簡易檢索 / 詳目顯示

研究生: 王鴻銘
Hong-Ming Wang
論文名稱: 新型態鋰離子電池添加劑(硫脲嘧啶/雙馬來醯亞胺)之研究探討
The investigation of new type of additive(2-thiouracil and N,N’-bismaleimide-4,4’-diphenylmethane) in lithium-ion battery
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 許榮木
JUNG-MU HSU
范國泰
Quoc-Thai Pham
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 113
中文關鍵詞: 鋰離子電池添加劑硫脲嘧啶雙馬來醯亞胺
外文關鍵詞: lithium-ion battery, additive, 2-thiouracil, N,N’-bismaleimide-4,4’-diphenylmethane
相關次數: 點閱:492下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的第一部分探討不同莫耳比之硫脲嘧啶/雙馬來醯亞胺(TUR/BMI)添加劑的反應機制類型,添加HQ抑制劑後得知TUR/BMI = 1/2的自由基加成聚合反應比例高於TUR/BMI = 1/1,接著利用差示掃描量熱法(DSC)分析聚合反應程序所需的反應溫度以及反應熱,同時以自由模型法計算活化能,再藉由熱重分析(TGA)測量所製備之添加劑的熱穩定性,得知添加劑內的BMI含量越高可提升材料的耐熱性質。
    第二部分則將不同莫耳比之硫脲嘧啶/雙馬來醯亞胺(TUR/BMI)添加劑應用於鋰離子電池,同時為了解硫 脲嘧啶與脲嘧啶(UR)在電性表現上的差異,本研究以循環伏安法(CV)、充放電測試以及交流阻抗圖譜(EIS)等測試方法來探討所製備之添加劑對於正極材料LiNi0.5Co0.2Mn0.3O2 (NCM523)的影響。在實驗結果的部分,得知TUR/BMI = 1/1_0.5 %可有效改善常溫下充放電的電性表現,而在高溫(55 ℃)條件下的充放電測試中TUR/BMI = 1/2_0.5 %有較佳的電性表現,顯示過量的雙馬來醯亞胺(BMI)可有效改善正極半電池對高溫的耐受性,至於在不同充放電速率的測試結果,得知TUR/BMI在不同添加量的電性表現皆是優於UR/BMI。


    The first part of this study investigates the reaction mechanisms of 2-thiouracil/N,N’-bismaleimide-4,4’-diphenylmethane (TUR/BMI) additives with different molar ratios. After adding HQ (inhibitor), TUR/BMI = 1/2 shows the higher degree of free radical reaction than TUR/BMI = 1/1. Then, differential scanning calorimetry (DSC) is used to analyze the reaction temperature and reaction heat for the process of polymerization. Furthermore, the model free method is used to determine the activation energy for the polymerization of BMI with TUR. With thermogravimetric analysis (TGA), the thermal stability of additives can be enhanced by increasing the content of BMI.
    In the second part, TUR/BMI as the additives with different molar ratios are applied to lithium-ion battery. Also, this study will compare the difference between TUR and uracil (UR). Cyclic voltammetry (CV), charge and discharge tests and electrochemical impedance spectroscopy (EIS) are used to analyze the effect of the additives on the cathode material LiNi0.5Co0.2Mn0.3O2. The experimental result shows that TUR/BMI = 1/1_0.5 % can effectively improve the cycle stability at room temperature. In addition, it can be clearly seen that TUR/BMI = 1/2_0.5 % has better electrochemical performance than other additives at high temperature. This result indicates that excessive BMI can enhance the high temperature resistance. As for the C-rate test, different amounts of TUR/BMI additives exhibit better rate capability than UR/BMI.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.2.1 鋰離子電池工作原理 2 1.2.2 正極材料 2 1.2.3 隔離膜 4 1.2.4 電解液 5 1.2.5 負極材料 5 1.3 鋰離子電池之熱失控 6 第二章 文獻回顧 8 2.1 改善鋰離子電池安全性之方法 9 2.1.1 隔離膜改質 9 2.1.2 電解液改質 15 2.1.3 正極材料之塗層技術 19 2.1.4 正極材料摻雜其他金屬元素 23 2.1.5 正極材料添加劑 27 2.2 寡聚物添加劑之聚合加成反應類型 33 2.1.1 Free radical polymerization 34 2.1.2 Aza-Michael addition reaction 36 2.3 研究動機與目的 37 第三章 實驗藥品、儀器與方法 38 3.1 實驗藥品 38 3.2 實驗儀器 39 3.3 實驗方法 40 第四章 結果與討論 46 4.1 LIVING@添加劑DSC分析 46 4.1.1 TUR/BMI = 1/1 46 4.1.2 TUR/BMI = 1/2 47 4.2 LIVING@添加劑反應機制探討 49 4.3 LIVING@添加劑動力學分析 51 4.3.1 TUR/BMI = 1/1 52 4.3.2 TUR/BMI = 1/2 53 4.4 LIVING@添加劑之NMR結構分析 55 4.4.1 TUR/BMI = 1/1 55 4.4.2 TUR/BMI = 1/2 57 4.5 LIVING@添加劑DLS粒徑分析 59 4.6 LIVING@添加劑TGA分析 60 4.7 電化學性能分析 62 4.7.1 循環伏安(CV)分析 62 4.7.2 第一圈充放電曲線分析 68 4.7.3 常溫充放電循環測試 69 4.7.4 常溫LIVING@添加劑之充放電曲線 71 4.7.5 常溫LIVING@添加劑之交流阻抗圖譜分析 73 4.7.6 高溫(55 ℃)充放電循環測試 76 4.7.7 高溫(55 ℃)LIVING@添加劑之充放電曲線分析 78 4.7.8 高溫(55 ℃)LIVING@添加劑之交流阻抗圖譜分析 80 4.7.9 不同充放電速率之電性表現 82 4.8 電極極片SEM分析 85 第五章 結論 88 第六章 參考文獻 89 附錄 98

    1. D. W. Murphy, F. A. Trumbore, The Chemistry of TiS3 and NbSe3 Cathodes, Journal of The Electrochemical Society, 1976, 123(7), 960
    2. H. J. Noh, S. J. Youn, C. S. Yoon, Y. K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, Journal of Power Sources, 2013, 233, 121-130
    3. N. Yabuuchi, T. Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, Journal of Power Sources, 2003, 119-121, 171-174
    4. A. Rougier, P. Gravereau, C. Delma, Optimization of the Composition of the Li1-zNi1+zO2 Electrode Materials: Structural, Magnetic and Electrochemical Studies, Journal of The Electrochemical Society, 1996, 143(4), 1168-1175
    5. E. Rossen, C. D. W. Jones, J. R. Dahn, Structure and electrochemistry of LixMnyNi1−yO2, Solid State Ionics, 1992, 57(3-4), 311-318
    6. J. Tu, X. B. Zhao, G. S. Cao, D. G. Zhuang, T. J. Zhu, J. P. Tu, Enhanced cycling stability of LiMn2O4 by surface modification with melting impregnation method, Electrochimica Acta, 2006, 51(28), 6456-6462
    7. M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. R. Baer, J. G. Zhang, N. D. Browning, J. Liu, C. M. Wang, Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries, ACS Nano, 2013, 7(1), 760-767
    8. M. S. Islam, C. A. J. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties, Chemical Society Reviews, 2014, 43, 185-204
    9. J. Cho, Y. J. Kim, B. W. Park, Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell, Chemistry of Materials, 2000, 12, 3788-3791
    10. M. Yoncheva, V. Koleva, M. Mladenov, M. S. Vassileva, M. N. Dimitrova, R. Stoyanova, E. Zhecheva, Carbon-coated nano-sized LiFe1−xMnxPO4 solid solutions (0 ≤ x ≤ 1) obtained from phosphate-formate precursors, Journal of Materials Science, 2011, 46, 7082-7089
    11. A. Sobkowiak, M. R. Roberts, R. Younesi, T. Ericsson, L. Häggström, C. W. Tai, A. M. Andersson, K. Edström, T. Gustafsson, F. Björefors, Understanding and Controlling the Surface Chemistry of LiFeSO4F for an Enhanced Cathode Functionality, Chemistry of Materials, 2013, 25, 3020-3029
    12.F. Lin, I. M. Markus, D. Nordlund, T. C. Weng, M. D. Asta, H. L. Xin, M. M. Doeff, Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries, Nature Communications, 2014, 5, 3529
    13.S. K. Martha, O. Haik, E. Zinigrad, I. Exnar, T. Drezen, J. H. Miners, D. Aurbach, On the Thermal Stability of Olivine Cathode Materials for Lithium-Ion Batteries, The Electrochemical Society, 2011, 158(10), 1115-1122
    14. X. Huang, Separator technologies for lithium-ion batteries, Journal of Solid State Electrochemistry, 2011, 15, 649-662
    15. Y. S. Chung, S. H. Yoo, C. K. Kim, Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance, Industrial & Engineering Chemistry Research, 2009, 48, 4346-4351
    16. J. Kalhoff, G. G. Eshetu, D. Bresser, S. Passerini, Safer Electrolytes for Lithium‐Ion Batteries: State of the Art and Perspectives, ChemSusChem, 2015, 8, 2154-2175
    17. C. Lin, A. Tang, H. Mu, W. Wang, C. Wang, Aging Mechanisms of Electrode Materials in Lithium-Ion Batteries for Electric Vehicles, Journal of Chemistry, 2015, 2015, 1-11
    18. R. Khurana, J. L. Schaefer, L. A. Archer, G. W. Coates, Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries, Journal of the American Chemical Society, 2014, 136, 7395-7402
    19. D. H. Doughty, E. P. Roth, A general discussion of Li ion battery safety, The Electrochemical Society Interface, 2012, 21, 37-44
    20. K. Liu, Y. Liu, D. C. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety, Science Advances, 2018, 4(6), eaas9820
    21. S. Arora, Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging technologies, Journal of Power Sources, 2017, 341, 373-386
    22. Q. S. Wang, L. Jiang, Y. Yu, J. Sun, Progress of enhancing the safety of lithium ion battery from the electrolyte aspect, Nano Energy, 2019, 55, 93-114
    23. C. R. Birkl, M. R. Roberts, E. M. Turk, P. G. Bruce, D. A. Howey, Degradation diagnostics for lithium ion cells, Journal of Power Sources, 2017, 341, 373-386
    24. N. Nitta, F. X. Wu, J. T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today, 2015, 18, 252-264
    25. G. Venugopal, J. Moore, J. Howard, S. Pendalwar, Characterization of microporous separators for lithium-ion batteries, Journal of Power Sources, 1999, 77, 34-41
    26. X. S. Huang, Separator technologies for lithium-ion batteries, Journal of Solid State Electrochemistry, 2011, 15, 649-662
    27. T. Yim, M. S. Park, S. G. Woo, H. K. Kwon, J. K. Yoo, Y. S. Jung, K. J. Kim, J. S. Yu, Y. J. Kim, Self-Extinguishing Lithium Ion Batteries Based on Internally Embedded Fire-Extinguishing Microcapsules with Temperature-Responsiveness, Nano Letters, 2015, 15, 5059-5067
    28. S. Park, C. W. Son, S. Lee, D. Y. Kim, C. Park, K. S. Eom, T. F. Fuller, H. I. Joh, S. M. Jo, Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator, Scientific Reports, 2016, 6, 36977
    29. H. Maleki, G. Deng, A. Anani, J. Howard, Thermal Stability Studies of Li‐Ion Cells and Components, Journal of The Electrochemical Society, 1999, 146, 3224-3229
    30. Y. B. He, Z. Y. Tang, Q. S. Songa, H. Xie, Q. Xua, Y. G. Liu, G. W. Ling, The Thermal Stability of Fully Charged and Discharged LiCoO2 Cathode and Graphite Anode in Nitrogen and Air Atmospheres, Thermochimica Acta, 2009, 480, 15-21
    31. Y. H. Ye, Y. X. Shi, N. S. Cai, J. J. Lee, X. M. He, Electro-thermal Modeling and Experimental Validation for Lithium Ion Battery, Journal of Power Sources, 2012, 199, 227-238
    32. L. Jiang, Q. Wang, J. Sun, Electrochemical performance and thermal stability analysis of LiNi_x Co_y Mn_z O_2 cathode based on a composite safety electrolyte, Journal of Hazardous Materials, 2018, 351, 260-269
    33. P. Dong, D. Wang, Y. Yao, X. Li, Y. Zhang, J. Ru, T. Ren, Stabilizing interface layer of LiNi0.5Co0.2Mn0.3O2 cathode materials under high voltage using p-toluenesulfonyl isocyanate as film forming additive, Journal of Power Sources, 2017, 344, 111-118
    34. A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S. H. Kang, M. M. Thackeray, P. G. Bruce, Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2, Journal of the American Chemical Society, 2006, 128, 8694-8698
    35. J. M. Zheng, Z. R. Zhang, X. B. Wu, Z. X. Dong, Z. Zhu, Y. Yang, The Effects of AlF3 Coating on the Performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Positive Electrode Material for Lithium-Ion Battery, Journal of The Electrochemical Society, 2008, 155(10), A775-A782
    36. Z. H. Chen, Z. H. Lu, J. R. Dahn, Staging Phase Transitions in LixCoO2, Journal of The Electrochemical Society, 2002, 149(12), A1604-A1609
    37. Y. K. Sun, Y. S. Lee, M. Yoshio, Synthesis and Electrochemical Properties of ZnO-Coated LiNi0.5Mn1.5O4 Spinel as 5 V Cathode Material for Lithium Secondary Batteries, Electrochemical and Solid State Letters, 2002, 5(5), A99
    38. Y. K. Sun, M. J Lee, C. S. Yoon, J. Hassoun, K. Amine, B. Scrosati, The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries, Advanced Materials, 2012, 24, 1192-1196
    39. S. U. Woo, C. S. Yoon, K. Amine, I. Belharouak, Y. K. Sun, Significant improvement of electrochemical performance of AlF3-coated Li[Ni0.8Co0.1Mn0.1]O2 cathode materials, Journal of The Electrochemical Society, 2007, 154, A1005
    40. M. H. Lee, Y. J. Kang, S. T. Myung, Y. K. Sun, Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation, Electrochimica Acta, 2004, 50(4), 939-948
    41. S. H. Ju, I. S. Kang, Y. S. Lee, W. K. Shin, S. Kim, K. Shin, D. W. Kim, Improvement of the Cycling Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Active Materials by a Dual-Conductive Polymer Coating, ACS Applied Materials & Interfaces, 2014, 6, 2546-2552
    42. S. Hildebrand, A. Friesen, J. Haetge, V. Meier, F. Schappacher, M. Winter, Delayed Thermal Runaway Investigation on Commercial 2.6 Ah NCM-LCO Based 18650 Lithium Ion Cells with Accelerating Rate Calorimetry, ECS Transactions, 2016, 74(1), 85-94
    43. E. R. Matthias, M. Winter, F. M. Schappacher, Synthesis, electrochemical investigation and structural analysis of doped Li [Ni0.6Mn0.2Co0.2-xMx]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials, Journal of Power Sources, 2018, 387, 101-107
    44. U. H. Kim, E. J. Lee, C. S. Yoon, S. T. Myung, Y. K. Sun, Compositionally Graded Cathode Material with Long-Term Cycling Stability for Electric Vehicles Application, Advanced Energy Materials, 2016, 6, 1601417
    45. H. M. Liu, D. Saikia, H. C. Wu, C. Y. Su, T. H. Wang, Y. H. Li, J. P. Pan, H. M. Kao, Towards an understanding of the role of hyperbranched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries, The Royal Society of Chemistry, 2014, 4, 56147-56155
    46. F. M. Wang, S. C. Lo, C. S. Cheng, J. H. Chen, B. J. Hwang, H. C. Wu, Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery, Journal of Membrane Science, 2011, 368, 165-170
    47. F. M. Wang, T. Alemu, N. H. Yeh, X. C. Wang, Y. W. Lin, C. C. Hsu, Y. J. Chang, C. H. Liu, C. I. Chuang, L. H. Hsiao, J. M. Chen, S. C. Haw, W. L. Chen, Q. T. Pham, C. H. Su, Interface Interaction Behavior of Self-Terminated Oligomer Electrode Additives for a Ni-Rich Layer Cathode in Lithium-Ion Batteries: Voltage and Temperature Effects, ACS Applied Materials & Interfaces, 2019, 11, 43, 39827-39840
    48. F. E. Yu, J. M. Hsu, J. Pan, T. H. Wang, C.S. Chern, Kinetics of Michael addition poly-merizations of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid, Polymer Engineering & Science, 2013, 53, 204-211
    49. H. L. Su, J. M. Hsu, J.P. Pan, T. H. Wang, F. E. Yu, C. S. Chern, Kinetic and structural studies of the polymerization of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid, Polymer Engineering & Science, 2011, 51, 1188-1197
    50. Q. T. Pham, F. E. Yu, J. M. Hsu, C. H. Chiang, C. S. Chern, Kinetics of polymerization of N,N’-bismaleimide-4,4’-diphenylmethane, barbituric acid and aminopropyl phenylsiloxane oligomer, Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 88-97
    51. Q. T. Pham, J. M. Hsu, F. M. Wang, M. P. Chen, C. S. Chern, Isothermal polymerization kinetics of N,N’-bismaleimide-4,4’-diphenylmethane with cyanuric acid, Thermochimica Acta, 2017, 647, 30-35
    52. H. Kim, M. G. Kim, H. Y. Jeong, H. Nam, J. Cho, A New Coating Method for Alleviating Surface Degradation of Li-Ni0.6Co0.2Mn0.2O2 Cathode Material: Nanoscale Surface Treatment of Primary Particles, Nano Letters, 2015, 15, 2111-2119
    53. T. Tao, C. Chen, Y. Yao, B. Liang, S. Lu, Y. Chen, Enhanced Electrochemical Performance of ZrO2 Modified LiNi0.6Co0.2Mn0.2O2 Cathode Material for Lithium Ion Batteries, Ceramics International, 2017, 43, 15173-15178
    54. F. M. Wang, H. M. Cheng, H. C. Wu, S. Y. Chu, C. S. Cheng, C. R. Yang, Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries, Electrochimica Acta, 2009, 54(12), 3344-3351
    55. C. H. Doh, D. H. Kim, H. S. Kim, H. M. Shin, Y. D. Jeong, S. I. Moon, B. S. Jin, S. W. Eom, H. S. Kim, K. W. Kim, D. H. Oh, A. Veluchamy, Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test, Journal of Power Sources, 2008, 175(2), 881-885
    56. S. Tobishima, K. Takei, Y. Sakurai, J. Yamaki, Lithium ion cell safety, Journal of Power Sources, 2000, 90(2), 188-195
    57. D. H. Doughty, A. A. Pesaran, National Renewable Energy Laboratory, 2012
    58. D. H. Doughty, E. P. Roth, A general discussion of Li ion battery safety, The Electrochemical Society Interface, 2012, 21(2), 37-44
    59. L. Zhan, Z. Song, J. Zhang, J. Tang, H. Zhan, Y. Zhou, C. Zhan, PEDOT: Cathode Active Material with High Specific Capacity in Novel Electrolyte System, Electrochimica Acta, 2008, 53, 8319-8323
    60. H. Zheng, Q. Sun, G. Liu, X. Song, V. S. Battaglia, Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells, Journal of Power Sources, 2012, 207, 134-140
    61. C. Zhan, J. Lu, A. J. Kropf, T. Wu, A. N. Jansen, Y. K. Sun, X. Qiu, K. Amine, Mn (II)deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems, Nature Communications, 2013, 4, 2437
    62. C. Li, H. Zhang, L. Fu, H. Liu, Y. Wu, E. Rahm, R. Holze, H. Wu, Cathode materials modified by surface coating for lithium ion batteries, Electrochimica Acta, 2006, 51, 3872-3883
    63. X. Li. J. Liu, X. Meng, Y. Tang, M. N. Banis, J. Yang, Y. Hu, R. Li, M. Cai, X. Sun, Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition, Journal of Power Sources, 2014, 247, 57-69
    64. X. Li, Y. Xu, Spinel LiMn2O4 active material with high capacity retention, Applied Surface Science, 2007, 253(21), 8592- 8596
    65. G. Li, Z. Yang, W. Yang, Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries, Journal of Power Sources, 2008, 183(2), 741-748
    66. Z. Jin, H. Gao, C. K. Show, Z. Li, A novel phosphate-based flame retardant and film-forming electrolyte additive for lithium ion batteries, ECS Electrochemistry Letters, 2013, 2(7), A66-A68
    67. Q. T. Pham, J. M. Hsu, F. M. Wang, X. C. Huang, M. Tesemma, C. S. Chern, Kinetics of nucleation-controlled polymerization of N,N’-bismaleimide-4,4’-diphenylmethane /barbituric acid, Thermochimica Acta, 2016, 641, 1-7
    68. Y. Chen, Y. Li, W. Li, G. Cao, S. Tang, Q. Su, S. Deng, J. Guo, High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material via the synergetic modification of the Zr/Ti elements, Electrochimica Acta, 2018, 281, 48-59
    69. C. Chen, T. Tao, W. Qi, H. Zeng, Y. Wu, B. Liang, Y. Yao, S. Lu, Y. Chen, High-performance lithium ion batteries using SiO2-coated LiNi0.5Co0.2Mn0.3O2 microspheres as cathodes, Journal of Alloys and Compounds, 2017, 709, 708-716
    70. G. J. Brug, A. L. G. Van Den Eeden, M. Sluyters-Rehbach, J. H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element, Journal of electroanalytical chemistry and interfacial electrochemistry, 1984, 176(1-2) 275-295

    無法下載圖示 全文公開日期 2025/06/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE