Synthesis and electrochemical properties of nanocrystalline Li[NixLi(1-2x)/3Mn(2-x)/3]O2 prepared by a simple combustion method," Journal of Materials Chemistry, vol. 14, pp. 1424-1429, 2004.
    [65] M. G. Kim, M. Jo, Y. S. Hong, and J. Cho, "Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode," Chem Commun (Camb), pp. 218-220, 2009.
    [66] G. Z. Wei, X. Lu, F. S. Ke, L. Huang, J. T. Li, Z. X. Wang, et al., "Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries," Adv Mater, vol. 22, pp. 4364-4367, 2010.
    [67] D. A. R. Barkhouse and J. R. Dahn, "A Novel Fabrication Technique for Producing Dense Li[NixLi (1/3–2x/3)Mn(2/3−x/3)]O2, 0≤x≤1/2," Journal of The Electrochemical Society, vol. 152, pp. A746-A751, 2005.
    [68] J. Jiang, K. W. Eberman, L. J. Krause, and J. R. Dahn, "Structure, Electrochemical Properties, and Thermal Stability Studies of Cathode Materials in the xLi[Mn1/2Ni1/2]O2⋅yLiCoO 2⋅zLi[Li1/3Mn2/3]O2 Pseudoternary System (x+y+z=1)," Journal of The Electrochemical Society, vol. 152, pp. A1879-A1889, 2005.
    [69] C. R. Fell, K. J. Carroll, M. Chi, and Y. S. Meng, "Synthesis–Structure–Property Relations in Layered, “Li-excess” Oxides Electrode Materials Li[Li1/3−2x/3Nix]Mn2/3−x/3]O2 (x=1/3, 1/4, and 1/5)," Journal of The Electrochemical Society, vol. 157, pp. A1202-A1211, 2010.
    [70] P. Oh, S. Myeong, W. Cho, M. J. Lee, M. Ko, H. Y. Jeong, et al., "Superior long-term energy retention and volumetric energy density for Li-rich cathode materials," Nano Lett, vol. 14, pp. 5965-5972, 2014.
    [71] M. N. Ates, S. Mukerjee, and K. M. Abraham, "A Search for the Optimum Lithium Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries," J Electrochem Soc, vol. 162, pp. A1236-A1245, 2015.
    [72] Z. Lu and J. R. Dahn, "Understanding the Anomalous Capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies," Journal of The Electrochemical Society, vol. 149, pp. A815-A822, 2002.
    [73] S. H. Kang, Y. K. Sun, and K. Amine, "Electrochemical and Ex Situ X-Ray Study of Li(Li0.2Ni0.2Mn0.6)O2 Cathode Material for Li Secondary Batteries," Electrochemical and Solid-State Letters, vol. 6, p. A183-A186, 2003.
    [74] A. D. Robertson and P. G. Bruce, "2003 Mechanism of Electrochemical Activity in Li2MnO3," Chemistry of Materials, vol. 15, pp. 1984-1992, 2003.
    [75] M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, et al., "Formation of the spinel phase in the layered composite cathode used in Li-ion batteries," ACS Nano, vol. 7, pp. 760-767, 2013.
    [76] J. Zheng, M. Gu, J. Xiao, P. Zuo, C. Wang, and J. G. Zhang, "Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process," Nano Lett, vol. 13, pp. 3824-3830, 2013.
    [77] C.-H. Chen, C.-J. Pan, W.-N. Su, J. Rick, C.-J. Wang, M. Venkateswarlu, et al., "Operando X-ray diffraction and X-ray absorption studies of the structural transformation upon cycling excess Li layered oxide Li[Li1/18Co1/6Ni1/3Mn4/9]O2in Li ion batteries," J. Mater. Chem. A, vol. 3, pp. 8613-8626, 2015.
    [78] G. Singh, W. C. West, J. Soler, and R. S. Katiyar, "In situ Raman spectroscopy of layered solid solution Li2MnO3–LiMO2 (M = Ni, Mn, Co)," Journal of Power Sources, vol. 218, pp. 34-38, 2012.
    [79] S. Hy, W.-N. Su, J.-M. Chen, and B.-J. Hwang, "Soft X-ray Absorption Spectroscopic and Raman Studies on Li1.2Ni0.2Mn0.6O2for Lithium-Ion Batteries," The Journal of Physical Chemistry C, vol. 116, pp. 25242-25247, 2012.
    [80] M. Oishi, C. Yogi, I. Watanabe, T. Ohta, Y. Orikasa, Y. Uchimoto, et al., "Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2," Journal of Power Sources, vol. 276, pp. 89-94, 2015.
    [81] Y. Zhao, S. Wang, W. Ren, and R. Wu, "Storage Characteristics and Surface Basicity Properties of Li-Rich Cathode Materials Used in Lithium Ion Batteries," Journal of the Electrochemical Society, vol. 160, pp. A82-A86, 2012.
    [82] H. Liu, Y. Yang, and J. Zhang, "Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2," Journal of Power Sources, vol. 173, pp. 556-561, 2007.
    [83] L. F. Cui, R. Ruffo, C. K. Chan, H. Peng, and Y. Cui, "Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes," Nano Lett, vol. 9, pp. 491-495, 2009.
    [84] Y. Fan, Q. Zhang, C. Lu, Q. Xiao, X. Wang, and B. K. Tay, "High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes," Nanoscale, vol. 5, pp. 1503-1506, 2013.
    [85] B. Wang, X. Li, T. Qiu, B. Luo, J. Ning, J. Li, et al., "High Volumetric Capacity Silicon-Based Lithium Battery Anodes by Nanoscale System Engineering," Nano Letters, vol. 13, pp. 5578-5584, 2013.
    [86] B. Wang, X. Li, B. Luo, X. Zhang, Y. Shang, A. Cao, et al., "Intertwined network of Si/C nanocables and carbon nanotubes as lithium-ion battery anodes," ACS Appl Mater Interfaces, vol. 5, pp. 6467-6472, 2013.
    [87] Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, et al., "Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life," Nano Lett, vol. 11, pp. 2949-2954, 2011.
    [88] C. Xiao, N. Du, X. Shi, H. Zhang, and D. Yang, "Large-scale synthesis of Si@C three-dimensional porous structures as high-performance anode materials for lithium-ion batteries," J. Mater. Chem. A, vol. 2, pp. 20494-20499, 2014.
    [89] H. Tian, X. Tan, F. Xin, C. Wang, and W. Han, "Micro-sized nano-porous Si/C anodes for lithium ion batteries," Nano Energy, vol. 11, pp. 490-499, 2015.
    [90] X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, "Size-dependent fracture of silicon nanoparticles during lithiation," ACS Nano, vol. 6, pp. 1522-1531, 2012.
    [91] Y.-S. Hu, R. Demir-Cakan, M.-M. Titirici, J.-O. Müller, R. Schlögl, M. Antonietti, et al., "Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries," Angewandte Chemie International Edition, vol. 47, pp. 1645-1649, 2008.
    [92] S.-M. Jang, J. Miyawaki, M. Tsuji, I. Mochida, and S.-H. Yoon, "The preparation of a novel Si–CNF composite as an effective anodic material for lithium–ion batteries," Carbon, vol. 47, pp. 3383-3391, 2009.
    [93] C. Martin, M. Alias, F. Christien, O. Crosnier, D. Bélanger, and T. Brousse, "Graphite-Grafted Silicon Nanocomposite as a Negative Electrode for Lithium-Ion Batteries," Advanced Materials, vol. 21, pp. 4735-4741, 2009.
    [94] W. Wang and P. N. Kumta, "Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes," ACS Nano, vol. 4, pp. 2233-2241, 2010.
    [95] H. Xiang, K. Zhang, G. Ji, J. Y. Lee, C. Zou, X. Chen, et al., "Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability," Carbon, vol. 49, pp. 1787-1796, 2011.
    [96] T. H. Hwang, Y. M. Lee, B. S. Kong, J. S. Seo, and J. W. Choi, "Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes," Nano Lett, vol. 12, pp. 802-807, 2012.
    [97] C. Kim, M. Ko, S. Yoo, S. Chae, S. Choi, E. H. Lee, et al., "Novel design of ultra-fast Si anodes for Li-ion batteries: crystalline Si@amorphous Si encapsulating hard carbon," Nanoscale, vol. 6, pp. 10604-10610, 2014.
    [98] Y. Xu, Y. Zhu, and C. Wang, "Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries," Journal of Materials Chemistry A, vol. 2, pp. 9751-9757, 2014.
    [99] N. Liu, Z. Lu, J. Zhao, M. T. McDowell, H. W. Lee, W. Zhao, et al., "A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes," Nat Nanotechnol, vol. 9, pp. 187-192, 2014.
    [100] M. Ko, S. Chae, S. Jeong, P. Oh, and J. Cho, "Elastica-Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries," ACS Nano, vol. 8, pp. 8591-8599, 2014.
    [101] C. Kim, S. Choi, S. Yoo, D. Kwon, S. Ko, J. M. Kim, et al., "A facile route for growth of CNTs on Si@hard carbon for conductive agent incorporating anodes for lithium-ion batteries," Nanoscale, vol. 7, pp. 11286-11290, 2015.
    [102] X. Guan, L. Wang, J. Yu, Y. Li, S. Chen, and S. Zhang, "A self-assembled Si/SWNT 3D-composite-nanonetwork as a high-performance lithium ion battery anode," RSC Adv., vol. 5, pp. 97289-97294, 2015.
    [103] X. Zhou, Y. X. Yin, A. M. Cao, L. J. Wan, and Y. G. Guo, "Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode," ACS Appl Mater Interfaces, vol. 4, pp. 2824-2828, 2012.
    [104] X. Zhou, Y. X. Yin, L. J. Wan, and Y. G. Guo, "Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries," Chem Commun (Camb), vol. 48, pp. 2198-2200, 2012.
    [105] J. Ji, H. Ji, L. L. Zhang, X. Zhao, X. Bai, X. Fan, et al., "Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries," Adv Mater, vol. 25, pp. 4673-4677, 2013.
    [106] D. P. Wong, H.-P. Tseng, Y.-T. Chen, B.-J. Hwang, L.-C. Chen, and K.-H. Chen, "A stable silicon/graphene composite using solvent exchange method as anode material for lithium ion batteries," Carbon, vol. 63, pp. 397-403, 2013.
    [107] M. Zhou, F. Pu, Z. Wang, T. Cai, H. Chen, H. Zhang, et al., "Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries," Phys Chem Chem Phys, vol. 15, pp. 11394-11401, 2013.
    [108] R. Hu, W. Sun, Y. Chen, M. Zeng, and M. Zhu, "Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries," Journal of Materials Chemistry A, vol. 2, pp. 9118-9125, 2014.
    [109] F. Maroni, R. Raccichini, A. Birrozzi, G. Carbonari, R. Tossici, F. Croce, et al., "Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications," Journal of Power Sources, vol. 269, pp. 873-882, 2014.
    [110] Y.-S. Ye, X.-L. Xie, J. Rick, F.-C. Chang, and B.-J. Hwang, "Improved anode materials for lithium-ion batteries comprise non-covalently bonded graphene and silicon nanoparticles," Journal of Power Sources, vol. 247, pp. 991-998, 2014.
    [111] H. Tang, J. Zhang, Y. J. Zhang, Q. Q. Xiong, Y. Y. Tong, Y. Li, et al., "Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application," Journal of Power Sources, vol. 286, pp. 431-437, 2015.
    [112] C. Pang, H. Cui, G. Yang, and C. Wang, "Flexible transparent and free-standing silicon nanowires paper," Nano Lett, vol. 13, pp. 4708-4714, 2013.
    [113] N. Li, S. Jin, Q. Liao, H. Cui, and C. X. Wang, "Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes," Nano Energy, vol. 5, pp. 105-115, 2014.
    [114] X. Zhou, Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, "Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries," Advanced Energy Materials, vol. 2, pp. 1086-1090, 2012.
    [115] M. Zhou, T. Cai, F. Pu, H. Chen, Z. Wang, H. Zhang, et al., "Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries," ACS Appl Mater Interfaces, vol. 5, pp. 3449-3455, 2013.
    [116] Z. F. Li, H. Zhang, Q. Liu, Y. Liu, L. Stanciu, and J. Xie, "Novel pyrolyzed polyaniline-grafted silicon nanoparticles encapsulated in graphene sheets as Li-ion battery anodes," ACS Appl Mater Interfaces, vol. 6, pp. 5996-6002, 2014.
    [117] N. Lin, J. Zhou, L. Wang, Y. Zhu, and Y. Qian, "Polyaniline-Assisted Synthesis of Si@C/RGO as Anode Material for Rechargeable Lithium-Ion Batteries," ACS Applied Materials & Interfaces, vol. 7, pp. 409-414, 2015.
    [118] R. Yi, J. Zai, F. Dai, M. L. Gordin, and D. Wang, "Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries," Nano Energy, vol. 6, pp. 211-218, 2014.
    [119] Y. Hwa, W.-S. Kim, S.-H. Hong, and H.-J. Sohn, "High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries," Electrochimica Acta, vol. 71, pp. 201-205, 2012.
    [120] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui, "A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes," Nano Letters, vol. 12, pp. 3315-3321, 2012.
    [121] J. Yang, Y.-X. Wang, S.-L. Chou, R. Zhang, Y. Xu, J. Fan, et al., "Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries," Nano Energy, vol. 18, pp. 133-142, 2015.
    [122] S. Li, X. Qin, H. Zhang, J. Wu, Y.-B. He, B. Li, et al., "Silicon/carbon composite microspheres with hierarchical core–shell structure as anode for lithium ion batteries," Electrochemistry Communications, vol. 49, pp. 98-102, 2014.
    [123] L. Pan, H. Wang, D. Gao, S. Chen, L. Tan, and L. Li, "Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries," Chem Commun (Camb), vol. 50, pp. 5878-5880, 2014.
    [124] 葉祐任, "層狀過量鋰陰極材料之合成及其表面修飾對電池性能增進機制之研究," 碩士論文, 2016.
    [125]http://batteryuniversity.com/learn/article/charging_lithium_ion_batteries.
    [126] http://www.blue-scientific.com/battery-testing-eis/.
    [127] T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, "Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells," Electrochimica Acta, vol. 38, pp. 1159-1167, 1993.
    [128] N. Alias and A. A. Mohamad, "Advances of aqueous rechargeable lithium-ion battery: A review," Journal of Power Sources, vol. 274, pp. 237-251, 2015.
    [129] P. Oh, M. Ko, S. Myeong, Y. Kim, and J. Cho, "A Novel Surface Treatment Method and New Insight into Discharge Voltage Deterioration for High-Performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 Cathode Materials," Advanced Energy Materials, vol. 4, pp. 1400631 1-9, 2014.
    [130] D. Mohanty, S. Kalnaus, R. A. Meisner, K. J. Rhodes, J. Li, E. A. Payzant, et al., "Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction," Journal of Power Sources, vol. 229, pp. 239-248, 2013.
    [131] S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Barde, et al., "Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes," J Am Chem Soc, vol. 133, pp. 8040-8047, 2011.
    [132] F. Lin, I. M. Markus, D. Nordlund, T. C. Weng, M. D. Asta, H. L. Xin, et al., "Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries," Nat Commun, vol. 5, pp. 3529 1-9, 2014.
    [133] W. S. Yoon, M. Balasubramanian, K. Y. Chung, X. Q. Yang, J. McBreen, C. P. Grey, et al., "Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy," J Am Chem Soc, vol. 127, pp. 17479-17487, 2005.
    [134] W.-S. Yoon, M. Balasubramanian, X.-Q. Yang, Z. Fu, D. A. Fischer, and J. McBreen, "Soft X-Ray Absorption Spectroscopic Study of a LiNi0.5Mn0.5O2 Cathode during Charge," Journal of The Electrochemical Society, vol. 151, pp. A246-A251, 2004.
    [135] R. Qiao, T. Chin, S. J. Harris, S. Yan, and W. Yang, "Spectroscopic fingerprints of valence and spin states in manganese oxides and fluorides," Current Applied Physics, vol. 13, pp. 544-548, 2013.
    [136] X. Zhao, C. M. Hayner, M. C. Kung, and H. H. Kung, "In-Plane Vacancy-Enabled High-Power Si-Graphene Composite Electrode for Lithium-Ion Batteries," Advanced Energy Materials, vol. 1, pp. 1079-1084, 2011.
    [137] X. Liu, Y. Du, L. Hu, X. Zhou, Y. Li, Z. Dai, et al., "Understanding the Effect of Different Polymeric Surfactants on Enhancing the Silicon/Reduced Graphene Oxide Anode Performance," The Journal of Physical Chemistry C, vol. 119, pp. 5848-5854, 2015.
    [138] C. Fang, Y. Deng, Y. Xie, J. Su, and G. Chen, "Improving the Electrochemical Performance of Si Nanoparticle Anode Material by Synergistic Strategies of Polydopamine and Graphene Oxide Coatings," The Journal of Physical Chemistry C, vol. 119, pp. 1720-1728, 2015.
    [139] M. T. McDowell, S. Woo Lee, C. Wang, and Y. Cui, "The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation," Nano Energy, vol. 1, pp. 401-410, 2012.
    [140] Y. Ru, D. G. Evans, H. Zhu, and W. Yang, "Facile fabrication of yolk–shell structured porous Si–C microspheres as effective anode materials for Li-ion batteries," RSC Adv., vol. 4, pp. 71-75, 2014.
    [141] Z. Cai, L. Xu, M. Yan, C. Han, L. He, K. M. Hercule, et al., "Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries," Nano Lett, vol. 15, pp. 738-44, 2015.
    [142] S. Yang, X. Feng, S. Ivanovici, and K. Mullen, "Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage," Angew Chem Int Ed Engl, vol. 49, pp. 8408-11, 2010.
    [143] Y. Zhu, W. Liu, X. Zhang, J. He, J. Chen, Y. Wang, et al., "Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries," Langmuir, vol. 29, pp. 744-9, 2013.

    無法下載圖示 全文公開日期 2021/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE