簡易檢索 / 詳目顯示

研究生: 詹景翔
Ching-Hsiang Chan
論文名稱: 三氧化二鉍,三氧化二銦與氧化鎳薄膜奈米結構之光學特性研究
Optical Characterization of Bi2O3, In2O3 and NiO Semiconducting Oxide Nanostructures
指導教授: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
口試委員: 程光蛟
Kwong-Kau Tiong
陳永芳
Chen Yang-Fang
林浩雄
Hao-Hsiung Lin
林泰源
Tai-Yuan Lin
郭東昊
Dong-Hau Kuo
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 112
中文關鍵詞: 三氧化二鉍三氧化二銦化氧化鎳熱調製光譜光激螢光光譜拉曼光譜金屬氧化物奈米結構
外文關鍵詞: Bi2O3, In2O3, NiO, thermoreflectance, photoluminescence, Raman, metal-oxide nanostructures
相關次數: 點閱:301下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要對於金屬氧化物半導體薄膜奈米結構中alpha相單斜結構三氧化二鉍(alpha-Bi2O3)、立方結構三氧化二銦(c-In2O3)以及岩鹽結構(rock-salt)氧化鎳(NiO)加以研究以及探討。首先以場發射式掃描電子顯微鏡(Field emission scanning electron microscope;FESEM)、場發射式穿透電子顯微鏡(Field emission transition electron microscope;FETEM)、X光能譜分析儀(Energy-dispersive X-ray spectroscopy; EDS)與微拉曼散射儀(Micro-Raman scattering)分析薄膜奈米結構之表面形貌、晶體大小、晶體方向、成分組成及晶體結構。其中,alpha-Bi2O3與c-In2O3之奈米結構使用氣相傳輸法(vapor transport method)以氣-液-固機制(vapor-liquid-solid, VLS mechanism)成長於Si(100)基板,而NiO薄膜奈米結構則以熱燈絲化學氣相沉積法(hot-filament chemical vapor deposition method)成長於藍寶石(100)基板。
    此外,對於這些金屬氧化物奈米結構進行熱調製光譜(Thermoreflectance; TR)以及光激螢光光譜(Photoluminescence;PL)等光學特性的探測。我們成功利用熱調製光譜對於此類金屬氧化物半導體薄膜奈米結構針對近能隙(near-band-edge)以及能隙以上的躍遷(above-band-edge transition),如激子躍遷(excitonic transition),直接能隙躍遷(band-to-band transition)以及退化性半導體中吸收邊界往高能量移(Burstein-Moss shift;BMS)等行為進行探究,且佐以電學方面的霍爾量測(Hall measurement)作驗證。並由光激螢光光譜實驗對這些金屬氧化物薄膜奈米結構的近能帶邊緣放光(near-band-edge emission)以及缺陷相關的復合放光(defect emission)作探討。其中alpha相單斜結構三氧化二鉍與立方結構三氧化二銦於氧空缺主導的缺陷相關復合放光部分有被應用於主動式固態白光照明的潛力。而立方結構三氧化二銦和岩鹽結構氧化鎳的近能隙複合放光與其他透明導電氧化物半導體(transparent conducting oxide;TCO) (如氧化鋅)有著相似的特性。


    In this dissertation, a detailed characterization focusing on the surface morphology, stoichiometry, structural, orientations and vibration modes of the metal-oxide thin film nanostructures of alpha-Bi2O3, c-In2O3 and NiO with one-dimensional morphology have been carried out by means of field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), and micro-Raman scattering. The bismuth oxide and indium oxide thin-film nanostructures have been grown by vapor transport method driven with vapor-liquid-solid mechanism on Si(100) substrate. Nickel oxide thin-film nanostructures were grown by hot-filament chemical vapor deposition method on sapphire(100) substrates.
    The optical properties of these metal-oxide thin film nanostructures have been investigated. Several optical characterization techniques, such as thermoreflectance (TR) and photoluminescence (PL) were performed to characterize the optical properties of these samples. The near-band-edge and above-band-edge transitions, such as excitonic transitions, direct band gap and direct band gap with Burstein-Moss shift (BMS) effect of degenerate semiconductor have been determined by TR. PL measurements revealed the near-band-edge emissions and defect emissions of these metal-oxide thin film nanostructures. The visible active semiconducting alpha-Bi2O3 and c-In2O3 may be applied in solid-state white lighting optoelectronics. Furthermore, the excitonic emissions of c-In2O3 and NiO revealed similar characters, which are also similar to other transparent conducting oxide (i.e. ZnO).

    Abstract III Acknowledgements V Contents VI Symbols and Abbreviations VIII List of Figures X List of Tables XIV Chapter 1. Introduction 1 1.1 Introduction 1 1.1.1 Bismuth oxide (Bi2O3) 2 1.1.2 Indium oxide (In2O3) 4 1.1.3 Nickel oxide (NiO) 5 1.2 Outline of dissertation 7 Chapter 2. Experimental techniques and theoretical analysis 9 2.1 Samples description 9 2.1.1 Bismuth oxide nanostructures Bi2O3 9 2.1.2 Indium oxide nanostructures In2O3 10 2.1.3 Nickel oxide nanostructures NiO 11 2.2 Experimental techniques and system setups 12 2.2.1 Characterization techniques of nanostructures 12 2.2.2 Raman spectroscopy 15 2.2.3 Modulation spectroscopy 18 2.2.4 Photoluminescence 22 2.2.5 Resistivity and Hall measurements 26 2.3 Theoretical analysis model 28 2.3.1 Modulation spectroscopy lineshape 28 2.3.2 Temperature dependence characteristics of semiconductor 31 Chapter 3. Characterization of bismuth oxide nanostructures Bi2O3 33 3.1 Crystallization structure and morphology 33 3.2 Raman scattering analysis 36 3.3 Thermoreflectance 38 3.4 Photoluminescence 42 3.5 Summary 45 Chapter 4. Characterization of indium oxide nanostructures In2O3 46 4.1 Crystallization structure and morphology 46 4.1.1 FESEM 46 4.1.2 FETEM 49 4.2 Thermoreflectance 52 4.3 Resistivity and Hall measurement 60 4.4 Photoluminescence 63 4.4.1 Low-resolution PL measurements 63 4.4.2 Power-dependent PL measurements 67 4.4.3 Temperature-dependent PL measurements 70 4.5 Summary 75 Chapter 5. Characterization of nickel oxide nanostructures NiO 77 5.1 Crystallization structure and morphology 77 5.2 Raman scattering analysis 80 5.3 Thermoreflectance 83 5.4 Photoluminescence 87 5.5 Summary 92 Chapter 6. Conclusions 93

    [1]Devan, R. S., Patil, R. A., Lin, J. H., and Ma, Y. R., “One-Dimensional Metal-Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications”, Advanced Functional Materials, Vol. 22, pp. 3326-3370 (2012).
    [2]Lee, J., Orilall, M. C., Warren, S. C., Kamperman, M., DiSalvo, F. J., and Wiesner, U., “Direct Access to Thermally Stable and Highly Crystalline Mesoporous Transition-Metal Oxides with Uniform Pores”, Nature Materials, Vol. 7, pp. 222-228 (2008).
    [3]Bolink, H. J., Coronado, E., Orozco, J., and Sessolo, M., “Efficient Polymer Light-Emitting Diode Using Air-Stable Metal Oxides as Electrodes”, Advanced Materials, Vol. 21, pp. 79-82 (2009).
    [4]Emeline, A. V., Kataeva, G. V., Panasuk, A. V., Ryabchuk, V. K., Sheremetyeva, N. V., and Serpone, N., “Effect of Surface Photoreactions on the Photocoloration of a Wide Band Gap Metal Oxide: Probing Whether Surface Reactions are Photocatalytic”, Journal of Physical Chemistry B, Vol. 109, pp. 5175-5185 (2005).
    [5]Kroger, M., Hamwi, S., Meyer, J., Riedl, T., Kowalsky, W., and Kahn, A., “P-type Doping of Organic Wide Band Gap Materials by Transition Metal Oxides: A Case-Study on Molybdenum Trioxide”, Organic Electronics, Vol. 10, pp. 932-938 (2009).
    [6]Gutowski, M., Jaffe, J. E., Liu, C. L., Stoker, M., Hegde, R. I., Rai, R. S., and Tobin, P. J., “Thermodynamic Stability of High-κ Dielectric Metal Oxides ZrO2 and HfO2 in Contact with Si and SiO2”, Applied Physics Letters, Vol. 80, pp. 1897-1899 (2002).
    [7]Rignanese, G. M., “Dielectric Properties of Crystalline and Amorphous Transition Metal Oxides and Silicates as Potential High-κ Candidates: the Contribution of Density-Functional Theory”, Journal of Physics: Condensed Matter, Vol. 17, pp. R357-R379 (2005).
    [8]Robertson, J., “High Dielectric Constant Gate Oxides for Metal Oxide Si Transistors”, Reports on Progress in Physics, Vol. 69, pp. 327-396 (2006).
    [9]Chen, K., Bell, A. T., and Iglesia1, E., “The Relationship between the Electronic and Redox Properties of Dispersed Metal Oxides and Their Turnover Rates in Oxidative Dehydrogenation Reactions”, Journal of Catalysis, Vol. 209, pp. 35-42 (2002).
    [10]Sysoev, V. V., Button, B. K., Wepsiec, K., Dmitriev, and S., Kolmakov, A., “Toward the Nanoscopic “Electronic Nose”: Hydrogen vs Carbon Monoxide Discrimination with an Array of Individual Metal Oxide Nano- and Mesowire Sensors”, Nano Letters, Vol. 6, pp. 1584-1588 (2006).
    [11]Mavrou, G., Galata, S., Tsipas, P., Sotiropoulos, A., Panayiotatos, Y., Dimoulas, A., Evangelou, E. K., Seo, J. W., and Dieker, C., “Electrical Properties of La2O3 and HfO2/La2O3 Gate Dielectrics for Germanium Metal-Oxide-Semiconductor Devices”, Journal of Applied Physics, Vol. 103, 014506 (9pp) (2008).
    [12]Lee, M. J., Han, S., Jeon, S. H., Park, B. H., Kang, B. S., Ahn, S. E., Kim, K. H., Lee, C. B., Kim, C. J., Yoo, I. K., Seo, D. H., Li, X. S., Park, J. B., Lee, J. H., and Park, Y., “Electrical Manipulation of Nanofilaments in Transition-Metal Oxides for Resistance-Based Memory”, Nano Letters, Vol. 9, pp. 1476-1481 (2009).
    [13]Su, X., Zhang, Z., and Zhu, M., “Melting and Optical Properties of ZnO Nanorods”, Applied Physics Letters, Vol. 88, 061913 (3pp) (2006).
    [14]Dev, A., Richters, J. P., Sartor, J., Kalt, H., Gutowski, J., and Voss, T., “Enhancement of the Near-Band-Edge Photoluminescence of ZnO Nanowires: Important Role of Hydrogen Incorporation Versus Plasmon Resonances”, Applied Physics Letters, Vol. 98, 131111 (3pp) (2011).
    [15]Rosseinsky, D. R. and Mortimer, R. J., “Electrochromic Systems and the Prospects for Devices”, Advanced Materials, Vol. 13, pp. 783-793 (2001).
    [16]Granqvist, C. G., “Oxide Electrochromics: Why, How, and Whither”, Solar Energy Materials and Solar Cells, Vol. 92, pp. 203-208 (2008).
    [17]Takada, K., Sakurai, H., Takayama-Muromachi, E., Izumi, F., Dilanian, R. A., and Sasaki, T., “Superconductivity in Two-Dimensional CoO2 Layers”, Nature, Vol. 422, pp. 53-55 (2003).
    [18]Ren, Z. A., Che, G. C., Dong, X. L., Yang, J., Lu, W., Yi, W., Shen, X. L., Li, Z. C., Sun, L. L., Zhou, F., and Zhao, Z. X., “Superconductivity and Phase Diagram in Iron-Based Arsenic-Oxides ReFeAsO1−δ (Re = Rare-Earth Metal) without Fluorine Doping”, Europhysics Letters, Vol. 83, 17002 (4pp) (2008).
    [19]Kumar, M. A., Jung, S., and Ji, T., “Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods”, Sensors, Vol. 11, pp. 5087-5111 (2011).
    [20]Le, V. T., Le, T. N. L., and Nguyen, V. H., “Comparative Study of Gas Sensor Performance of SnO2 Nanowires and Their Hierarchical Nanostructures”, Sensors and Actuators B: Chemical, Vol. 150, pp. 112-119 (2010).
    [21]Devan, R. S., Gao, S. Y., Ho, W. D., Lin, J. H., Ma, Y. R., Patil, P. S., and Liou, Y., “Electrochromic Properties of Large-Area and High-Density Arrays of Transparent One-Dimensional β-Ta2O5 Nanorods on Indium-Tin-Oxide Thin-Films”, Applied Physics Letters, Vol. 98 , 133117 (3pp) (2011).
    [22]Roh, D. K., Patel, R., Ahn, S. H., Kim, D. J., and Kim, J. H., “Preparation of TiO2 Nanowires/Nanotubes Using Polycarbonate Membranes and Their Uses in Dye-Sensitized Solar Cells”, Nanoscale, Vol. 3, pp. 4162-4169 (2011).
    [23]He, Y. B., Li, G. R., Wang, Z. L., Su, C. Y., and Tong, Y. X., “Single-Crystal ZnO Nanorod/Amorphous and Nanoporous Metal Oxide Shell Composites: Controllable Electrochemical Synthesis and Enhanced Supercapacitor Performances”, Energy and Environmental Science, Vol. 4, pp. 1288-1292 (2011).
    [24]Kim, J., Yun, J. H., Kim, C. H., Park, Y. C., Woo, J. Y., Park, J., Lee, J. H., Yi, J., and Han, C. S., “ZnO Nanowire-Embedded Schottky Diode for Effective UV Detection by the Barrier Reduction Effect”, Nanotechnology, Vol. 21, 115205 (5pp) (2010).
    [25]Ling, B., Sun, X. W., Zhao, J. L., Ke, C., Tan, S. T., Chen, R., Sun, H. D., and Dong, Z. L., “A SnO2 Nanoparticle/Nanobelt and Si Heterojunction Light-Emitting Diode”, The Journal of Physical Chemistry C, Vol. 114, pp. 18390-18395 (2010).
    [26]Zeng, H., Xu, X., Bando, Y., Gautam, U. K., Zhai, T., Fang, X., Liu, B., and Golberg, D., “Template Deformation-Tailored ZnO Nanorod/Nanowire Arrays: Full Growth Control and Optimization of Field-Emission”, Advanced Functional Materials, Vol. 19, pp. 3165-3172 (2009).
    [27]Kim, H. J., Lee, C. H., Kim, D. W., and Yi, G. C., “Fabrication and Electrical Characteristics of Dual-Gate ZnO Nanorod Metal-Oxide Semiconductor Field-Effect Transistors”, Nanotechnology, Vol. 17, pp. S327-S331 (2006).
    [28]Drache, M., Roussel, P., and Wignacourt, J. -P., “Structures and oxide mobility in Bi-Ln-O materials: Heritage of Bi2O3”, Chemical Reviews, Vol. 107, pp. 80-96 (2007).
    [29]Mehring, M., “From Molecules to Bismuth Oxide-Based Materials: Potential Homo- and Heterometallic Precursors and Model Compounds”, Coordination Chemistry Reviews, Vol. 251, pp. 974-1006 (2007).
    [30]Cheng, H., Huang, B., Lu, J., Wang, Z., Xu, B., Qin, X., Zhang, X., and Dai, Y., “Synergistic Effect of Crystal and Electronic Structures on the Visible-Light-Driven Photocatalytic Performance of Bi2O3 Polymorphs”, Physical Chemistry Chemical Physics, Vol. 12, pp. 15468-15475 (2010).
    [31]Qiu, Y., Yang, M., Fan, H., Zuo, Y., Shao, Y., Xu, Y., Yang, X., and Yang, S., “Nanowires of - and -Bi2O3: Phase-Selective Synthesis and Application in Photo Catalysis”, CrystEngComm, Vol. 13, pp. 1843-1850 (2011).
    [32]Saison, T., Chemin, N., Chaneac, C., Durupthy, O., Ruaux, V., Mariey, L., Mauge, F., Beaunier, P., and Jolivet, J.-P., “Bi2O3, BiVO4, and Bi2WO6: Impact of Surface Properties on Photocatalytic Activity Under Visible Light”, The Journal of Physical Chemistry C, Vol. 115, pp. 5657-5666 (2011).
    [33]Ho, C. H., Tsai, M. C., and Wong, M. S., “Characterization of Indirect and Direct Interband Transitions of Anatase TiO2 by Thermoreflectance Spectroscopy”, Applied Physics Letters, Vol. 93, 081904 (3pp) (2008).
    [34]Muruganandham, M., Amutha, R., Lee, G.-J., Hsieh, S.-H., Wu, J. J., and Sillanpaa, M., “Facile Fabrication of Tunable Bi2O3 Self-assembly and Its Visible Light Photocatalytic Activity”, Journal of Physical Chemistry C, Vol. 116, pp. 12906-12915 (2012).
    [35]Hameed, A., Montini, T., Gombac, V., and Fornasiero, P., “Surface Phases and Photocatalytic Activity Correction of Bi2O3/Bi2O4-x Nanocomposite”, Journal of the American Chemical Society, Vol. 130, pp. 9658-8659 (2008).
    [36]Shen G., Liang B., Wang X., Huang H., Chen D., and Wang, Z. L., “Ultrathin In2O3 Nanowires with Diameters below 4 nm: Synthesis, Reversible Wettability Switching Behavior, and Transparent Thin-Film Transistor Applications”, ACS Nano, Vol. 5, pp. 6148-6155 (2011).
    [37]Lin, J., Huang, Y., Bando, Y., Tang, C., Li, C., and Golberg, D., “Synthesis of In2O3 Nanowire-Decorated Ga2O3 Nanobelt Heterostructures and Their Electrical and Field-Emission Properties”, ACS Nano, Vol. 4, pp. 2452-2458 (2010).
    [38]Shen, G. and Chen, D., “Fast-Heating-Vapor-Trapping Method to Aligned Indium Oxide Bi-Crystalline Nanobelts Arrays and Their Electronic Properties”, Journal of Materials Chemistry, Vol. 20, pp. 10888-10893 (2010).
    [39]Lim, T., Lee, S., Meyyappan, M., and Ju. S., “Control of Semiconducting and Metallic Indium Oxide Nanowires”, ACS Nano, Vol. 5, pp. 3917-3922 (2011).
    [40]Shen, G., Liang, B., Wang, X., Chen, P. C., and Zhou, C., “Indium Oxide Nanospirals Made of Kinked Nanowires”, ACS Nano, Vol. 5, pp. 2155-2161 (2011).
    [41]Dixit, A., Sudakar, C., Naik, R., Naik, V. M., and Lawes, G., “Undoped Vacuum Annealed In2O3 Thin Films as a Transparent Conducting Oxide”, Applied Physics Letters, Vol. 95, 192105 (3pp) (2009).
    [42]Bahoura, M., Lee, A., Mundle, R., Konda, R. B., Kogo, G., Bamiduro, O., Yasar, O., Moore, W., Zhang, K., Williams, F., and Pradhan, A. K., “Ultraviolet Radiation Sensing in Composite Oxide Semiconductor Films”, Applied Physics Letters, Vol. 93, 222112 (3pp) (2008).
    [43]Cao, H., Qiu, X., Liang, Y., and Zhu, Q., “Room-Temperature Ultraviolet-Emitting In2O3 Nanowires”, Applied Physics Letters, Vol. 83, pp. 761-763 (2003).
    [44]Hartnagel, H. L., Dawar, A. L., Jain, A. K., and Jagadish, C., Semiconducting Transparent Thin Films, Institute of Physics, Bristol, U. K. (1995).
    [45]Huang, C. Y., Lin, G. C., Wu, Y. J., Lin, T. Y., Yang, Y. J., and Chen, Y. F., “Efficient Light Harvesting by Well-Aligned In2O3 Nanopushpins as Antireflection Layer on Si Solar Cells”, The Journal of Physical Chemistry C, Vol. 115, pp. 13083-13087 (2011).
    [46]Wang, G., Park, J., Wexler, D., Park, M. S., and Ahn, J. H., “Synthesis, Characterization, and Optical Properties of In2O3 Semiconductor Nanowires”, Inorganic Chemistry, Vol. 46, pp. 4778-4780 (2007).
    [47]Hsin, C. L., He, J. H., Lee, C. Y., Wu, W. W., Yeh, P. H., Chen, L. J., and Wang, Z. L., “Lateral Self-Aligned p-Type In2O3 Nanowire Arrays Epitaxially Grown on Si Substrates”, Nano Letters, Vol. 7, pp. 1799-1803 (2007).
    [48]Liu, Q., Lu, W., Ma, A., Tang, J., Lin, J., and Fang, J., “Study of Quasi-Monodisperse In2O3 Nanocrystals: Synthesis and Optical Determination”, Journal of the American Chemical Society, Vol. 127, pp. 5276-5277 (2005).
    [49]Epifani, M., Siciliano, P., Gurlo, A., Barsan, N., and Weimar, U., “Ambient Pressure Synthesis of Corundum-Type In2O3”, Journal of the American Chemical Society, Vol. 126, pp. 4078-4079 (2005).
    [50]Lee, C. H., Kim, M., Kim, T., Kim, A., Paek, J., Lee, J. W., Choi, S. Y., Kim, K., Park, J. B., and Lee, K., “Ambient Pressure Synthesis of Size-Controlled Corundum-Type In2O3 Nanocubes”, Journal of the American Chemical Society, Vol. 128, pp. 9326-9327 (2006).
    [51]Dong, H., Chen, Z., Liaoxin, S., Liang, Z., Ling, Y., Yu, C., Tan, H. H., Jagadish, C., and Shen, X., “Nanosheets-Based Rhombohedral In2O3 3D Hierarchial Microspheres: Synthesis, Growth Mechanism, and Optical Properties”, The Journal of Physical Chemistry C, Vol. 113, pp. 10511-10516 (2009).
    [52]Farvid, S. S., Dave, N., and Radovanovic, P. V., “Phase-Controlled Synthesis of Colloidal In2O3 Nanocrystals via Size-Structure Correlation”, Chemistry of Materials, Vol. 22, pp. 9-11 (2010).
    [53]King, P. D. C., Veal, F. F., Wang, Ch. Y., Payne, D. J., Bourlange, A., and Zhang, H., Bell, G. R., Cimalla, V., Ambacher, O., Egdell, R. G., Bechstedt, F., and McConville, C. F., “Band Gap, Electronic Structure, and Surface Electron Accumulation of Cubic and Rhombohedral In2O3”, Physical Review B, Vol. 79, 205211 (10pp) (2009).
    [54]Walsh, A., Da Silva, Juarez, L. F., Wei, S. H., Korber, C., Klein, A., Piper, L. F. J., DeMasi, A., Smith, K. E., Panaccione, G., Torelli, P., Payne, D. J., Bourlange, A., and Egdell, R. G., “Nature of the Band Gap of In2O3 Revealed by First-Principles Calculations and X-Ray Spectroscopy”, Physical Review Letters, Vol. 100, 167402 (4pp) (2008).
    [55]Bourlange, A., Payne, D. J., Egdell, R, G., Foord, J. S., Edward, P. P., Jones, M. O., Schertel, A., Dobson, P. J., and Hutchison, J. L., “Growth of In2O3 (100) on Y-Stabilized ZrO2 (100) by O-Plasma Assisted Molecular Beam Epitaxy”, Applied Physics Letters, Vol. 92, 092117 (3pp) (2008).
    [56]Burstein, E., “Anomalous Optical Absorption Limit in InSb”, Physical Review, Vol. 93, pp. 632-633 (1954).
    [57]Moss, T. S., “The Interpretation of the Properties of Indium Antimonide”, Proceedings of the Physical Society. Section B, Vol. 67, pp. 775-782 (1954).
    [58]Bierwagen, O., Speck, J. S., Nagata, T., Chikyow, T., Yamashita, Y., Yoshikawa, Y., Yoshikawa, H., and Kobayashi, K., “Depletion of the In2O3 (001) and (111) Surface Electron Accumulation by an Oxygen Plasma Surface Treatment”, Applied Physics Letters, Vol. 98, 172101 (3pp) (2011).
    [59]Walsh, A., Catlow, C. R. A., Zhang, K. H. L., and Egdell, R. G., “Control of the Band-Gap States of Metal Oxides by the Application of Epitaxial Strain: The Case of Indium Oxide”, Physical Review B, Vol. 83, 161202 (4pp) (2011).
    [60]Weither, R. L. and Ley, R. P., “Optical Properties of Indium Oxide”, Journal of Applied Physics, Vol. 37, pp. 299-302 (1966).
    [61]Berg, M. and Jaras, S., “Catalytic Combustion of Methane over Magnesium Oxide”, Applied Catalysis A, Vol. 114, pp. 227-241 (1994).
    [62]Zhu, K. K., Hu, J. C., Kubel, C., and Richards, R., “Selective Formation of Polycarbonate over Cyclic Carbonate: Copolymerization of Epoxides with Carbon Dioxide Catalyzed by a Cobalt(III) Complex with a Piperidinium End-Capping Arm”, Angewandte Chemie International Edition, Vol. 45, pp. 7274-7277 (2006).
    [63]Hu, J. C., Zhu, K. K., Chen, L. F., Yang, H. J., Li, Z., Suchopar, A., and Richards, R., “Preparation and Surface Activity of Single-Crystalline NiO(111) Nanosheets with Hexagonal Holes: A Semiconductor Nanospanner”, Advanced Materials, Vol. 20, pp. 267-271 (2008).
    [64]Zion, B. D. and Sibener, S. J., “Molecular Beam Induced Changes in Adsorption Behavior of NO on NiO(111)/Ni(111)”, Journal of Chemical Physics, Vol. 127, 154720 (6pp) (2007).
    [65]Bender, M., Seiferth, O., Carley, A. F., Chambers, A., Freund, H., and Roberts, M. W., “Electron, Photon and Thermally Induced Chemistry in Alkali–NO Coadsorbates on Oxide Surfaces”, Surface Science, Vol. 513, pp. 221-232 (2002).
    [66]Needham, S. A., Wang, G. X., and Liu, H. K., “Synthesis of NiO Nanotubes for Use as Negative Electrodes in Lithium Ion Batteries”, Journal of Power Sources, Vol. 159, pp. 254-257 (2006).
    [67]Pang, H., Lu, Q., Lia, Y., and Gao, F., “Facile Synthesis of Nickel Oxide Nanotubes and Their Antibacterial, Electrochemical and Magnetic Properties”, Chemical Communications, pp. 7542-7544 (2009).
    [68]Ren, Y., Chim, W. K., Chiam, S. Y., Huang, J. Q., Pi, C., and Pan, J. S., “Formation of Nickel Oxide Nanotubes with Uniform Wall Thickness by Low-Temperature Thermal Oxidation Through Understanding the Limiting Effect of Vacancy Diffusion and the Kirkendall Phenomenon”, Advanced Functional Materials, Vol. 20, pp. 3336-3342 (2010).
    [69]Kavitha, T. and Yuvaraj, H., “A Facile Approach to the Synthesis of High-Quality NiO Nanorods: Electrochemical and Antibacterial Properties”, Journal of Materials Chemistry, Vol. 21, pp. 15686-15691 (2011).
    [70]Liu, B., Yang, H. Q., Zhao, H., An, L. J., Zhang, L. H., Shi, R. Y., Wang, L., Bao, L., and Chen, Y., “Synthesis and Enhanced Gas-Sensing Properties of Ultralong NiO Nanowires Assembled with NiO Nanocrystals”, Sensors and Actuators, B, Vol. 156, pp. 251-262 (2011).
    [71]Croguennec, L., Pouillerie, C., and Delmas, C., “NiO2 Obtained by Electrochemical Lithium Deintercalation from Lithium Nickelate: Structural Modifications”, Journal of the Electrochemical Society, Vol. 147, pp. 1314-1321 (2000).
    [72]Ji, H. B., Wang, T. T., Zhang, M. Y., She, Y. B., and Wang, L. F., “Simple Fabrication of Nano-Sized NiO2 Powder and Its Application to Oxidation Reactions”, Applied Catalysis A, Vol. 282, pp. 25-30 (2005).
    [73]Zhao, W., Ma, W. H., Chen, C. C., Zhao, J. C., and Shuai, Z. G., “Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation”, Journal of the American Chemical Society, Vol. 126, pp. 4782-4783 (2004).
    [74]Sasi, B. and Gopchandran, K. G., “Nanostructured Mesoporous Nickel Oxide Thin Films”, Nanotechnology, Vol. 18, 115613 (9pp) (2007).
    [75]Jiang, D. Y., Qin, J. M., Wang, X., Gao, S., Liang, Q. C., and Zhao, J. X., “Optical Properties of NiO Thin Films Fabricated by Electron Beam Evaporation”, Vacuum, Vol. 86, pp. 1083-1086 (2012).
    [76]Zhang, Z. J., Zhao, Y., and Zhu, M. M., “NiO Films Consisting of Vertically Aligned Cone-Shaped NiO Rods”, Applied Physics Letters, Vol. 88, 033101 (3pp) (2006).
    [77]Shi, C. S., Wang, G. Q., Zhao, N. Q., Du, X. W., and Li, J. J., “NiO Nanotubes Assembled in Pores of Porous Anodic Alumina and Their Optical Absorption Properties”, Chemical Physics Letters, Vol. 454, pp. 75-79 (2008).
    [78]Swagten, H. J. M., Strijkers, G. J., Bloemen, P. J. H., Willekens, M. M. H., and DeJonge, W., “Search for Exclusive Charmless Hadronic B Decays”, Physical Review D, Vol. 53, pp. 1039-1050 (1996).
    [79]Hotovy, I., Huran, J., Siciliano, P., Capone, S., Spiess, L., and Rehacek, V., “The Influences of Preparation Parameters on NiO Thin Film Properties for Gas-Sensing Application”, Sensors and Actuators, B, Vol. 78, pp. 126-132 (2001).
    [80]Kitao, M., Izawa, K., Urabe, K., Komatsu, T., Kuwano, S., and Yamada, S., “Preparation and Electrochromic Properties of RF-Sputtered NiOx Films Prepared in Ar/O2/H2 Atmosphere”, Japanese Journal of Applied Physics, Vol. 33, pp. 6656-6662 (1994).
    [81]Sato, H., Minami, T., Takata, S., and Yamada, T., “Transparent Conducting p-Type NiO Thin Films Prepared by Magnetron Sputtering”, Thin Solid Films, Vol. 236, pp. 27-31 (1993).
    [82]Kim, S. I., Lee, J. H., Chang, Y. W., Hwang, S. S., and Yoo, K. H., “Reversible Resistive Switching Behaviors in NiO Nanowires”, Applied Physics Letters, Vol. 93, 033503 (3pp) (2008).
    [83]Pang, H., Lu, Q., Zhang, Y., Li, Y., and Gao, F., “Selective Synthesis of Nickel Oxide Nanowires and Length Effect on Their Electrochemical Properties”, Nanoscale, Vol. 2, pp. 920-922 (2010).
    [84]Irwin, M. D., Buchholz, D. B., Hains, A. W., Chang, R. P. H., and Marks, T. J., “p-Type Semiconducting Nickel Oxide as An Efficiency-Enhancing Anode Interfacial Layer in Polymer Bulk-Heterojunction Solar Cells”, Proceedings of the National Academy of Sciences, Vol. 105, pp. 2783-2787 (2008).
    [85]Chan, I. M., Hsu, T. Y., and Hong, F. C., “Enhanced Hole Injections in Organic Light-Emitting Devices by Depositing Nickel Oxide on Indium Tin Oxide Anode”, Applied Physics Letters, Vol. 81, pp. 1899-1901 (2002).
    [86]Dutta, T., Gupta, P., Gupta, A., and Narayan, J., “High Work Function (p-Type NiO1+x)/Zn0.95Ga0.05O Heterostructures for Transparent Conducting Oxides”, Journal of Physics D: Applied Physics, Vol. 43, 105301 (7pp) (2010).
    [87]Xiong, S., Yuan, C., Zhang, X., and Qian, Y., “Mesoporous NiO with Various Hierarchical Nanostructures by Quasi-Nanotubes/Nanowires/Nanorods Self-Assembly: Controllable Preparation and Application in Supercapacitors”, CrystEngComm, Vol. 13, pp. 626-632 (2011).
    [88]Wei, Z. P., Arredondo, M., Peng, H. Y., Zhang, Z., Guo, D. L., Xing, G. Z., Li, Y. F., Wong, L. M., Wang, S. J., Valanoor, N., and Wu, T., “A Template and Catalyst-Free Metal-Etching-Oxidation Method to Synthesize Aligned Oxide Nanowire Arrays: NiO as An Example”, ACS Nano, Vol. 4, pp. 4785-4791 (2010).
    [89]Guan, H. Y., Shao, C. L., Wen, S. B., Chen, B., Gong, J., and Yang, X. H., “Preparation and Characterization of NiO Nanofibres via An Electrospinning Technique”, Inorganic Chemistry Communications, Vol. 6, pp. 1302-1303 (2003).
    [90]Wagner, R. S. and Ellis, W. C., “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Applied Physics Letters, Vol. 4, pp. 89-90 (1964).
    [91]Ma, Y. R., Lin, C. M., Yeh, C. L., and Huang, R. T., “Synthesis and Characterization of One-Dimensional WO2 Nanorods”, Journal of Vacuum Science & Technology B, Vol. 23, pp. 2141-2145 (2005).
    [92]Szymanski, H. A., Raman Spectroscopy, Plenum Press, cop., New York (1967).
    [93]Brame, E. G. and Grasselli, J. G., Infrared and Raman Spectroscopy, Marcel Dekker, New York (1977).
    [94]Cardona, M., Modulation Spectroscopy, Academic Press, New York (1969).
    [95]Hamakawa, Y. and Nishino, T., Optical Properties of Solids: New Developments, North-Holland, Amsterdam, P. 255 (1970).
    [96]Pollak, F. H., “Modulation Spectroscopy of Semiconductors and Semiconductor Microstructures”, Handbook on Semiconductors Vol. 2, Elsevier Science, Amsterdam, pp. 527-635 (1994).
    [97]Yin, X. and Pollak, F. H., “Novel Contactless Mode of Electroreflectance”, Applied Physics Letters, Vol. 59, pp. 2305-2307 (1991).
    Yin, X., Guo, X., Pollak, F. H., Pettit, G. D., Woodall, J. M., Chin, T. P., and Tu, C. W., “Nature of Band Bending at Semiconductor Surfaces by Contactless Electroreflectance”, Applied Physics Letters, Vol. 60, pp. 1336-1338 (1992).
    [99]Shen, H., Pan, S. H., Pollak, F. H., and Sacks, R. N., “Electromodulation Mechanisms for the Uncoupled and Coupled States of a GaAs/Ga0.82Al0.18As Multiple-Quantum-Well Structure”, Physical Review B, Vol. 37, pp. 10919-10922 (1988).
    [100]Mathieu, H., Allegre, H. J., and Gil, B., “Piezomodulation Spectroscopy: A Powerful Investigation Tool of Heterostructures”, Physical Review B, Vol. 43, pp. 2218-2227 (1981).
    [101]Ho, C. H., Lee, H. W., and Cheng, Z. H., “Practical Thermoreflectance Design For Optical Characterization of Layer Semiconductors”, Review of Scientific Instruments, Vol. 75, pp. 1098-1102 (2004).
    [102]Xu, Z. and Gal, M., “Temperature Modulated Photoluminescence in Semiconductor Quantum Wells”, Superlattices and Microstructures, Vol. 12, pp. 393-396 (1992).
    [103]Ho, C. H., “Enhanced Photoelectric-Conversion Yield in Niobium-incorporated In2S3 with Intermediate Band”, Journal of Materials Chemistry, Vol. 21, pp. 10518-10524 (2011).
    [104]Ho, C. H., Chen, Y. J., Jhou, H. W., and Du, J. H., “Optical Anisotropy of ZnO Nanocrystals on Sapphire by Thermoreflectance Spectroscopy”, Optics Letters, Vol. 32, pp. 2765-2767 (2007).
    [105]Ho, C. H., “Optical Study of the Structural Change in ReS2 Single Crystals Using Polarized Thermoreflectance Spectroscopy”, Optics Express, Vol. 13, pp. 8-19 (2005).
    [106]Gilliland, G. D., “Photoluminescence Spectroscopy of Crystalline Semiconductors”, Materials Science and Engineering Reports, Vol. 18, pp. 99-399 (1997).
    [107]Calleja, E., Sanchez, F. J., Basak, D., Sanchez-Garcia, M. A., Munoz, E., Izpura, I., Calle, F., Tijero, J. M. G., Sanchez-Rojas, J. L., Beaumont, B., Lorenzini, P., and Gibart, P., “Yellow Luminescence and Related Deep States in Undoped GaN”, Physical Review B, Vol. 55, pp. 4689-4694 (1997).
    [108]Wieder, H. H., Laboratory Notes on Electrical and Galvanomagnetic Measurements, Elsevier Science, New York, pp. 11-16 (1979).
    [109]Seraphin, B. O. and Bottka, N., “Band-Structure Analysis from Electro-Reflectance Studies”, Physical Review, Vol. 145, pp. 628-636 (1966).
    [110]Aspnes, D. E. and Studna, A. A., “Schottky-Barrier Electroreflectance: Application to GaAs”, Physical Review B, Vol. 7, pp. 4605-4625 (1973).
    [111]Aspnes, D. E. and Seraphin, B. O., “Electric Field Effects in Optical and First-Derivative Modulation Spectroscopy”, Physical Review B, Vol. 6, pp. 3158-3160 (1972).
    [112]Aspnes, D. E., Handbook on Semiconductor, North-Holland, Amsterdam, Vol. 2, pp. 109-154 (1980).
    [113]Varshni, Y. P., “Temperature Dependence of Energy Gap in Semiconductors”, Physica (Amsterdam), Vol. 34, pp. 149-154 (1967).
    [114]Vina, L., Logothetidis, S., and Cardona, M., “Temperature Dependence of the Dielectric Function of Germanium”, Physical Review B, Vol. 30, pp. 1979-1991 (1984).
    [115]Lautenschlager, P., Garriga, M., Logothetidis, S., and Cardona, M., “Interband Critical Points of GaAs and Their Temperature Dependence”, Physical Review B, Vol. 35, pp. 9174-9189 (1987).
    [116]Lautenschlager, P., Garriga, M., and Cardona, M., “Temperature Dependence of the Interband Critical-Point Parameters of InP”, Physical Review B, Vol. 36, pp. 4813-4820 (1987).
    [117]Kim, H. W., Myung, J. H., Shim, S. H., and Lee, C., “Growth of Bi2O3 Rods Using a Trimethylbismuth and Oxygen Mixture”, Applied Physics A, Vol. 84, pp. 187-189 (2006).
    [118]In, J., Yoon, I., Seo, K., Park, J., Choo, J., Lee, Y., and Kim, B., “Polymorph-Tuned Synthesis of - and -Bi2O3 Nanowires and Determination of Their Growth Direction from Polarized Raman Single Nanowire Microscopy”, Chemistry- A European Journal, Vol. 17, pp. 1304-1309 (2011).
    [119]Ling, B., Sun, X. W., Zhao, J. L., Shen, Y. Q., Dong, Z. L., Sun, L. D., Li, S. F., and Zhang, S., “One-Dimensional Single-Crystalline Bismuth Oxide Micro/Nanoribbons: Morphology Controlled Synthesis and Luminescent Properties”, Journal of Nanoscience and Nanotechnology, Vol. 10, pp. 8322-8327 (2010).
    [120]Denisov, V. N., Ivlev, A. N., Lipin, A. S., Mavrin, B. N., and Orlov, V. G., “Raman Spectra and Lattice Dynamics of Single-Crystal -Bi2O3”, Journal of Physics: Condensed Matter, Vol. 9, pp. 4967-4978 (1997).
    [121]Ho, C. H., Liao, P. C., Huang, Y. S., and Tiong, K. K., “Temperature Dependence of Energies and Broadening Parameters of the Band-Edge Excitons of ReS2 and ReSe2”, Physical Review B, Vol. 55, pp. 15608-15613 (1997).
    [122]Ho, C. H., Tseng, C. Y., and Tien, L. C., “Thermoreflectance Characterization of -Ga2O3 Thin-Film Nanostrips”, Optics Express, Vol. 18, pp. 16360-16369 (2010).
    [123]Zhou, S., Jiang, N., Zhu, B., Yang, H., Ye, S., Lakshminarayana, G., Hao, J., and Qiu, J., “Multifunctional Bismuthdoped Nanoporous Silica Glasses: from Blue-Green, Orange, Red, and White Light Sources to Ultrabroadband Infrared Amplifiers”, Advanced Functional Materials, Vol. 18, pp. 1407-1413 (2008).
    [124]Yan, Y. G., Zhang, Y., Zeng, H. B., and Zhang, L. D., “In2O3 Nanotowers: Controlled Synthesis and Mechanism Analysis”, Crystal Growth and Design, Vol. 7, pp. 940-943 (2007).
    [125]Yin, W., Cao, M., Luo, S., Hu, C., and Wei, B., “Controllable Synthesis of Various In2O3 Submicron/Nanostructures Using Chemical Vapor Deposition”, Crystal Growth and Design, Vol. 9, pp. 2173-2178 (2009).
    [126]Maestre, D., Haussler, D., Cremades, A., Jager, W., and Piqueras, J., “Nanopipes in In2O3 Nanorods Grown by Thermal Treatment”, Crystal Growth and Design, Vol. 11, pp. 1117-1121 (2011).
    [127]Jean, S. T. and Her, Y. C., “Growth Mechanism and Photoluminescence Properties of In2O3 Nanotowers”, Crystal Growth and Design, Vol. 10, pp. 2104-2110 (2010).
    [128]Hao, Y., Meng, G., Ye, C., and Zhang, L., “Controlled Synthesis of In2O3 Octahedrons and Nanowires”, Crystal Growth and Design, Vol. 5, pp. 1617-1621 (2005).
    [129]Chen, C. J., Xu, W. L., and Chern, M. Y., “Low-Temperature Epitaxial Growth of Vertical In2O3 Nanowires on A-Plane Sapphire with Hexagonal Cross-Section”, Advanced Materials, Vol. 19, pp. 3012-3015 (2007).
    [130]Pollak, F. H. and Shen, H., “Modulation Spectroscopy of Semiconductors: Bulk/Thin Film, Microstructures, Surfaces/Interfaces and Devices”, Materials Science and Engineering R: Reports, Vol. 10, pp. xv-xvi, 275-374 (1993).
    [131]Long, R. and English, N. J., “Electronic Structure and Origin of Visible-Light Activity of C-Doped Cubic In2O3 from First-Principles Calculations”, The Journal of Physical Chemistry C, Vol. 114, pp. 13942-13946 (2010).
    [132]Fuchs, F. and Bechstedt, F., “Indium-Oxide Polymorphs from First Principles: Quasiparticle Electronic States”, Physical Review B, Vol. 77, 155107 (10pp) (2008).
    [133]Gao, J., Chen, R., Li, D. H., Jiang, L., Ye, J. C., Ma, X. C., Chen, X. D., Xiong, Q. H., Sun, H. D., and Wu, T., “UV Light Emitting Transparent Conducting Tin-Doped Indium Oxide (ITO) Nanowires”, Nanotechnology, Vol. 22, 195706 (10pp) (2011).
    [134]Tahar, R. B. H., Ban, T., Ohya, Y., and Takahashi, Y., “Optical, Structural, and Electrical Properties of Indium Oxide Thin Films Prepared by the Sol-Gel Method”, Journal of Applied Physics, Vol. 82, pp. 865-870 (1997).
    [135]Masuda, Y., Kondo, M., and Koumoto, K., “Site-Selective Deposition of In2O3 Using a Self-Assembled Monolayer”, Crystal Growth and Design, Vol. 9, pp. 555-561 (2009).
    [136]Lozano, O., Chen, Q. Y., Wadekar, P. V., Seo, H. W., Chinta, P. V., Chu, L. H., Tu, L. W., Lo, I., Yeh, S. W., Ho, N. J., Chuang, F. C., Jang, D. J., Wijesundera, D., and Chu, W. K., “Factors Limiting the Doping Efficiency of Transparent Conductors: A Case Study of Nb-Doped In2O3 Epitaxial Thin-Films”, Solar Energy Materials and Solar Cells, Vol. 113, pp. 171-178 (2013).
    [137]Gupta, R. K., Ghosh, K., Mishra, S. R., and Kahol, P. K., “Structural, Optical and Electrical Characterization of Highly Conducting Mo-Doped In2O3 Thin Films”, Applied Surface Science, Vol. 254, pp. 4018-4023 (2008).
    [138]Bhosle, V., Tiwari, A., and Narayan, J., “Electrical Properties of Transparent and Conducting Ga Doped ZnO”, Journal of Applied Physics, Vol. 100, 033713 (6pp) (2006).
    [139]Shimakawa, K., Narushima, S., Hosono, H., and Kawazoe, H., “Electronic Transport in Degenerate Amorphous Oxide Semiconductors”, Philosophical Magazine Letters, Vol. 79, pp. 755-761 (1999).
    [140]Wei, Z. P., Guo, D. L., Liu, B., Chen, R., Wong, L. M., Yang, W. F., and Wang, S. J., “Ultraviolet Light Emission and Excitonic Fine Structures in Ultrathin Single-Crystalline Indium Oxide Nanowires”, Applied Physics Letters, Vol. 96, 031902 (3pp) (2010).
    [141]Peng, X. S., Meng, G. W., Zhang, J. Wang, X. F., Wang, Y. W., Wang, C. Z., and Zhang, L. D., “Synthesis and Photoluminescence of Single Crystalline In2O3 Nanowires”, Journal of Materials Chemistry, Vol. 12, pp. 1602-1605 (2002).
    [142]Yu, P. Y. and Cardona, M., Fundamentals of Semiconductors, Physics and Materials Properties, 3rd ed., Springer-Verlag, Berlin (2001).
    [143]Grabowska, J., Meaney, A., Nanda, K. K., Mosnier, J. P., Henry, M. O., Duclere, J. R., and McGlynn, E., “Surface Excitonic Emission and Quenching Effects in ZnO Nanowire/Nanowall Systems: Limiting Effects on Device Potential”, Physical Review B, Vol. 71, 115439 (7pp) (2005).
    [144]Wischmeier, L., Voss, T., Borner, S., and Schade, W., “Comparison of the Optical Properties of As-Grown Ensembles and Single ZnO Nanowires”, Applied Physics A: Materials Science & Processing, Vol. 84, pp. 111-116 (2006).
    [145]Dumcenco, D.O., Huang, Y. S., Kuo, D. H., Tiong, K. K., “Photoluminescence Characterization of Vertically Aligned ZnO Microrods”, Journal of Luminescence, Vol. 132, pp. 1890-1895 (2012).
    [146]Suleiman, M. Al., Mofor, A. C., El-Shaer, A., Bakin, A., Wehmann, H. H., Waag, A., “Photoluminescence Properties: Catalyst-Free ZnO Nanorods and Layers Versus Bulk ZnO”, Applied Physics Letters, Vol. 89, 231911 (3pp) (2006).
    [147]Liu, B., Chen, R., Xu, X. L., Li, D. H., Zhao, Y. Y., Shen, Z. X., Xiong, Q. H., and Sun, H. D., “Exciton-Related Photoluminescene and Lasing in CdS Nanobelts”, The Journal of Physical Chemistry C, Vol. 115, pp. 12826-12830 (2011).
    [148]King, P. D. C., Veal, T. D., Payne, D. J., Bourlange, A., Egdell, R. G., and McConville, C. F., “Surface Electron Accumulation and the Charge Neutrality Level in In2O3”, Physical Review Letters, Vol. 101, 116808 (4pp) (2008).
    [149]Wu, X. C., Hong, J. M., Han, Z. J., and Tao, Y. R., “Fabrication and Photoluminescence Characteristics of Single Crystalline In2O3 Nanowires”, Chemical Physics Letters, Vol. 373, pp. 28-32 (2003).
    [150]Ulmane, N. M., Kuzmin, A., Steins, I., Grabis, J., Sildos, I., and Pars, M., “Raman Scattering in Nanosized Nickel Oxide NiO”, Journal of Physics: Conference Series, Vol. 93, 012039 (5pp) (2007).
    [151]Dietz, R. E., Brinkman, W. F., Meixner, A. E., and Guggenheim, H. J., “Raman Scattering by Four Magnons in NiO and KNiF3”, Physical Review Letters, Vol. 27, pp. 814-817 (1971).
    [152]Melendres, C. A. and Xu, S., “In Situ Laser Raman Spectroscopic Study of Anodic Corrosion Films on Nickel and Cobalt”, Journal of the Electrochemical Society, Vol. 131, pp. 2239-2243 (1984).
    [153]Wruck, D. A. and Rubin, M., “Structure and Electronic Properties of Electrochromic NiO Films”, Journal of the Electrochemical Society, Vol. 140, pp. 1097-1104 (1993).
    [154]Massey, M. J., Chen, N. H., Allen, J. W., and Merlin, R., “Pressure Dependence of Two-Magnon Raman Scattering in NiO”, Physical Review B, Vol. 42, pp. 8776-8779 (1990).
    [155]Hvam, J. M., Blattner, G., Reuscher, M., and Klingshirn, C., “The Biexciton Levels and Nonlinear Optical Transitions in ZnO”, Physica Status Solidi (b), Vol. 118, pp. 179-189 (1983).
    [156]Ko, H. J., Chen, Y. F., Yao, T., Miyajima, K., Yamamoto, A., and Goto, T., “Biexciton Emission from High-Quality ZnO Films Grown on Epitaxial GaN by Plasma-Assisted Molecular-Beam Epitaxy”, Applied Physics Letters, Vol. 77, pp. 537-539 (2000).
    [157]Sun, H. D., Makino, T., Segawa, Y., Kawasaki, M., Ohtomo, A., Tamura, K., and Koinuma, H., “Biexciton Emission from ZnO/Zn0.74Mg0.26O Multiquantum Wells”, Applied Physics Letters, Vol. 78, pp. 3385-3387 (2001).
    [158]Zhang, B. P., Bihn, N. T., Segawa, Y., Wkatsuki, K., and Usami, N., “Optical Properties of ZnO Rods Formed by Metalorganic Chemical Vapor Deposition”, Applied Physics Letters, Vol. 83, pp. 1635-1637 (2003).
    [159]Zhang, B. P., Bihn, N. T., Segawa, Y., Wkatsuki, K., and Haga, K., “Photoluminescence Study of ZnO Nanorods Epitaxially Grown on Sapphire (112 ¯0) Substrates”, Applied Physics Letters, Vol. 84, pp. 586-588 (2003).
    [160]Vektrais, G., “A New Approach to the Molecular Biexciton Theory”, Journal of Chemical Physics, Vol. 101, pp. 3031-3040 (1994).

    QR CODE