簡易檢索 / 詳目顯示

研究生: 莊慶安
Ching-An Chuang
論文名稱: 三六族層狀二維半導體之光學研究
The study of optical characteristics in Ⅲ-Ⅵ layered 2D semiconductors
指導教授: 何清華
Ching-Hwa Ho
口試委員: 李奎毅
Kuei-Yi Lee
薛人愷
Ren-Kai Shiue
郭東昊
Dung-Hau Kuo
程光蛟
Kwong-Kau Tiong
何清華
Ching-Hwa Ho
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 133
中文關鍵詞: III-VI 族半導體彎曲光致發光帶邊發射堆積相
外文關鍵詞: III-VI semiconductor, bending photoluminescence, band-edge emissions, stacking phase
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文是針對以化學氣相傳導法(CVT)長成之三六族層狀二維硒硫化鎵半導體GaSe1-xSx (0≤x≤1),以及利用垂直布里曼法(vertical Bridgman method)長成之三六族層狀硒化鎵半導體GaSe之光學特性加以研究與探討。特別是對於層狀硒化鎵半導體GaSe晶體進行物理性彎曲,由光激螢光量測確認此層狀化合物半導體在物理性彎曲狀態下,其螢光強度都比平面狀態增強且發光波長改變。
    本研究自行研發設計曲率控制平台,能將待測樣品從平面狀態調整到所要的曲率;經查詢目前文獻資料,本研究為第一個在室溫下將硒化鎵層狀半導體GaSe由平面狀態逐漸彎曲,進行不同曲率之光激螢光實驗,並推導出硒化鎵層狀半導體GaSe之光激螢光強度與曲率之關係方程式,以及晶體能隙與曲率之關係方程式,可作為未來深入研究之基礎。另外,針對半導體硒化鎵GaSe光激螢光強度實驗發現:曲面之螢光強度大於平面之螢光強度,本研究提出可能的2個螢光發光增強機制:
    (1) 由硒化鎵實驗數據推導出因為曲面受光面積增加之線性機制。
    (2) 晶體彎曲導致表面原子間距增大,增加入射光之非線性機制。
    針對層狀二維硒硫化鎵半導體GaSe1-xSx (0≤x≤1)之光電特性,本研究依據光激螢光(PL)、拉曼量測(Raman)、以及熱調制(TR)光譜之實驗結果,探討不同溫度下各種激子之特性,以及因晶體中層狀堆疊位置相異產生之結構相變,再利用時間解析光激螢光(TRPL)進行發光複合時間常數研究;研究結果顯示化合物中硒、硫摻雜比例不同將導致能隙位移現象,藉由硒、硫成分變化可產生不同的光激螢光發光波長,可用來建構可見光全波段頻譜並混成白色可見光,有利於後續開發 GaSe1-xSx (0≤x≤1)在可見光波段之二維光電元件應用。


    This dissertation explores the optical characteristics of III-VI semiconductors. The III-VI layered semiconductor is a topic that is frequently discussed and is highly pertinent to optical and electronic devices due to its attractive properties. The light emission properties of layered gallium selenide (GaSe) crystals with varying curvatures through bending photoluminescence (BPL) experiments were observed. A customized sample holder enables controlled upward bending, and results show curvature-dependent changes in both bandgaps and BPL intensities. Two possible mechanisms were proposed for this phenomenon:
    (1) The linear mechanism: The light-irradiated area is linearly increased because of the curved surface caused by bending. It can be deduced from the experimental data.
    (2) The nonlinear mechanism: The mutual distances of atoms on the surface of a crystal are increased while bending the crystal; therefore, the bent crystal receives more photons.
    The main emission peak shifts from 2.005 eV (flat) to 1.986 eV (maximum bending), indicating c-plane lattice expansion. The BPL peak intensities increase with curvature, correlating with the light-irradiated area and bond-angle widening. Analysis of lattice constant versus emission energies suggests potential applications in flexible light-emission devices.
    Furthermore, full-series GaSe1-xSx (0≤x≤1) multilayers grown using the CVT method reveal near-band-edge emissions from red to green and blue colors through photoluminescence (PL) experiment at 4 K. X-ray diffraction and Raman measurements confirm ε-β polymorph stacking phases. Micro-photoluminescence (μPL) reveals the ε-stacked phase as crucial for direct recombination and free exciton emission. A mixed-color white light is generated and positioned at the CIE center. Time-resolved photoluminescence (TRPL) mapping indicates increased photoluminescence decay lifetime with higher sulfur content, attributed to mixed-phase stacking faults near β-GaS. The GaSe1-xSx series is a versatile 2D chalcogenide for full-color visible light emission. These studies propose excellent optical characteristics of III-VI layered semiconductors that can be promising candidates for exploration in optoelectronic applications.

    摘要 ................................... i ABSTRACT .................... iii 致謝 .................................. v ACKNOWLEDGEMENTS ............................................ vi TABLE OF CONTENTS ................................................ vii SYMBOLS AND ABBREVIATIONS ........................... ix LIST OF TABLES .......... xi LIST OF FIGURES ....... xii CHAPTER 1 INTRODUCTION .................................... 1 1.1 The III-VI Layered Semiconductors (GaSe, InSe, GaSeS) ........................... 1 1.2 Gallium Selenide (GaSe), Indium Selenide (InSe), and Gallium Sulfide (GaS) ............ 7 1.3 Research Objective ............ 11 1.4 Dissertation Outline .............12 CHAPTER 2 CRYSTAL GROWTH AND EXPERIMENT PRINCIPLE ........................ 14 2.1 Crystal Growth ........... 14 2.1.1 Chemical Vapor Transport Method .................. 14 2.1.2 Vertical Bridgman Method .................................. 15 2.1.3 The Growth of GaSe Crystal ................................ 16 2.1.4 The Growth of GaSe1-xSx Crystal ..................... 17 2.2. Experiments Principle .......................................... 22 2.2.1 SEM/EDS Measurement ....................................... 22 2.2.2 X-ray Diffraction (XRD) Measurement ............ 24 2.2.3 Transmission Electron Microscopy (TEM) ...... 27 2.2.4 Micro-Raman (μRaman) Measurement ........... 30 2.2.5 Micro-Photoluminescence (μPL) Measurement ............................ 33 2.2.6 Time-Resolved Photoluminescence (TRPL) .............. 35 2.2.7 Photoconductivity Measurement ..................... 41 2.2.8 Micro-Thermoreflectance Measurement .......... 42 CHAPTER 3 BENDING PHOTOLUMINESCENCE OF GALLIUM SELENIDE ....... 46 3.1Experiment Preparation ............................................ 46 3.2 Experiment Procedure .............................................. 48 3.3 Calculation of Laser Illuminated Area on The Bended GaSe......................... 53 3.4 Experiment Results and Discussion ..................... 54 CHAPTER 4 STRUCTURAL AND OPTICAL CHARACTERIZATION OF FULL SERIES GaSe1-xSx (0≦x≦1) MULTILAYERS .............. 63 4.1 Micro-Raman Results ..................................... 63 4.2 Micro-Photoluminescence Results ...................... 70 4.3 Time-Resolved Photoluminescence (TRPL) Results................................... 80 4.4 Thermoreflectance (TR) Results ............................ 84 4.5 XRD Results ................ 89 4.6 Patterns ........................ 92 CHAPTER 5 CONCLUSIONS ..................................... 96 5.1 Conclusions ................ 96 5.2 Summary ..................... 97 5.3 Prospects ..................... 98 REFERENCES .................... 100 PUBLICATIONS ............... 107 CONFERENCES ............... 108

    1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
    2. Jung, C. S.; Shojaei, F.; Park, K.; Oh, J. Y.; Im, H. S.; Jang, D. M.; Park, J.; Kang, H. S., Red-to-Ultraviolet Emission Tuning of Two-Dimensional Gallium Sulfide/Selenide. ACS Nano 2015, 9 (10), 9585-9593.
    3. Li, X.; Lin, M. W.; Lin, J.; Huang, B.; Puretzky, A. A.; Ma, C.; Wang, K.; Zhou, W.; Pantelides, S. T.; Chi, M.; Kravchenko, I.; Fowlkes, J.; Rouleau, C. M.; Geohegan, D. B.; Xiao, K., Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci Adv 2016, 2 (4), e1501882.
    4. Capozzi, V.; Montagna, M., Optical spectroscopy of extrinsic recombinations in gallium selenide. Physical Review B 1989, 40 (5), 3182-3190.
    5. Sporken, R.; Hafsi, R.; Coletti, F.; Debever, J. M.; Thiry, P. A.; Chevy, A., Inversephotoemission spectroscopy of GaSe and InSe. Phys Rev B Condens Matter 1994, 49 (16), 11093-11099.
    6. Aulich, E.; Brebner, J. L.; Mooser, E., Indirect Energy Gap in GaSe and GaS. physica status solidi (b) 1969, 31 (1), 129-131.
    7. Jung, C. S.; Park, K.; Shojaei, F.; Oh, J. Y.; Im, H. S.; Lee, J. A.; Jang, D. M.; Park, J.; Myoung, N.; Lee, C.-L.; Lee, J. W.; Song, J. K.; Kang, H. S., Photoluminescence and Photocurrents of GaS1–xSex Nanobelts. Chemistry of Materials 2016, 28 (16), 5811-5820.
    8. Ni, Y.; Wu, H.; Huang, C.; Mao, M.; Wang, Z.; Cheng, X., Growth and quality of gallium selenide (GaSe) crystals. Journal of Crystal Growth 2013, 381, 10-14.
    9. Schwarz, S.; Dufferwiel, S.; Walker, P. M.; Withers, F.; Trichet, A. A.; Sich, M.; Li, F.; Chekhovich, E. A.; Borisenko, D. N.; Kolesnikov, N. N.; Novoselov, K. S.; Skolnick, M. S.; Smith, J. M.; Krizhanovskii, D. N.; Tartakovskii, A. I., Two-dimensional metalchalcogenide films in tunable optical microcavities. Nano Lett 2014, 14 (12), 7003-8.
    10. Varshni, Y. P., Temperature dependence of the energy gap in semiconductors. Physica 1967, 34 (1), 149-154.
    11. Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A., Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Research 2012, 5 (1), 43-48.
    12. Chen, Y.; Xi, J.; Dumcenco, D. O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z.; Huang,Y. S.; Xie, L., Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 2013, 7 (5), 4610-6.
    13. Zhang, Y.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459 (7248), 820-3.
    14. Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S., 2D MATERIALS. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349 (6249), 723-6.
    15. Cao, S.; Zhao, J.; Yang, W.; Li, C.; Zheng, J., Mn2+-doped Zn–In–S quantum dots with tunable bandgaps and high photoluminescence properties. Journal of Materials Chemistry C 2015, 3 (34), 8844-8851.
    16. Ho, C. H.; Wang, S. T.; Huang, Y. S.; Tiong, K. K., Structural and luminescent property of gallium chalcogenides GaSe1−xSx layer compounds. Journal of Materials Science: Materials in Electronics 2009, 20 (1), 207-210.
    17. Ho, C.-H.; Chu, Y.-J., Bending Photoluminescence and Surface Photovoltaic Effect on Multilayer InSe 2D Microplate Crystals. Advanced Optical Materials 2015, 3 (12), 1750-1758.
    18. Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang,H., Single-Layer MoS2 Phototransistors. ACS Nano 2012, 6 (1), 74-80.
    19. Ovchinnikov, D.; Allain, A.; Huang, Y.-S.; Dumcenco, D.; Kis, A., Electrical Transport Properties of Single-Layer WS2. ACS Nano 2014, 8 (8), 8174-8181.
    20. Liu, E.; Fu, Y.; Wang, Y.; Feng, Y.; Liu, H.; Wan, X.; Zhou, W.; Wang, B.; Shao, L.; Ho, C.-H.; Huang, Y.-S.; Cao, Z.; Wang, L.; Li, A.; Zeng, J.; Song, F.; Wang, X.; Shi, Y.; Yuan, H.; Hwang, H. Y.; Cui, Y.; Miao, F.; Xing, D., Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nature Communications 2015, 6(1), 6991.
    21. Mudd, G. W.; Svatek, S. A.; Ren, T.; Patanè, A.; Makarovsky, O.; Eaves, L.; Beton,P. H.; Kovalyuk, Z. D.; Lashkarev, G. V.; Kudrynskyi, Z. R.; Dmitriev, A. I., Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement. Advanced Materials 2013, 25 (40), 5714-5718.
    22. Nakamura, S., Background story of the invention of efficient blue InGaN light emitting diodes (Nobel Lecture). Annalen der Physik 2015, 527 (5-6), 335-349.
    23. Nakamura, S., The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes. Science 1998, 281 (5379), 956-961.
    24. Horng, R. H.; Ye, C. X.; Chen, P. W.; Iida, D.; Ohkawa, K.; Wu, Y. R.; Wuu, D. S.,Study on the effect of size on InGaN red micro-LEDs. Sci Rep 2022, 12 (1), 1324.
    25. Cok, R. S.; Meitl, M.; Rotzoll, R.; Melnik, G.; Fecioru, A.; Trindade, A. J.; Raymond, B.; Bonafede, S.; Gomez, D.; Moore, T.; Prevatte, C.; Radauscher, E.; Goodwin, S.; Hines, P.; Bower, C. A., Inorganic light-emitting diode displays using micro-transfer printing. Journal of the Society for Information Display 2017, 25 (10), 589-609.
    26. Tsuboi, Y.; Urakami, N.; Hashimoto, Y., Photoluminescence of Layered Semiconductor Materials for Emission-Color Conversion of Blue Micro Light-Emitting Diode (μLED). Coatings 2020, 10 (10), 985.
    27. Jeong, J.; Wang, Q.; Cha, J.; Jin, D. K.; Shin, D. H.; Kwon, S.; Kang, B. K.; Jang, J. H.; Yang, W. S.; Choi, Y. S.; Yoo, J.; Kim, J. K.; Lee, C. H.; Lee, S. W.; Zakhidov, A.; Hong, S.; Kim, M. J.; Hong, Y. J., Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle. Sci Adv 2020, 6 (23), eaaz5180.
    28. Singh, A. K.; Ahn, K.; Yoo, D.; Lee, S.; Ali, A.; Yi, G.-C.; Chung, K., van der Waals integration of GaN light-emitting diode arrays on foreign graphene films using semiconductor/graphene heterostructures. NPG Asia Materials 2022, 14 (1), 57.
    29. Chen, M.-W.; Kim, H.; Ovchinnikov, D.; Kuc, A.; Heine, T.; Renault, O.; Kis, A., Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion. npj 2D Materials and Applications 2018, 2 (1).
    30. Chuang, C.-A.; Lin, M.-H.; Yeh, B.-X.; Ho, C.-H., Curvature-dependent flexible light emission from layered gallium selenide crystals. RSC Advances 2018, 8 (5), 2733-2739.
    31. Shen, G.; Chen, D.; Chen, P.-C.; Zhou, C., Vapor−Solid Growth of One-Dimensional Layer-Structured Gallium Sulfide Nanostructures. ACS Nano 2009, 3 (5), 1115-1120.
    32. Ho, C. H.; Lin, S. L., Optical properties of the interband transitions of layered gallium sulfide. Journal of Applied Physics 2006, 100 (8).
    33. Fonseca, J. J.; Tongay, S.; Topsakal, M.; Chew, A. R.; Lin, A. J.; Ko, C.; Luce, A. V.;Salleo, A.; Wu, J.; Dubon, O. D., Bandgap Restructuring of the Layered Semiconductor Gallium Telluride in Air. Advanced Materials 2016, 28 (30), 6465-6470.
    34. Ho, C.-H.; Chiou, M.-C.; Herninda, T. M., Nanowire Grid Polarization and Polarized Excitonic Emission Observed in Multilayer GaTe. The Journal of Physical Chemistry Letters 2020, 11 (3), 608-617.
    35. Jie, W.; Chen, X.; Li, D.; Xie, L.; Hui, Y. Y.; Lau, S. P.; Cui, X.; Hao, J., Layer-Dependent Nonlinear Optical Properties and Stability of Non-Centrosymmetric Modification in Few-Layer GaSe Sheets. Angewandte Chemie International Edition 2015,54 (4), 1185-1189.
    36. Shenoy, U. S.; Gupta, U.; Narang, D. S.; Late, D. J.; Waghmare, U. V.; Rao, C. N. R., Electronic structure and properties of layered gallium telluride. Chemical Physics Letters 2016, 651, 148-154.
    37. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically thin MoS₂: a new direct-gap semiconductor. Phys Rev Lett 2010, 105 (13), 136805.
    38. Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G., Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. ACS Nano 2013, 7 (1),791-797.
    39. Muhimmah, L. C.; Ho, C. H., Dual phase two-color emission observed in van der Waals GaTe planes. Applied Surface Science 2021, 542.
    40. Kuhn, A.; Chevy, A.; Chevalier, R., Crystal structure and interatomic distances in GaSe. Physica Status Solidi (a) 1975, 31 (2), 469-475.
    41. Li, X.; Basile, L.; Yoon, M.; Ma, C.; Puretzky, A. A.; Lee, J.; Idrobo, J. C.; Chi, M.; Rouleau, C. M.; Geohegan, D. B.; Xiao, K., Revealing the Preferred Interlayer Orientations and Stackings of Two-Dimensional Bilayer Gallium Selenide Crystals. Angewandte Chemie International Edition 2015, 54 (9), 2712-2717.
    42. Ho, C. H.; Huang, K. W., Visible luminescence and structural property of GaSe1−xSx (0≤x≤1) series layered crystals. Solid State Communications 2005, 136 (11-12), 591-594.
    43. Wu, C. C.; Ho, C. H.; Shen, W. T.; Cheng, Z. H.; Huang, Y. S.; Tiong, K. K., Optical properties of GaSe1−xSx series layered semiconductors grown by vertical Bridgman method. Materials Chemistry and Physics 2004, 88 (2), 313-317.
    44. Ho, C.-H.; Lin, M.-H.; Wang, Y.-P.; Huang, Y.-S., Synthesis of In2S3 and Ga2S3 crystals for oxygen sensing and UV photodetection. Sensors and Actuators A: Physical 2016,245, 119-126.
    45. Ho, C.-H.; Chen, H.-H., Optically decomposed near-band-edge structure and excitonic transitions in Ga2S3. Scientific Reports 2014, 4 (1), 6143.
    46. Ho, C.-H., Ga2Se3 Defect Semiconductors: The Study of Direct Band Edge and Optical Properties. ACS Omega 2020, 5 (29), 18527-18534.
    47. Yang, S.; Li, Y.; Wang, X.; Huo, N.; Xia, J.-B.; Li, S.-S.; Li, J., High performance fewlayer GaS photodetector and its unique photo-response in different gas environments. Nanoscale 2014, 6 (5), 2582-2587.
    48. Ho, C.-H.; Hsieh, M.-H.; Wu, C.-C., Photoconductance and photoresponse of layer compound photodetectors in the UV-visible region. Review of Scientific Instruments 2006, 77 (11).
    49. Alsaif, M. M. Y. A.; Pillai, N.; Kuriakose, S.; Walia, S.; Jannat, A.; Xu, K.; Alkathiri, T.; Mohiuddin, M.; Daeneke, T.; Kalantar-Zadeh, K.; Ou, J. Z.; Zavabeti, A., Atomically Thin Ga2S3 from Skin of Liquid Metals for Electrical, Optical, and Sensing Applications. ACS Applied Nano Materials 2019, 2 (7), 4665-4672.
    50. Mooser, E.; Schlüter, M., The band-gap excitons in gallium selenide. Il Nuovo Cimento B (1971-1996) 1973, 18 (1), 164-208.
    51. Jie, W.; Chen, X.; Li, D.; Xie, L.; Hui, Y. Y.; Lau, S. P.; Cui, X.; Hao, J., Layerdependent nonlinear optical properties and stability of non‐centrosymmetric modification in few‐layer GaSe sheets. Angewandte Chemie 2015, 127 (4), 1201-1205.
    52. Lim, S. Y.; Lee, J.-U.; Kim, J. H.; Liang, L.; Kong, X.; Nguyen, T. T. H.; Lee, Z.; Cho, S.; Cheong, H., Polytypism in few-layer gallium selenide. Nanoscale 2020, 12 (15), 8563-8573.
    53. Yoshida, H.; Nakashima, S.; Mitsuishi, A., Phonon Raman spectra of layer compound GaSe. Physica Status Solidi (b) 1973, 59 (2), 655-666.
    54. Klein, A.; Lang, O.; Schlaf, R.; Pettenkofer, C.; Jaegermann, W., Electronically Decoupled Films of InSe Prepared by van der Waals Epitaxy: Localized and Delocalized Valence States. Physical Review Letters 1998, 80 (2), 361-364.
    55. Madelung, O., Semiconductors: Data Handbook. 2004; pp 289-328.
    56. McCanny, J. V.; Murray, R. B., The band structures of gallium and indium selenide. Journal of Physics C: Solid State Physics 1977, 10 (8), 1211.
    57. Ikari, T.; Shigetomi, S.; Hashimoto, K., Crystal Structure and Raman Spectra of InSe.physica status solidi (b) 1982, 111 (2), 477-481.
    58. De Blasi, C.; Manno, D.; Rizzo, A., Study of the polytypism in melt grown InSe single crystals by convergent beam electron diffraction. Journal of Crystal Growth 1990, 100 (3),347-353.
    59. Ulrich, C.; Olguin, D.; Cantarero, A.; Goñi, A. R.; Syassen, K.; Chevy, A., Effect of Pressure on Direct Optical Transitions of γ-InSe. physica status solidi (b) 2000, 221 (2), 777-787.
    60. Antonangeli, F.; Piacentini, M.; Balzarotti, A.; Grasso, V.; Girlanda, R.; Doni, E., Electronic properties of the III–VI layer compounds GaS, GaSe and InSe. II: Photoemission. Il Nuovo Cimento B (1971-1996) 1979, 51 (1), 181-197.
    61. Pollak, F. H.; Shen, H., Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices. Materials Science and Engineering: R:Reports 1993, 10 (7), xv-374.
    62. Olguín, D.; Rubio-Ponce, A.; Cantarero, A., Ab initio electronic band structure study of III–VI layered semiconductors. The European Physical Journal B 2013, 86 (8), 350.
    63. Balkanski, M.; Julien, C.; Jouanne, M., Electron and phonon aspects in a lithium intercalated InSe cathode. Journal of Power Sources 1987, 20 (3), 213-219.
    64. Allakhverdiev, K.; Ellialtioglu, S.; Ismailov, A.; Ibragimov, Z., Raman scattering and Hall effect in layer InSe under pressure. High Pressure Research 1994, 13 (1-3), 121-125.
    65. Ramanujam, J.; Singh, U. P., Copper indium gallium selenide based solar cells – a review. Energy & Environmental Science 2017, 10 (6), 1306-1319.
    66. Whittingham, M. S., Chemistry of intercalation compounds: Metal guests in chalcogenide hosts. Progress in Solid State Chemistry 1978, 12 (1), 41-99.
    67. Chuang, C.-A.; Yu, F.-H.; Yeh, B.-X.; Ummah, A. M.; Rosyadi, A. S.; Ho, C.-H., Visible White-Light Emission and Carrier Dynamics Observed in Full-Series GaSe1-xSx (0≤x≤1) Multilayers. Advanced Optical Materials n/a (n/a), 2301032.
    68. 葉柏賢. 硒硫化鎵層狀二維半導體的光學特性研究. 國立臺灣科技大學, 台北市,2017.
    69. 游峯漢. 全波長可見光二維層狀半導體硒硫化鎵系列之放射光譜以及時間解析光學映射研究. 國立臺灣科技大學, 台北市, 2021.
    70. Binnewies, M.; Glaum, R.; Schmidt, M.; Schmidt, P., Chemical Vapor Transport Reactions – A Historical Review. Zeitschrift für anorganische und allgemeine Chemie 2013,639 (2), 219-229.
    71. Kakimoto, K., Crystal Growth Technology: Semiconductors and Dielectrics. 2010; pp 65-74.
    72. Greenaway, D. L.; Nitsche, R., Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure. Journal of Physics and Chemistry of Solids 1965, 26 (9), 1445-1458.
    73. Carpentier, C. D.; Nitsche, R., Vapour growth and crystal data of the thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2Se6 and their mixed crystals. Materials Research Bulletin 1974, 9 (4), 401-410.
    74. Abdullah, A.; Mohammed, A., Scanning Electron Microscopy (SEM): A Review. 2019.
    75. Fitzgerald, R.; Heinrich, K. F. J.; Keil, K., Celebrating 40 Years of Energy Dispersive X-Ray Spectrometry in Electron Probe Microanalysis: A Historic and Nostalgic Look Back into the Beginnings. Microscopy and Microanalysis 2009, 15 (6), 476-483.
    76. Newbury*, D. E.; Ritchie, N. W., Is scanning electron microscopy/energy dispersive X‐ray spectrometry (SEM/EDS) quantitative? Scanning 2013, 35 (3), 141-168.
    77. Busch, U., Wilhelm Conrad Röntgen A Shining Life for Science: A Shining Life for Science. 2021.
    78. Borisov, S.; Podberezskaya, N., X-ray diffraction analysis: A brief history and achievements of the first century. Journal of Structural Chemistry 2012, 53.
    79. Kittel, C., Introduction to solid state physics. John Wiley & sons, inc: 2005.
    80. Warren, B. E., X-ray Diffraction. Courier Corporation: 1990.
    81. Raman, C. V.; Krishnan, K. S., A New Type of Secondary Radiation. Nature 1928, 121(3048), 501-502.
    82. Mulvaney, S. P.; Keating, C. D., Raman Spectroscopy. Analytical Chemistry 2000, 72(12), 145-158.
    83. Graves, P.; Gardiner, D., Practical raman spectroscopy. Springer 1989, 10, 978-3.
    84. Kip, B. J.; Meier, R. J., Determination of the Local Temperature at a Sample during Raman Experiments Using Stokes and Anti-Stokes Raman Bands. Appl. Spectrosc. 1990, 44(4), 707-711.
    85. Aoki, T., Photoluminescence Spectroscopy. In Characterization of Materials, pp 1-12.
    86. Tebyetekerwa, M.; Zhang, J.; Xu, Z.; Truong, T. N.; Yin, Z.; Lu, Y.; Ramakrishna, S.; Macdonald, D.; Nguyen, H. T., Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides. ACS Nano 2020, 14 (11), 14579-14604.
    87. Gilliland, G. D., Photoluminescence spectroscopy of crystalline semiconductors. Materials Science and Engineering: R: Reports 1997, 18 (3), 99-399.
    88. Kumar, P. S., Photonics. PHI Learning Pvt. Ltd.: 2012.
    89. Mochizuki, S.; Fujishiro, F.; Minami, S., Photoluminescence and reversible photoinduced spectral change of SrTiO3. Journal of Physics: Condensed Matter 2005, 17 (6), 923.
    90. Ahrenkiel, R. K., Measurement of minority-carrier lifetime by time-resolved photoluminescence. Solid-State Electronics 1992, 35 (3), 239-250.
    91. Ho, C.-H., Enhanced photoelectric-conversion yield in niobium incorporated In2S3 with intermediate band. Journal of Materials Chemistry 2011, 21, 10518-10524.
    92. Cardona, M., Modulation spectroscopy of semiconductors. Festkörperprobleme 10:Plenary Lectures of the Professional Groups “Semiconductor Physics”,“Low Temperature Physics”,“Thermodynamics”,“Metal Physics” of the German Physical Society Freudenstadt, April 6–11, 1970 1970, 125-173.
    93. Pollak, F. H.; Glembocki, O., Modulation spectroscopy of semiconductor microstructures: An overview. Spectroscopic Characterization Techniques for Semiconductor Technology III 1988, 946, 2-35.
    94. Pollak, F. H.; Shen, H., Modulation spectroscopy of semiconductors: bulk/thin film,microstructures, surfaces/interfaces and devices. Materials Science and Engineering: R: Reports 1993, 10 (7-8), xv-374.
    95. Seraphin, B.; Hess, R.; Bottka, N., Field Effect of the Reflectivity in Germanium. Journal of Applied Physics 1965, 36 (7), 2242-2250.
    96. Grandolfo, M.; Somma, F.; Vecchia, P., Temperature modulation of the optical constants of layer compounds GaSe and GaS. Physical Review B 1972, 5 (2), 428.
    97. Ho, C.-H.; Lee, H.-W.; Cheng, Z.-H., Practical thermoreflectance design for optical characterization of layer semiconductors. Review of scientific instruments 2004, 75 (4),1098-1102.
    98. Li, X.; Basile, L.; Huang, B.; Ma, C.; Lee, J.; Vlassiouk, I. V.; Puretzky, A. A.; Lin, M.-W.; Yoon, M.; Chi, M.; Idrobo, J. C.; Rouleau, C. M.; Sumpter, B. G.; Geohegan, D. B.; Xiao, K., Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. ACS Nano 2015, 9 (8), 8078-8088.
    99. Fan, Y.; Bauer, M.; Kador, L.; Allakhverdiev, K. R.; Salaev, E. Y., Photoluminescence frequency up-conversion in GaSe single crystals as studied by confocal microscopy. Journal of Applied Physics 2002, 91 (3), 1081-1086.
    100. Al-Suleiman, M.; Mofor, A. C.; El-Shaer, A.; Bakin, A.; Wehmann, H.-H.; Waag, A., Photoluminescence properties: Catalyst-free ZnO nanorods and layers versus bulk ZnO. Applied Physics Letters 2006, 89 (23), 231911.
    101. Hayek, M.; Brafman, O.; Lieth, R. M. A., Splitting and Coupling of Lattice Modes in the Layer Compounds GaSe, GaS, and GaSxSe1-x. Physical Review B 1973, 8 (6), 2772-2779.
    102. Mercier, A.; Voitchovsky, J. P., Raman scattering from GaSxSe1-x. Solid State Communications 1974, 14 (8), 757-762.
    103. Fateley, W. G.; McDevitt, N. T.; Bentley, F. F., Infrared and Raman Selection Rules for Lattice Vibrations: The Correlation Method. Applied Spectroscopy 1971, 25 (2), 155-173.
    104. Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y.; Aslan, B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F., Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. Physical Review Letters 2014, 113 (7), 076802.
    105. Muhimmah, L. C.; Peng, Y.-H.; Yu, F.-H.; Ho, C.-H., Near-infrared to red-light emission and carrier dynamics in full series multilayer GaTe1−xSex (0≤x≤1) with structural evolution. npj 2D Materials and Applications 2023, 7 (1), 3.
    106. Ho, C. H.; Chan, C. H.; Tien, L. C.; Huang, Y. S., Direct Optical Observation of Band-Edge Excitons, Band Gap, and Fermi Level in Degenerate Semiconducting Oxide Nanowires In2O3. Journal of Physical Chemistry C 2011, 115 (50), 25088-25096.
    107. Ho, C.-H.; Liu, Z.-Z., Complete-series excitonic dipole emissions in few layer ReS2 and ReSe2 observed by polarized photoluminescence spectroscopy. Nano Energy 2019, 56, 641-650.
    108. Usman, M.; Golovynskyi, S.; Dong, D.; Lin, Y.; Yue, Z.; Imran, M.; Li, B.; Wu, H.; Wang, L., Raman Scattering and Exciton Photoluminescence in Few-Layer GaSe: Thicknessand Temperature-Dependent Behaviors. The Journal of Physical Chemistry C 2022, 126 (25), 10459-10468.
    109. Zhai, B. G.; Huang, Y. M., Quantitative Determination of Color Coordinates for Lumninescent Materials. Solid State Phenomena 2012, 181-182, 285-288.
    110. Ho, C.-H.; Lin, M.-H., Synthesis and optical characterization of a high-quality ZnS substrate for optoelectronics and UV solar-energy conversion. RSC Advances 2016, 6 (84), 81053-81059.

    QR CODE