簡易檢索 / 詳目顯示

研究生: 林文堯
Wen-Yao Lin
論文名稱: 硫化錫與硒化錫之晶體成長與光學特性研究
Crystal growth and optical characteristic of SnX (X = S, Se)
指導教授: 何清華
Ching-Hwa Ho
趙良君
Liang -Chiun Chao
口試委員: 何清華
Ching-Hwa Ho
趙良君
Liang -Chiun Chao
李奎毅
Kuei-Yi Lee
陳瑞山
Ruei-San Chen
薛宏中
Hung-chung Hsueh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 93
中文關鍵詞: 硫化錫硒化錫化學氣相傳導法晶相極化熱調制技術光電材料熱電材料
外文關鍵詞: Tin sulfide, Tin selenide, Chemical vapor transport, Polarized material, Thermoreflectance technique, Photoelectric material, Thermoelectric material
相關次數: 點閱:294下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用化學氣相傳導法成長出硫化錫(SnS)與硒化錫(SnSe)之單晶,利用能量散佈儀確認元素成分比例符合。透過X光繞射、穿透式電子顯微鏡與拉曼散射光譜可確認兩者均為正交晶系(Orthorhombic)結構,三晶軸方向夾角為90度。晶格常數SnS為a = 4.2582Å、b = 3.9860Å、c = 11.4258Å;SnSe為a = 4.4499Å、b = 4.1569Å、c = 11.6091Å。
    光學實驗部分,根據拉曼散射光譜所得出的結果,硫化錫與硒化錫會因光的偏振方向差異而使某些震動訊號呈現選擇定律,因此晶軸具有極化特性。在光穿透實驗與熱調制反射光譜中,兩者亦會因為沿著不同晶向進行極化而使近能隙的兩個躍遷訊號有消長現象,亦證明了四六族半導體SnX系列材料具有光學異向特性。
    在SnS的極化熱調制反射光譜中,光偏振方向與材料b軸相同時,會有能隙躍遷訊號在1.20eV與直接躍遷訊號在1.616eV;但光偏振方向與材料b軸垂直時,1.616eV的直接躍遷訊號會消失,能隙躍遷訊號變窄且位置位於1.15eV。因光穿透與調制光譜兩項光學實驗結果相符合,可以認定SnS為直接能隙半導體。
    同樣在SnSe的極化熱調製反射光譜中,光偏振方向與材料b軸相同時,會有能隙躍遷訊號在0.99eV與直接躍遷訊號在1.258eV和1.374eV;但光偏振方向與材料b軸垂直時,兩支直接躍遷訊號會消失,能隙躍遷訊號變窄且位置位於0.94eV。因光穿透與調製光譜兩項光學實驗結果也相符合,亦可認定SnSe也為直接能隙半導體。
    電學實驗部分,利用線性段的I-V 曲線並透過些許公式可計算出導電率。SnS的導電率為2.76×10-1 (-cm)-1,SnSe為1.944×10-1 (-cm)-1,並且經由對樣品照光發現光電流的增加趨勢,可以看出SnS與SnSe在照光後光電流與光電壓增加。進一步透過表面光電壓(SPV)實驗、熱探針實驗,證實兩者均為光電材料與熱電材料,並且為p型半導體材料。經過一連串的實驗中,證實兩者都具有光電響應與熱電響應,
    極具有潛力發展在光電元件與熱電元件上的應用。


    IV-VI compound semiconductors tin monosulfide and tin monoselenide have been grown by chemical vapor transport (CVT) method using I2 as a transport agent. Detailed characterization of the materials were carried out by using energy-dispersive X-ray spectroscopy (EDS) , X-ray diffraction (XRD) , high-resolution transmission electron microscopy (HRTEM) , Raman scattering techniques. The SnX material crystal structure is orthorhombic. Lattice constants of SnS are a = 4.2582Å, b = 3.9860Å, c = 11.4258Å and those of SnSe are a = 4.4499Å, b =4.1569Å, c = 11.6091Å, respectively.
    According to Raman result, the vibration modes of SnS and SnSe show selection rule for the linearly polarized lights along a and along b axis. The SnX (X=S, Se) shows in-plane anisotropy on the c plane. From the results of transmittance and thermoreflectance, the band gaps and direct interband transitions also show polarization dependency with the linearly polarized lights along a and along b axis. In polarized thermoreflectance (PTR) experiment of SnS, it has a direct band-gap transition at 1.20 eV and an interband transition at 1.616 eV when E//b. For E⊥b, the 1.616 eV transition disappears, the direct-gap transition feature becomes narrow and its energy position shifts to 1.15 eV. Owing to the results of transmittance and thermoreflectance are comparable near band edge, we can infer that SnS is a direct band gap semiconductor. For the PTR result of SnSe, the direct band gap transition is at 0.99 eV and two transitions are at 1.258 eV and 1.374 eV when E//b. For the E⊥b condition, two transitions of 1.258 eV and 1.374 eV disappear, while direct-gap transition become narrow and shifts to 0.94 eV. The SnSe is also a direct band gap semiconductor.
    For electrical measurements, the conductivity of SnX was determined to be 2.76×10-1 (-cm)-1 for SnS and 1.944×10-1 (-cm)-1 for SnSe, respectively. The surface photovoltage (SPV) measurements of SnS and SnSe also show in-plane anisotropy of the photovoltaic response spectra with E//b and E⊥b conditions. The SnX (X=S, Se) also reveal thermos-electric voltage generated from the samples by hot-probe measurements. From the polarity of thermoelectric voltage, the SnS and SnSe are p-type semiconductors. According to the optical and electrical measurement results, the SnX (X=S, Se) can have both photovoltaic and thermoelectric capability, and which possess the potential for application in the future optoelectronics and energy devices.

    中文摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 錫硫屬化物材料特性 3 第二章 晶體成長 6 2.1 長晶方法與原理 6 2.2 晶體成長流程 8 2.3 配料與石英管清洗 8 2.4 真空系統設置 9 2.5 三區獨立長晶爐 12 第三章 實驗原理與量測技術 14 3.1 掃描式電子顯微鏡(SEM) 14 3.2 能量散佈能譜儀(EDS) 16 3.3 X-ray繞射分析儀(XRD) 18 3.4 拉曼散射系統 22 3.5 光穿透光譜 25 3.6 熱調制反射光譜 27 3.7 表面光電壓光譜量測 33 3.8 I-V光電流響應量測 36 3.9 光伏打效應與熱電效應實驗 37 第四章 實驗結果與探討 39 4.1 材料結構與成分分析 39 4.1.1 能量散佈儀成分確認與分析 39 4.1.2 X-ray繞射訊號探討 41 4.1.3 穿隧式電子顯微鏡影像 45 4.1.4 拉曼散射光譜 50 4.2 光學特性探討 56 4.2.1 光穿透與吸收光譜 56 4.2.2 極化熱調制反射光譜分析 61 4.2.3 表面光電壓實驗 70 4.3 光電特性與熱電特性 75 4.3.1 I-V曲線分析 75 4.3.2 光伏打實驗與熱電實驗 77 第五章 結論 79 參考文獻 80

    [1] Biswajit Ghosh, Madhumita Das, Pushan Banerjee and Subrata Das, “Fabrication and optical properties of SnS thin films by SILAR method”, Applied Surface Science, Vol. 254, 6436–6440 (2008)
    [2] Sang-ui Kim, Anh-Tuan Duong, Sunglae Cho, S. H. Rhim and Jungdae Kim, ” A microscopic study investigating the structure of SnSe surfaces” Surface Science, Vol. 651, 5–9 (2016)
    [3] B. B. Nariya, A. K. Dasadia, M. K. Bhayani, A. J. Patel and A. R. Jani, “Electrical transport properties of SnS and SnSe single crystals grown by direct vapor transport technique”, Chalcogenide Letters, Vol. 6, No. 10, p. 549 –554 (2009)
    [4] Caillat, T., etc,“Zn-Sb alloys for thermoelectric power
    generation”, Energy Conversion Engineering Conference, Vol. 2,
    pp. 905-909 (1996).
    [5] Ji-Hoon Ahn, Myoung-Jae Lee, Hoseok Heo, Ji Ho Sung, Kyungwook Kim, Hyein Hwang and Moon-Ho Jo, “Deterministic Two-Dimensional Polymorphism Growth of Hexagonal n Type SnS2 and Orthorhombic p Type SnS Crystals”, Nano Lett, Vol.15, 3703−3708 (2015)
    [6] D.I. Bletskan, M.M. Bletskan, K.E. Glukhov, “Electronic structure of tin monosulfide”, Journal of Solid State Chemistry, Vol. 245, 34–44 (2017)
    [7] Ajay Agarwal, Sunil H. Chaki, D. Lakshminarayana, “Growth and thermal studies of SnSe single crystals”, Materials Letters, Vol. 61, 5188–5190 (2007)
    [8] L. Makinistian and E. A. Albanesi, “First-principles calculations of the band gap and optical properties of germanium sulfide”, Physical review B, Vol. 74, Iss. 4 (2006)
    [9] PD. Antunez, JJ. Buckley and RL. Brutchey, “Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells”, Nanoscale, Vol. 3, No. 6, 2399-411 (2011)
    [10] Ching-Hwa Ho, Jia-Xuan Li, “Polarized Band-Edge Emission and Dichroic Optical Behavior in Thin Multilayer GeS”, Adv. Optical Mater, Vol. 5, 1600814 (2017)
    [11] Sergio Michielon de Souza, Hidembergue Ordozgoith da Frota, Daniela Menegon Triches, Angsula Ghosh, Puspitapallab Chaudhuri, Marta Silva dos Santos Gusmao, Aercio Filipe Franklim de Figueiredo Pereira, Mariana Couto Siqueira, Kleber Daum Machado and Joao Cardoso de Lima, “Pressure-induced polymorphism in nanostructured SnSe”, Appl. Cryst, Vol. 49, 213–221 (2016)
    [12] H. Schäfer, “Chemical transport reactions”, Academic Press, New York, p. 79 (1964)
    [13] 郭偉立,“三硒化二鎵之晶體成長及特性研究”, 國立臺灣海洋大學碩博士論文系統 (2015)
    [14] Lee A. Burton, Diego Colombara, Ruben D. Abellon, Ferdinand C. Grozema, Laurence M. Peter, Tom J. Savenije, Gilles Dennler, and Aron Walsh, “Synthesis, Characterization, and Electronic Structure of Single Crystal SnS, Sn2S3, and SnS2”, Chem. Mater, Vol. 25, 4908−4916 (2013)
    [15] M. Cruz, J. Morales, J.P. Espinos, and J. Sanz, “XRD, XPS and Sn NMR study of tin sulfides obtained by using chemical vapor transport methods”, Journal of Solid State Chemistry, Vol. 175, 359–365 (2003)
    [16] 許樹恩、吳泰伯,“X光繞射原理與材料結構分析,” 中國材料科學
    學會(1966)
    [17] 柯宗佑,“二硒化鉬鎢層狀半導體之晶體成長與光學特性研究”, 國
    立台灣科技大學學位論文系統 (2014)
    [18] B. O. Seraphin, R. B. Hess, and N. Bottka, “Field Effect of the Reflectivity in Germanium”, J. Appl. Phys., Vol. 36, pp. 2242-2250 (1965)
    [19] F. H. Pollak, H. Shen, “Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices,” Mater. Sci. Eng. R, Vol. 10, pp. 275-374 (1993)
    [20] H. Mathieu, J. Allègre, and B. Gil, “Piezomodulation spectroscopy: A powerful investigation tool of heterostructures” Phys. Rev. B, Vol. 43, pp. 2218-2227 (1991)
    [21] Ching-Hwa Ho, Horng-Wen Lee, and Zau-Hwang Cheng, “Practical thermoreflectance design for optical characterization of layer semiconductors”, Rev. Sci. Instrum, Vol. 75, pp. 1098 (2004)
    [22] T. Raadik n, M. Grossberg, J. Raudoja, R. Traksmaa, J. Krustok, “Temperature-dependent photoreflectance of SnS crystals”, Journal of Physics and Chemistry of Solids, Vol. 74, 1683–1685 (2013)
    [23] G.H. Tariq, K. Hutchings, Ghulam Asghar, D. W. Lane, M. Anis-ur-rehman, “study of annealing effects on the physical properties of evaporated SnS thin films for photovoltaic applications”, Journal of Ovonic Research, Vol. 10, No. 6, p. 247 – 256 (2014)
    [24] H. R. Chandrasekhar, R. G. Humphreys, U. Zwick, and M. Cardona, “Infrared and Raman spectra of the IV-VI compounds SnS and SnSe”, physical review B, Vol. 15, No. 4, 2177-2183 (1977)
    [25] Yulong Li, Xun Shi, Dudi Ren, Jikun Chen and Lidong Chen, “Investigation of the Anisotropic Thermoelectric Properties of
    Oriented Polycrystalline SnSe”, Energies, Vol. 8, 6275-6285 (2015)
    [26] H. C. Hsueh, M. C. Warren, H. Vass, G. J. Ackland, S. J. Clark, and J. Crain, ”Vibrational properties of the layered semiconductor germanium sulfide under hydrostatic pressure: Theory and experiment”, Physical Review B, Vol. 53, No. 22, 14806-14817 (1996)
    [27] F. Luke, J. Humlek and E. Schmidt, “Electroreflectance and thermoreflectance spectra of SnS”, Solid State Communications, Vol. 45, No. 5, pp. 445-448 (1983)

    QR CODE