簡易檢索 / 詳目顯示

研究生: AKASH SANJAY RASAL
AKASH SANJAY RASAL
論文名稱: 通過電解質工程製造綠色,高效,穩定的量子點敏化太陽能電池
Design and Fabrication of Green, Efficient and Stable Quantum Dot-Sensitized Solar Cells Through Electrolyte Engineering
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 黃志清
Chih-Ching Huang
葉旻鑫
Min-Hsin Yeh
胡哲嘉
Chechia Hu
麥富德
Fu-Der Mai
張家耀
Jia-Yaw Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 164
中文關鍵詞: Quantum DotsPolysulfide ElectrolyteAdditivesPassivationQuantum Dot-Sensitized Solar Cells
外文關鍵詞: Quantum Dots, Polysulfide Electrolyte, Additives, Passivation, Quantum Dot-Sensitized Solar Cells
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在量子點敏化太陽能電池(QDSSC)應用中,多硫化物電解質引起了極大的關注,因為它們具有穩定反復使用的硫族化物QD的獨特能力。但是,它的高氧化還原電勢和背電極/電解質介面處有害的電荷複合會限制QDSSC的整體性能. 因此,必須改變液體電解質的電化學性能以實現高性能的裝置。我們已經用富含硫的石墨氮化碳(SGCN)改性了傳統的液態多硫化物電解質,以抑制這項工作中與電荷相關的重組動力學。它證明了用SGCN改性液體電解質可以作為光生電荷逆反應的屏障,並最大程度地減少QDSSCs中的表面缺陷。此外,循環伏安法(CV)和Tafel測量表明,電解液中SGCN的存在可以幫助更快地將多硫化物氧化還原對從Sn2-還原為S2-。 同樣,通過使用Cu-In-S和Cu-In-Se QDs進行的一系列實驗,證實了SGCN添加劑在各種QDSSC中提高轉化效率的潛在用途。在模擬照明(AM 1.5,100 mW cm-2)下,Cu-In-S和Cu-In-Se敏化QDSSC的效率分別為7.13%和7.11%,高於其原始條件。此外,我們確定GCN和SGCN可以作為多硫化物電解質中的穩定添加劑. 它考慮了長達90小時的長期穩定性,這比原始的多硫化物電解質要好得多.
    在本論文的第二部分中,我們證明了通過結合環境友好的貽貝啟發性聚多巴胺(PDA)來修飾多硫化物電解質,從而開發出一種提高QDSSCs整體性能的有效且可行的方法。此外,進行PEG-NH2(P-PDA)和硒(Se)摻入PDA(Se-PDA)中以增強PDA的表面性質。電化學分析表明,P-PDA和Se-PDA電解質可以極大地抑制與光生電荷相關的逆反應,從而顯著提高了光伏參數,包括器件的短路電流(JSC)和開路電壓VOC。得益于富含聚合物的特性和改進的表面性能,P-PDA和Se-PDA電解質的整體性能表現出色,在一個完全陽光照射下,P-PDA和Se-PDA電解液,功率轉換效率分別為7.83%和8.59%,而原始多硫化物電解質的性能僅為7.62%。此外,我們確定P-PDA和Se-PDA電解質可作為QDSSC中的穩定添加劑,由於PDA的

    抗氧化特性,它們可以穩定設備中有害的紫外線產生的自由基。值得注意的是,P-PDA和Se-PDA電解質的光伏效率在最初的40小時內變動不大,還有91%的原始性能,並在60小時後有79%的原始性能。然而,使用原始液體電解質的光伏性能迅速下降,並且在60小時後僅保持其初始性能的11%。


    Polysulfide electrolytes have fascinated considerable attention in quantum dot sensitized solar cells (QDSSCs) applications because of their unique ability to stabilize the recurrently used chalcogenide QDs. However, its high redox potential and unwanted charge recombination at CE/electrolyte interface restrict the overall performance of QDSSCs. Therefore, it is a prerequisite to altering the electrochemical properties of liquid electrolytes to achieve high-performance devices. In this respect, we have modified traditional liquid polysulfide electrolytes with sulfur-rich graphitic carbon nitride (SGCN) to suppress the recombination dynamics associated with the charges. It witnessed that the modification of liquid electrolyte with SGCN could act as a barrier for the back reaction of the photogenerated charges as well as minimize the surface defects in QDSSCs. Further, the cyclic voltammetry (CV) and Tafel measurements revealed that the existence of SGCN in electrolytes could assist to faster the reduction of polysulfide redox couple from Sn2- to S2- thus enhanced the PCEs in corresponding devices. Also, the potential use of SGCN additives in a variety of QDSSCs to improve the conversion efficiencies is substantiated by a series of experiments with Cu-In-S and Cu-In-Se QDS. Under simulated illumination (AM 1.5, 100 mW cm−2), the Cu-In-S and Cu-In-Se sensitized QDSSCs unveiled efficiencies of 7.13% and 7.11% which was higher than those of its reference devices. Additionally, we determined that GCN and SGCN could be served as stable additives in the polysulfide electrolyte. It deliberated long-term stabilities of up to 90 h, which much better than the reference polysulfide electrolyte.
    In the second part of this thesis, we have developed an effective and practicable method for improving the overall performance of QDSSCs, by modifying the polysulfide electrolyte with the incorporation of the environmentally friendly mussel-inspired polydopamine (PDA). Further, the PEG-NH2 (P-PDA) and selenium (Se) incorporation in PDA (Se-PDA) was performed to enrich the surface properties of the pure PDA. The electrochemical analysis demonstrated that the P-PDA and Se-PDA electrolyte could greatly inhibit the back reaction associated with the photogenerated charges thereby significantly enhanced the photovoltaic parameters including short-circuit current (JSC) and open-circuit voltage VOC of the devices. Benefited from the polymeric-rich nature and improved surface properties, remarkable overall performance with power-to-conversion efficiencies of 7.83% and 8.59% were exposed for the P-PDA and Se-PDA electrolyte, whereas, its reference liquid electrolyte delivered a performance of only 7.62%, under one full sunlight illumination. Additionally, we determined that P-PDA and Se-PDA electrolytes serve as stable additives in QDSSCs which could potentially stabilize the detrimental UV-generated radical species in devices due to the antioxidative nature of PDA. Notably, P-PDA and Se-PDA electrolytes were maintained their photovoltaic efficiencies for about the first 40 h and remained their original performance of 91% h and 79% after 60 h, respectively. Whereas, the photovoltaic performance of liquid electrolytes declined rapidly over the progress of time and retained only 11% of their initial performance after 60 h.

    TABLE OF CONTENTS 中文摘要…………………….…………………………………………………………i ABSTRACT ……………...…………………….……………………………………..iii ACKNOWLEDGMENT ……..………………………………………………………..v TABLE OF CONTENTS.....……………......…………….……………………..…….vii INDEX OF FIGURES………...………………………………………………..………x INDEX OF TABLES………..………………………………………………….…….xiv INDEX OF SYMBOLS…………………………………….…………….…...……...xv CHAPTER ONE…...…………………………………………………………………...1 INTRODUCTION……………………………………………………………………...1 1.1. GENERAL INTRODUCTION ……………….....………………………...2 1.2. OBJECTIVE OF THE STUDY……………...……………...…………......4 1.3. STRUCTURE OF THE DISSERTATION…………….…………………...4 CHAPTER TWO...……………………………………………...……………………...6 LITERATURE REVIEW.....…………………………………………………………...6 2.1. NANOPARTICLES………….………….…….....………………………...7 2.2. Semiconductor Quantum Dots (QDs) ………….………………………....8 2.3. Unique properties of Quantum Dots (QDs) .….....……………...………...10 2.3.1. Quantum confinement effect.……………….....……………………......10 2.3.2. Multiple Exciton Generation (MEG)..……….....……………………...11 2.4. Quantum Dot-Sensitized Solar Cells (QDSSCs) and its working mechanism….……………………………………………......………………………..13 2.5. Recent progress in QDSSCs in terms of photoanode, counter electrodes, electrolytes, and, QDs sensitizers…………. …………….....………………………………..……..15 2.5.1. Photoanodes…………. ………….……..........………………………....15 2.5.2. Counter electrodes (CEs) ……………….………..……………………..18 2.5.3. Electrolytes……………………………....….....…………………...…..21 2.5.3.1. Liquid Polysulfide Electrolytes.…………..…………………..21 2.5.3.2. Quasi-Solid State Electrolytes..…………...…………………..22 2.5.3.3. Role of additive in Electrolytes..………….…………………..24 2.5.4. QDs Sensitizers.……………...……...….…..……………...…………...26 2.6. Preparation of QDs film….………………...……...…….…………………...…...27 2.6.1. Doctor blade.………….……...……...……………………………….....27 2.6.2. Spin coating……….………………...……………………………..…...28 2.6.3. Screen printing.…………….………...………………………………....28 2.6.4. Successive ionic layer adsorption and reaction (SILAR) method……...29 2.6.5. Chemical bath deposition (CBD)………….…...……...………....……..30 2.7. QDSSCs fabrication protocols………………………………………………..…..30 2.8. Photovoltaic performance measurements………………………………………...32 CHAPTER THREE...…………………………………………...…………………….34 Efficient Quantum Dot-Sensitized Solar Cells through Sulfur-rich Carbon Nitride Modified Electrolyte…………………………………………………………….34 3.1. Introduction………..………………………………………………………...…...35 3.2. Experimental section ………..……………………………………………..……..37 3. 2.1. Chemicals………..……………………………………………………..37 3.2.2. Synthesis of SGCN and GCN.………..………………………………...38 3.2.3. Preparation of QDs..…………………………………………………….38 3.2.4. Sensitization of TiO2 photoanode and fabrication of QDSSCs…..………..……………….…………………………………….…...39 3.2.5. Characterization ………..…………………………………..…………..40 3.2.6. Results and Discussion ………..…………………………………...…...41 3.2.7. Summary………..……………………………………………………....62 CHAPTER FOUR...…………………………………………...……………………...64 Towards Green, Efficient and Stable Quantum-Dot-Sensitized Solar Cells through Nature-Inspired Biopolymer Modified Electrolyte……………….…..64 4.1. Introduction………..……………………………………………………...……...65 4.2. Materials and methods………..……………………………………………..…...68 4. 2.1. Chemicals………..……………………………………………………..68 4.2.2. Synthesis of PDA, P-PDA, and Se-PDA NPs:………..………………..69 4.2.3. Synthesis of Cys-capped Cu-In-S QDs..…………………………...…...69 4.2.4. Fabrication of QDSSCs.…..………..…………………………………...70 4.2.5. Radical Scavenging Properties of P-PDA and Se-PDA….…………………………………………………………..…………....71 4.2.6. Characterization ………..……………………………………………...71 4.2.7. Results and Discussion ………..………………………………………..72 4.2.8. Summary………..……………………………………………………....89 CHAPTER FIVE...…………………………………………...…………………..…...90 CONCLUSIVE REMARKS AND FUTURE RESEARCH DIRECTIONS...…………………………………………...…………….……90 5.1. Conclusion.………..………………………………………………….......91 5.2. Future research directions………..…………………………….…………92 REFERENCE....…………………………………………...………………...……....94 APPENDIX...…………………………………………...…………………………...123 LIST OF PUBLICATIONS……………………………………...…………………...138

    Reference
    (1) James, W. P. T. Energy Requirements. In Encyclopedia of Human Nutrition (Third Edition); Caballero, B., Ed.; Academic Press: Waltham, 2013; pp 186-192.
    (2) Kumar, V.; Shrivastava, R. L.; Untawale, S. P. Solar Energy: Review of Potential Green & Clean Energy for Coastal and Offshore Applications. Aquatic Procedia 2015, 4, 473-480, DOI: https://doi.org/10.1016/j.aqpro.2015.02.062.
    (3) Jurasz, J.; Canales, F. A.; Kies, A.; Guezgouz, M.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy 2020, 195, 703-724, DOI: https://doi.org/10.1016/j.solener.2019.11.087.
    (4) Khan, J.; Arsalan, M. H. Solar power technologies for sustainable electricity generation – A review. Renewable and Sustainable Energy Reviews 2016, 55, 414-425, DOI: https://doi.org/10.1016/j.rser.2015.10.135.
    (5) Singh, G. K. Solar power generation by PV (photovoltaic) technology: A review. Energy 2013, 53, 1-13, DOI: https://doi.org/10.1016/j.energy.2013.02.057.
    (6) Khatibi, A.; Razi Astaraei, F.; Ahmadi, M. H. Generation and combination of the solar cells: A current model review. Energy Science & Engineering 2019, 7 (2), 305-322, DOI: https://doi.org/10.1002/ese3.292.
    (7) Badawy, W. A. A review on solar cells from Si-single crystals to porous materials and quantum dots. Journal of Advanced Research 2015, 6 (2), 123-132, DOI: https://doi.org/10.1016/j.jare.2013.10.001.
    (8) Battaglia, C.; Cuevas, A.; De Wolf, S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy & Environmental Science 2016, 9 (5), 1552-1576, DOI: 10.1039/C5EE03380B.
    (9) J. McCann, M.; R. Catchpole, K.; J. Weber, K.; W. Blakers, A. A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates. Solar Energy Materials and Solar Cells 2001, 68 (2), 135-171, DOI: https://doi.org/10.1016/S0927-0248(00)00242-7.
    (10) Bhattacharya, S.; John, S. Beyond 30% Conversion Efficiency in Silicon Solar Cells: A Numerical Demonstration. Scientific Reports 2019, 9 (1), 12482, DOI: 10.1038/s41598-019-48981-w.
    (11) Le Donne, A.; Trifiletti, V.; Binetti, S. New Earth-Abundant Thin Film Solar Cells Based on Chalcogenides. Frontiers in Chemistry 2019, 7 (297), DOI: 10.3389/fchem.2019.00297.
    (12) Ramanujam, J.; Bishop, D. M.; Todorov, T. K.; Gunawan, O.; Rath, J.; Nekovei, R.; Artegiani, E.; Romeo, A. Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Progress in Materials Science 2020, 110, 100619, DOI: https://doi.org/10.1016/j.pmatsci.2019.100619.
    (13) Chopra, K. L.; Paulson, P. D.; Dutta, V. Thin-film solar cells: an overview. Progress in Photovoltaics: Research and Applications 2004, 12 (2‐3), 69-92, DOI: https://doi.org/10.1002/pip.541.
    (14) Mitzi, D. B.; Gunawan, O.; Todorov, T. K.; Wang, K.; Guha, S. The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials and Solar Cells 2011, 95 (6), 1421-1436, DOI: https://doi.org/10.1016/j.solmat.2010.11.028.
    (15) Meredith, P.; Armin, A. Scaling of next generation solution processed organic and perovskite solar cells. Nature Communications 2018, 9 (1), 5261, DOI: 10.1038/s41467-018-05514-9.
    (16) Jayawardena, K. D. G. I.; Silva, S. M.; Misra, R. K. Solution processed perovskite incorporated tandem photovoltaics: developments, manufacturing, and challenges. Journal of Materials Chemistry C 2020, 8 (31), 10641-10675, DOI: 10.1039/D0TC01440K.
    (17) Jiang, X.; Zang, Z.; Zhou, Y.; Li, H.; Wei, Q.; Ning, Z. Tin Halide Perovskite Solar Cells: An Emerging Thin-Film Photovoltaic Technology. Accounts of Materials Research 2021, DOI: 10.1021/accountsmr.0c00111.
    (18) Zhang, Y.; Park, N.-G. A thin film (<200 nm) perovskite solar cell with 18% efficiency. Journal of Materials Chemistry A 2020, 8 (34), 17420-17428, DOI: 10.1039/D0TA05799A.
    (19) Green, M. A.; Dunlop, E. D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Ho-Baillie, A. W. Y. Solar cell efficiency tables (Version 55). Progress in Photovoltaics: Research and Applications 2020, 28 (1), 3-15, DOI: https://doi.org/10.1002/pip.3228.
    (20) Green, M. A.; Dunlop, E. D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 56). Progress in Photovoltaics: Research and Applications 2020, 28 (7), 629-638, DOI: https://doi.org/10.1002/pip.3303.
    (21) Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications 2021, 29 (1), 3-15, DOI: https://doi.org/10.1002/pip.3371.
    (22) Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications 2019, 10 (1), 2515, DOI: 10.1038/s41467-019-10351-5.
    (23) Chang, Y.; Lau, T.-K.; Chow, P. C. Y.; Wu, N.; Su, D.; Zhang, W.; Meng, H.; Ma, C.; Liu, T.; Li, K.; Zou, X.; Wong, K. S.; Lu, X.; Yan, H.; Zhan, C. A 16.4% efficiency organic photovoltaic cell enabled using two donor polymers with their side-chains oriented differently by a ternary strategy. Journal of Materials Chemistry A 2020, 8 (7), 3676-3685, DOI: 10.1039/C9TA13293G.
    (24) Gao, X.-X.; Luo, W.; Zhang, Y.; Hu, R.; Zhang, B.; Züttel, A.; Feng, Y.; Nazeeruddin, M. K. Stable and High-Efficiency Methylammonium-Free Perovskite Solar Cells. Advanced Materials 2020, 32 (9), 1905502, DOI: https://doi.org/10.1002/adma.201905502.
    (25) Lee, K.-T.; Jang, J.-Y.; Zhang, J.; Yang, S.-M.; Park, S.; Park, H. J. Highly Efficient Colored Perovskite Solar Cells Integrated with Ultrathin Subwavelength Plasmonic Nanoresonators. Scientific Reports 2017, 7 (1), 10640, DOI: 10.1038/s41598-017-10937-3.
    (26) Zhang, M.; Wu, F.; Chi, D.; Shi, K.; Huang, S. High-efficiency perovskite solar cells with poly(vinylpyrrolidone)-doped SnO2 as an electron transport layer. Materials Advances 2020, 1 (4), 617-624, DOI: 10.1039/D0MA00028K.
    (27) Ji, J.-M.; Zhou, H.; Eom, Y. K.; Kim, C. H.; Kim, H. K. 14.2% Efficiency Dye-Sensitized Solar Cells by Co-sensitizing Novel Thieno[3,2-b]indole-Based Organic Dyes with a Promising Porphyrin Sensitizer. Advanced Energy Materials 2020, 10 (15), 2000124, DOI: https://doi.org/10.1002/aenm.202000124.
    (28) Cao, Y.; Saygili, Y.; Ummadisingu, A.; Teuscher, J.; Luo, J.; Pellet, N.; Giordano, F.; Zakeeruddin, S. M.; Moser, J. E.; Freitag, M.; Hagfeldt, A.; Grätzel, M. 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nature Communications 2017, 8 (1), 15390, DOI: 10.1038/ncomms15390.
    (29) Chiang, Y.-H.; Lin, K.-Y.; Chen, Y.-H.; Waki, K.; Abate, M. A.; Jiang, J.-C.; Chang, J.-Y. Aqueous solution-processed off-stoichiometric Cu–In–S QDs and their application in quantum dot-sensitized solar cells. Journal of Materials Chemistry A 2018, 6 (20), 9629-9641, DOI: 10.1039/C8TA01064A.
    (30) Mora-Seró, I. Turn defects into strengths. Nature Energy 2020, 5 (5), 363-364, DOI: 10.1038/s41560-020-0621-x.
    (31) Kamat, P. V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. The Journal of Physical Chemistry C 2008, 112 (48), 18737-18753, DOI: 10.1021/jp806791s.
    (32) Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe−TiO2 Architecture. Journal of the American Chemical Society 2008, 130 (12), 4007-4015, DOI: 10.1021/ja0782706.
    (33) Kamat, P. V. Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. J Phys Chem Lett 2013, 4 (6), 908-918, DOI: 10.1021/jz400052e.
    (34) Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films. Journal of the American Chemical Society 2006, 128 (7), 2385-2393, DOI: 10.1021/ja056494n.
    (35) Jara, D. H.; Yoon, S. J.; Stamplecoskie, K. G.; Kamat, P. V. Size-Dependent Photovoltaic Performance of CuInS2 Quantum Dot-Sensitized Solar Cells. Chemistry of Materials 2014, 26 (24), 7221-7228, DOI: 10.1021/cm5040886.
    (36) Hines, D. A.; Kamat, P. V. Quantum Dot Surface Chemistry: Ligand Effects and Electron Transfer Reactions. The Journal of Physical Chemistry C 2013, 117 (27), 14418-14426, DOI: 10.1021/jp404031s.
    (37) Goodwin, H.; Jellicoe, T. C.; Davis, N. J. L. K.; Böhm, M. L. Multiple exciton generation in quantum dot-based solar cells. Nanophotonics 2018, 7 (1), 111-126, DOI: doi:10.1515/nanoph-2017-0034.
    (38) Beard, M. C. Multiple Exciton Generation in Semiconductor Quantum Dots. J Phys Chem Lett 2011, 2 (11), 1282-1288, DOI: 10.1021/jz200166y.
    (39) Mai, X.-D.; An, H. J.; Song, J. H.; Jang, J.; Kim, S.; Jeong, S. Inverted Schottky quantum dot solar cells with enhanced carrier extraction and air-stability. Journal of Materials Chemistry A 2014, 2 (48), 20799-20805, DOI: 10.1039/C4TA04305G.
    (40) Zhao, Q.; Hazarika, A.; Chen, X.; Harvey, S. P.; Larson, B. W.; Teeter, G. R.; Liu, J.; Song, T.; Xiao, C.; Shaw, L.; Zhang, M.; Li, G.; Beard, M. C.; Luther, J. M. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nature Communications 2019, 10 (1), 2842, DOI: 10.1038/s41467-019-10856-z.
    (41) Tang, J.; Liu, H.; Zhitomirsky, D.; Hoogland, S.; Wang, X.; Furukawa, M.; Levina, L.; Sargent, E. H. Quantum Junction Solar Cells. Nano Letters 2012, 12 (9), 4889-4894, DOI: 10.1021/nl302436r.
    (42) Chang, J.-Y.; Li, C.-H.; Chiang, Y.-H.; Chen, C.-H.; Li, P.-N. Toward the Facile and Ecofriendly Fabrication of Quantum Dot-Sensitized Solar Cells via Thiol Coadsorbent Assistance. ACS Applied Materials & Interfaces 2016, 8 (29), 18878-18890, DOI: 10.1021/acsami.6b05411.
    (43) Yan, X.; Cui, X.; Li, B.; Li, L.-s. Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics. Nano Letters 2010, 10 (5), 1869-1873, DOI: 10.1021/nl101060h.
    (44) Yun, H. J.; Lim, J.; Roh, J.; Neo, D. C. J.; Law, M.; Klimov, V. I. Solution-processable integrated CMOS circuits based on colloidal CuInSe2 quantum dots. Nature Communications 2020, 11 (1), 5280, DOI: 10.1038/s41467-020-18932-5.
    (45) Du, J.; Du, Z.; Hu, J.-S.; Pan, Z.; Shen, Q.; Sun, J.; Long, D.; Dong, H.; Sun, L.; Zhong, X.; Wan, L.-J. Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%. Journal of the American Chemical Society 2016, 138 (12), 4201-4209, DOI: 10.1021/jacs.6b00615.
    (46) Song, H.; Lin, Y.; Zhang, Z.; Rao, H.; Wang, W.; Fang, Y.; Pan, Z.; Zhong, X. Improving the Efficiency of Quantum Dot Sensitized Solar Cells beyond 15% via Secondary Deposition. Journal of the American Chemical Society 2021, 143 (12), 4790-4800, DOI: 10.1021/jacs.1c01214.
    (47) Song, H.; Lin, Y.; Zhou, M.; Rao, H.; Pan, Z.; Zhong, X. Zn-Cu-In-S-Se Quinary “Green” Alloyed Quantum-Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4 %. Angewandte Chemie International Edition 2021, 60 (11), 6137-6144, DOI: https://doi.org/10.1002/anie.202014723.
    (48) Zhang, L.; Kang, C.; Zhang, G.; Pan, Z.; Huang, Z.; Xu, S.; Rao, H.; Liu, H.; Wu, S.; Wu, X.; Li, X.; Zhu, Z.; Zhong, X.; Jen, A. K.-Y. All-Inorganic CsPbI3 Quantum Dot Solar Cells with Efficiency over 16% by Defect Control. Advanced Functional Materials 2021, 31 (4), 2005930, DOI: https://doi.org/10.1002/adfm.202005930.
    (49) verma, S. k.; Tiwari, A. K. Application of Nanoparticles in Solar collectors: A Review. Materials Today: Proceedings 2015, 2 (4), 3638-3647, DOI: https://doi.org/10.1016/j.matpr.2015.07.121.
    (50) Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 2019, 12 (7), 908-931, DOI: https://doi.org/10.1016/j.arabjc.2017.05.011.
    (51) Christian, F.; Edith; Selly; Adityawarman, D.; Indarto, A. Application of nanotechnologies in the energy sector: A brief and short review. Frontiers in Energy 2013, 7 (1), 6-18, DOI: 10.1007/s11708-012-0219-5.
    (52) Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G. Nanomaterials for energy conversion and storage. Chemical Society Reviews 2013, 42 (7), 3127-3171, DOI: 10.1039/C3CS00009E.
    (53) Wang, H.; Liang, X.; Wang, J.; Jiao, S.; Xue, D. Multifunctional inorganic nanomaterials for energy applications. Nanoscale 2020, 12 (1), 14-42, DOI: 10.1039/C9NR07008G.
    (54) Bera, D.; Qian, L.; Tseng, T.-K.; Holloway, P. H. Quantum Dots and Their Multimodal Applications: A Review. Materials 2010, 3 (4), 2260-2345, DOI: 10.3390/ma3042260.
    (55) Pu, Y.; Cai, F.; Wang, D.; Wang, J.-X.; Chen, J.-F. Colloidal Synthesis of Semiconductor Quantum Dots toward Large-Scale Production: A Review. Industrial & Engineering Chemistry Research 2018, 57 (6), 1790-1802, DOI: 10.1021/acs.iecr.7b04836.
    (56) Shi, D.; Guo, Z.; Bedford, N. 4 - Semiconductor Quantum Dots. In Nanomaterials and Devices; Shi, D.; Guo, Z.; Bedford, N., Eds.; William Andrew Publishing: Oxford, 2015; pp 83-104.
    (57) Cotta, M. A. Quantum Dots and Their Applications: What Lies Ahead? ACS Applied Nano Materials 2020, 3 (6), 4920-4924, DOI: 10.1021/acsanm.0c01386.
    (58) Jagtap, S.; Chopade, P.; Tadepalli, S.; Bhalerao, A.; Gosavi, S. A review on the progress of ZnSe as inorganic scintillator. Opto-Electronics Review 2019, 27 (1), 90-103, DOI: https://doi.org/10.1016/j.opelre.2019.01.001.
    (59) Liu, Z.; Lin, C.-H.; Hyun, B.-R.; Sher, C.-W.; Lv, Z.; Luo, B.; Jiang, F.; Wu, T.; Ho, C.-H.; Kuo, H.-C.; He, J.-H. Micro-light-emitting diodes with quantum dots in display technology. Light: Science & Applications 2020, 9 (1), 83, DOI: 10.1038/s41377-020-0268-1.
    (60) Chukwuocha, E.; Onyeaju, M. Simulation of quantum dots (QDs) in the confinement regime. International Journal of Applied Science and Engineering Research 2012, 1, 784-792, DOI: 10.6088/ijaser.0020101080.
    (61) Green, M. Solution routes to III–V semiconductor quantum dots. Current Opinion in Solid State and Materials Science 2002, 6 (4), 355-363, DOI: https://doi.org/10.1016/S1359-0286(02)00028-1.
    (62) Chukwuocha, E. O.; Onyeaju, M. C. Simulation of quantum dots (QDs) in the confinement regime. International Journal of Applied Science and Engineering Research 2012, 1, 784-792.
    (63) Beard, M. C.; Luther, J. M.; Nozik, A. J. Multiple exciton generation in semiconductor quantum dots and electronically coupled quantum dot arrays for application to thirdgeneration photovoltaic solar cells. In Colloidal Quantum Dot Optoelectronics and Photovoltaics; Sargent, E. H.; Konstantatos, G., Eds.; Cambridge University Press: Cambridge, 2013; pp 112-147.
    (64) Li, M.; Begum, R.; Fu, J.; Xu, Q.; Koh, T. M.; Veldhuis, S. A.; Grätzel, M.; Mathews, N.; Mhaisalkar, S.; Sum, T. C. Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals. Nature Communications 2018, 9 (1), 4197, DOI: 10.1038/s41467-018-06596-1.
    (65) Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots. Nano Letters 2005, 5 (5), 865-871, DOI: 10.1021/nl0502672.
    (66) Shabaev, A.; Hellberg, C. S.; Efros, A. L. Efficiency of Multiexciton Generation in Colloidal Nanostructures. Accounts of Chemical Research 2013, 46 (6), 1242-1251, DOI: 10.1021/ar300283j.
    (67) Pan, Z.; Rao, H.; Mora-Seró, I.; Bisquert, J.; Zhong, X. Quantum dot-sensitized solar cells. Chemical Society Reviews 2018, 47 (20), 7659-7702, DOI: 10.1039/C8CS00431E.
    (68) Baruah, J.; Narayan, J. Mini Review Quantum Dot Sensitized Solar Cell: Introduction, 2019.
    (69) Gerischer, H.; Michel-Beyerle, M. E.; Rebentrost, F.; Tributsch, H. Sensitization of charge injection into semiconductors with large band gap. Electrochimica Acta 1968, 13 (6), 1509-1515, DOI: https://doi.org/10.1016/0013-4686(68)80076-3.
    (70) O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737-740, DOI: 10.1038/353737a0.
    (71) Sahu, A.; Garg, A.; Dixit, A. A review on quantum dot sensitized solar cells: Past, present and future towards carrier multiplication with a possibility for higher efficiency. Solar Energy 2020, 203, 210-239, DOI: https://doi.org/10.1016/j.solener.2020.04.044.
    (72) Chebrolu, V. T.; Kim, H.-J. Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode. Journal of Materials Chemistry C 2019, 7 (17), 4911-4933, DOI: 10.1039/C8TC06476H.
    (73) Rahman, M. M.; Karim, M. R.; Alharbi, H. F.; Aldokhayel, B.; Uzzaman, T.; Zahir, H. Cadmium Selenide Quantum Dots for Solar Cell Applications: A Review. Chemistry – An Asian Journal n/a (n/a), DOI: https://doi.org/10.1002/asia.202001369.
    (74) Jun, H. K.; Careem, M. A.; Arof, A. K. Quantum dot-sensitized solar cells—perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers. Renewable and Sustainable Energy Reviews 2013, 22, 148-167, DOI: https://doi.org/10.1016/j.rser.2013.01.030.
    (75) Cholasettyhalli Dakshinamurthy, A.; Das, T. K.; Ilaiyaraja, P.; Sudakar, C. Quantum Dot Sensitized Whisperonic Solar Cells—Improving Efficiency Through Whispering Gallery Modes. Frontiers in Materials 2019, 6 (282), DOI: 10.3389/fmats.2019.00282.
    (76) Shen, C.; Fichou, D.; Wang, Q. Interfacial Engineering for Quantum Dot-Sensitized Solar Cells. Chemistry, an Asian journal 2016, 11, DOI: 10.1002/asia.201600034.
    (77) Shakeel Ahmad, M.; Pandey, A. K.; Abd Rahim, N. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable and Sustainable Energy Reviews 2017, 77, 89-108, DOI: https://doi.org/10.1016/j.rser.2017.03.129.
    (78) Liu, X.; Fang, J.; Liu, Y.; Lin, T. Progress in nanostructured photoanodes for dye-sensitized solar cells. Frontiers of Materials Science 2016, 10 (3), 225-237, DOI: 10.1007/s11706-016-0341-0.
    (79) Mansa, R.; Roneo, A.; Kai Sing, L.; Chai, S. T. L.; Ung, M. C.; Dayou, J.; Sipaut, C. A Brief Review on Photoanode, Electrolyte, and Photocathode Materials for Dye-Sensitized Solar Cell Based on Natural Dye Photosensitizers. 2013; pp 313-319.
    (80) Abate, M. A.; Dehvari, K.; Chang, J.-Y.; Waki, K. Aqueous synthesis of Mn-doped CuInSe2 quantum dots to enhance the performance of quantum dot sensitized solar cells. Dalton Transactions 2019, 48 (42), 16115-16122, DOI: 10.1039/C9DT03163D.
    (81) Shen, H.; Lin, H.; Zhao, L.; Liu, Y.; Oron, D. Large pore size and high porosity of TiO2 photoanode for excellent photovoltaic performance of CdS quantum dot sensitized solar cell. Journal of nanoscience and nanotechnology 2013, 13 (2), 1095-100, DOI: 10.1166/jnn.2013.5974.
    (82) Huang, K.-Y.; Luo, Y.-H.; Cheng, H.-M.; Tang, J.; Huang, J.-H. Performance Enhancement of CdS/CdSe Quantum Dot-Sensitized Solar Cells with (001)-Oriented Anatase TiO2 Nanosheets Photoanode. Nanoscale Research Letters 2019, 14 (1), 18, DOI: 10.1186/s11671-018-2842-5.
    (83) Zhao, K.; Pan, Z.; Zhong, X. Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells. J Phys Chem Lett 2016, 7 (3), 406-417, DOI: 10.1021/acs.jpclett.5b02153.
    (84) Tyagi, J.; Gupta, H.; Purohit, L. P. Cascade Structured ZnO/TiO2/CdS quantum dot sensitized solar cell. Solid State Sciences 2020, 102, 106176, DOI: https://doi.org/10.1016/j.solidstatesciences.2020.106176.
    (85) Das, T. K.; Ilaiyaraja, P.; Sudakar, C. Whispering Gallery Mode Assisted Enhancement in the Power Conversion Efficiency of DSSC and QDSSC Devices Using TiO2 Microsphere Photoanodes. ACS Applied Energy Materials 2018, 1 (2), 765-774, DOI: 10.1021/acsaem.7b00207.
    (86) M. Sharif, N. F.; Shafie, S.; Ab. Kadir, M. Z. A.; Hasan, W. Z. W.; Mustafa, M. N.; Samaila, B. The effect of titanium (IV) chloride surface treatment to enhance charge transport and performance of dye-sensitized solar cell. Results in Physics 2019, 15, 102725, DOI: https://doi.org/10.1016/j.rinp.2019.102725.
    (87) Li, D.; Jiang, Z.; Xia, Q.; Yao, Z. Pre- or post-TiCl4 treated TiO2 nano-array photoanode for QDSSC: Ti3+ self-doping, flat-band level and electron diffusion length. Applied Surface Science 2019, 491, 319-327, DOI: https://doi.org/10.1016/j.apsusc.2019.06.166.
    (88) Yun, S.; Lund, P. D.; Hinsch, A. Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy & Environmental Science 2015, 8 (12), 3495-3514, DOI: 10.1039/C5EE02446C.
    (89) Karim, N. A.; Mehmood, U.; Zahid, H. F.; Asif, T. Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs). Solar Energy 2019, 185, 165-188, DOI: https://doi.org/10.1016/j.solener.2019.04.057.
    (90) Hwang, I.; Yong, K. Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. ChemElectroChem 2015, 2, DOI: 10.1002/celc.201402405.
    (91) Yeh, M.-H.; Chou, C.-Y.; Lin, L.-Y.; Wei, H.-Y.; Chu, C. W.; Vittal, R.; Ho, K.-C. Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte. Electrochimica Acta - ELECTROCHIM ACTA 2011, 57, DOI: 10.1016/j.electacta.2011.03.097.
    (92) Buatong, N.; Tang, I. M.; Pon-On, W. The Study of Metal Sulfide as Efficient Counter Electrodes on the Performances of CdS/CdSe/ZnS-co-sensitized Hierarchical TiO2 Sphere Quantum Dot Solar Cells. Nanoscale Research Letters 2017, 12, DOI: 10.1186/s11671-017-1926-y.
    (93) Liu, I. P.; Teng, H.; Lee, Y.-L. Highly electrocatalytic carbon black/copper sulfide composite counter electrodes fabricated by a facile method for quantum-dot-sensitized solar cells. Journal of Materials Chemistry A 2017, 5 (44), 23146-23157, DOI: 10.1039/C7TA06023H.
    (94) Hwang, I.; Yong, K. Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. ChemElectroChem 2015, 2 (5), 634-653, DOI: https://doi.org/10.1002/celc.201402405.
    (95) Meng, K.; Chen, G.; Thampi, K. R. Metal chalcogenides as counter electrode materials in quantum dot sensitized solar cells: a perspective. Journal of Materials Chemistry A 2015, 3 (46), 23074-23089, DOI: 10.1039/C5TA05071E.
    (96) Tsai, J.-S.; Dehvari, K.; Ho, W.-C.; Waki, K.; Chang, J.-Y. In Situ Microwave-Assisted Fabrication of Hierarchically Arranged Metal Sulfide Counter Electrodes to Boost Stability and Efficiency of Quantum Dot-Sensitized Solar Cells. Advanced Materials Interfaces 2019, 6 (5), 1801745, DOI: 10.1002/admi.201801745.
    (97) Yao, Y.-Y.; Chao, H.-J.; Chou, T.-H.; Chang, S. H.; Wu, C.-G.; Ling, Y.-C.; Chang, J.-Y. In situ fabrication of Co0.85Se and Ni0.85Se hierarchical thin films as high-performance counter electrode for dye-sensitized solar cells. Solar Energy 2016, 137, 401-408, DOI: https://doi.org/10.1016/j.solener.2016.08.040.
    (98) Gopi, C. V. V. M.; Venkata-Haritha, M.; Lee, Y.-S.; Kim, H.-J. ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells. Journal of Materials Chemistry A 2016, 4 (21), 8161-8171, DOI: 10.1039/C6TA02415G.
    (99) Du, Z.; Liu, M.; Li, Y.; Chen, Y.; Zhong, X. Titanium mesh based fully flexible highly efficient quantum dots sensitized solar cells. Journal of Materials Chemistry A 2017, 5 (11), 5577-5584, DOI: 10.1039/C7TA00821J.
    (100) Liao, Y.; Zhang, J.; Liu, W.; Que, W.; Yin, X.; Zhang, D.; Tang, L.; He, W.; Zhong, Z.; Zhang, H. Enhancing the efficiency of CdS quantum dot-sensitized solar cells via electrolyte engineering. Nano Energy 2015, 11, 88-95, DOI: https://doi.org/10.1016/j.nanoen.2014.09.034.
    (101) Jun, H. K.; Careem, M. A.; Arof, A. K. A Suitable Polysulfide Electrolyte for CdSe Quantum Dot-Sensitized Solar Cells. International Journal of Photoenergy 2013, 2013, 942139, DOI: 10.1155/2013/942139.
    (102) Park, S.; Yoo, K.; Jae-Yup, K.; Kim, J. Y.; Lee, D.-K.; Kim, B.; Kim, H.; Kim, J.; Cho, J.; Ko, M. Water-Based Thixotropic Polymer Gel Electrolyte for Dye-Sensitized Solar Cells. ACS nano 2013, 7, DOI: 10.1021/nn4001269.
    (103) Raphael, E.; Jara, D. H.; Schiavon, M. A. Optimizing photovoltaic performance in CuInS2 and CdS quantum dot-sensitized solar cells by using an agar-based gel polymer electrolyte. RSC Advances 2017, 7 (11), 6492-6500, DOI: 10.1039/C6RA27635K.
    (104) Feng, W.; Zhao, L.; Du, J.; Li, Y.; Zhong, X. Quasi-solid-state quantum dot sensitized solar cells with power conversion efficiency over 9% and high stability. Journal of Materials Chemistry A 2016, 4 (38), 14849-14856, DOI: 10.1039/C6TA05894A.
    (105) Feng, W.; Li, Y.; Du, J.; Wang, W.; Zhong, X. Highly efficient and stable quasi-solid-state quantum dot-sensitized solar cells based on a superabsorbent polyelectrolyte. Journal of Materials Chemistry A 2016, 4 (4), 1461-1468, DOI: 10.1039/C5TA08209A.
    (106) Chen, H.-Y.; Lin, L.; Yu, X.-Y.; Qiu, K.-Q.; Lü, X.-Y.; Kuang, D.-B.; Su, C.-Y. Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells. Electrochimica Acta 2013, 92, 117-123, DOI: https://doi.org/10.1016/j.electacta.2013.01.025.
    (107) Patel, S. B.; Gohel, J. V. Quasi solid-state quantum dot–sensitized solar cells with polysulfide gel polymer electrolyte for superior stability. Journal of Solid State Electrochemistry 2019, 23 (9), 2657-2666, DOI: 10.1007/s10008-019-04365-8.
    (108) Wei, H.; Wang, G.; Shi, J.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability. Journal of Materials Chemistry A 2016, 4 (37), 14194-14203, DOI: 10.1039/C6TA04570G.
    (109) Xu, T.; Kong, D.; Tang, H.; Qin, X.; Li, X.; Gurung, A.; Kou, K.; Chen, L.; Qiao, Q.; Huang, W. Transparent MoS2/PEDOT Composite Counter Electrodes for Bifacial Dye-Sensitized Solar Cells. ACS Omega 2020, 5 (15), 8687-8696, DOI: 10.1021/acsomega.0c00175.
    (110) Sajjad, M. T.; Park, J.; Gaboriau, D.; Harwell, J. R.; Odobel, F.; Reiss, P.; Samuel, I. D. W.; Aldakov, D. CuSCN Nanowires as Electrodes for p-Type Quantum Dot Sensitized Solar Cells: Charge Transfer Dynamics and Alumina Passivation. The Journal of Physical Chemistry C 2018, 122 (9), 5161-5170, DOI: 10.1021/acs.jpcc.7b12619.
    (111) Sun, Y.; Jiang, G.; Zhou, M.; Pan, Z.; Zhong, X. Origin of the effects of PEG additives in electrolytes on the performance of quantum dot sensitized solar cells. RSC Advances 2018, 8 (52), 29958-29966, DOI: 10.1039/C8RA05794J.
    (112) Jiang, G.; Pan, Z.; Ren, Z.; Du, J.; Yang, C.; Wang, W.; Zhong, X. Poly(vinyl pyrrolidone): a superior and general additive in polysulfide electrolytes for high efficiency quantum dot sensitized solar cells. Journal of Materials Chemistry A 2016, 4 (29), 11416-11421, DOI: 10.1039/C6TA04027F.
    (113) Yu, J.; Wang, W.; Pan, Z.; Du, J.; Ren, Z.; Xue, W.; Zhong, X. Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte. Journal of Materials Chemistry A 2017, 5 (27), 14124-14133, DOI: 10.1039/C7TA04344A.
    (114) Kouhnavard, M.; Ikeda, S.; Ludin, N. A.; Ahmad Khairudin, N. B.; Ghaffari, B. V.; Mat-Teridi, M. A.; Ibrahim, M. A.; Sepeai, S.; Sopian, K. A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renewable and Sustainable Energy Reviews 2014, 37, 397-407, DOI: https://doi.org/10.1016/j.rser.2014.05.023.
    (115) Wang, J.; Li, Y.; Shen, Q.; Izuishi, T.; Pan, Z.; Zhao, K.; Zhong, X. Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. Journal of Materials Chemistry A 2016, 4 (3), 877-886, DOI: 10.1039/C5TA09306F.
    (116) Pan, Z.; Yue, L.; Rao, H.; Zhang, J.; Zhong, X.; Zhu, Z.; Jen, A. K. Y. Boosting the Performance of Environmentally Friendly Quantum Dot-Sensitized Solar Cells over 13% Efficiency by Dual Sensitizers with Cascade Energy Structure. Advanced Materials 2019, 31 (49), 1903696, DOI: 10.1002/adma.201903696.
    (117) Yu, K.; Lin, X.; Lu, G.; Wen, Z.; Yuan, C.; Chen, J. Optimized CdS quantum dot-sensitized solar cell performance through atomic layer deposition of ultrathin TiO2 coating. RSC Advances 2012, 2 (20), 7843-7848, DOI: 10.1039/C2RA20979A.
    (118) Lanjewar, M.; Gohel, J. V. Highly enhanced solar conversion efficiency of novel layer-by-layer PbS:Hg and CdS quantum dots-sensitized ZnO thin films prepared by sol–gel spin coating. Bulletin of Materials Science 2018, 41 (6), 151, DOI: 10.1007/s12034-018-1664-5.
    (119) Dai, P.; Zhang, Y.; Xue, Y.; Jiang, X.; Wang, X.-B.; Zhan, J.; Bando, Y. Nanoparticle-based screen printing of copper zinc tin sulfide thin film as photocathode for quantum DoT sensitized solar cell. Materials Letters 2015, 158, DOI: 10.1016/j.matlet.2015.06.016.
    (120) Huang, X.; Huang, S.; Zhang, Q.; Guo, X.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. A flexible photoelectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). Chemical Communications 2011, 47 (9), 2664-2666, DOI: 10.1039/C0CC04419A.
    (121) Veerathangam, K.; Pandian, M.; Ramasamy, P. Influence of SILAR deposition cycles in CdS quantum dot-sensitized solar cells. Journal of Materials Science: Materials in Electronics 2018, 29, DOI: 10.1007/s10854-018-8721-0.
    (122) Christopher, R.; Cerdán-Pasarán, A.; Sidhik, S.; López Luke, T. Improved performance of CdS quantum dot sensitized solar cell by solvent modified SILAR approach. Solar Energy 2018, 174, 240-247, DOI: 10.1016/j.solener.2018.08.081.
    (123) Yindeesuk, W.; Tusamalee, P.; Liu, F.; Toyoda, T.; Shen, Q. Effect of SILAR Techniques on Photovoltaic Properties of PbS Quantum Dot Sensitized Solar Cells. Journal of Physics: Conference Series 2018, 1144, 012144, DOI: 10.1088/1742-6596/1144/1/012144.
    (124) Punnoose, D.; Suh, S.-M.; Kim, B.-J.; kim, S.-k.; Kumar, C. S. S. P.; Rao, S. S.; Thulasi-Varma, C. V.; Reddy, A. E.; Chung, S.-H.; Kim, H.-J. The influence of in situ deposition techniques on PbS seeded CdS/CdSe for enhancing the photovoltaic performance of quantum dot sensitized solar cells. Journal of Electroanalytical Chemistry 2016, 773, 27-38, DOI: https://doi.org/10.1016/j.jelechem.2016.04.040.
    (125) Muhyuddin, M.; Ahsan, M. T.; Ali, I.; Khan, T. F.; Akram, M. A.; Basit, M. A. A new insight into solar paint concept: regeneration of CuS nanoparticles for paintable counter electrodes in QDSSCs. Applied Physics A 2019, 125 (10), 716, DOI: 10.1007/s00339-019-3009-7.
    (126) Ezekoye, B.; Offor, P. O.; Ezekoye, V.; Ezema, F. Chemical Bath Deposition Technique of Thin Films: A Review. International Journal of Scientific Research 2012, 2, 452-456, DOI: 10.15373/22778179/AUG2013/149.
    (127) Choi, Y.; Seol, M.; Kim, W.; Yong, K. Chemical Bath Deposition of Stoichiometric CdSe Quantum Dots for Efficient Quantum-Dot-Sensitized Solar Cell Application. The Journal of Physical Chemistry C 2014, 118, 5664–5670, DOI: 10.1021/jp411221q.
    (128) Chernomordik, B.; Marshall, A.; Pach, G.; Luther, J.; Beard, M. Quantum Dot Solar Cell Fabrication Protocols. Chemistry of Materials 2016, 29, DOI: 10.1021/acs.chemmater.6b02939.
    (129) Li, W.; Zhong, X. Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells. J Phys Chem Lett 2015, 6 (5), 796-806, DOI: 10.1021/acs.jpclett.5b00001.
    (130) Song, H.; Rao, H.; Zhong, X. Recent advances in electrolytes for quantum dot-sensitized solar cells. Journal of Materials Chemistry A 2018, 6 (12), 4895-4911, DOI: 10.1039/C7TA11388A.
    (131) Nath, N. C. D.; Jun, Y.; Lee, J.-J. Guanidine Nitrate (GuNO3) as an Efficient Additive in the Electrolyte of Dye-Sensitized Solar Cells. Electrochimica Acta 2016, 201, 151-157, DOI: https://doi.org/10.1016/j.electacta.2016.03.012.
    (132) Kim, J.-Y.; Kim, J. Y.; Lee, D.-K.; Kim, B.; Kim, H.; Ko, M. J. Importance of 4-tert-Butylpyridine in Electrolyte for Dye-Sensitized Solar Cells Employing SnO2 Electrode. The Journal of Physical Chemistry C 2012, 116 (43), 22759-22766, DOI: 10.1021/jp307783q.
    (133) Naseri, A.; Samadi, M.; Pourjavadi, A.; Moshfegh, A. Z.; Ramakrishna, S. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. Journal of Materials Chemistry A 2017, 5 (45), 23406-23433, DOI: 10.1039/C7TA05131J.
    (134) Ismael, M.; Wu, Y. A mini-review on the synthesis and structural modification of g-C3N4-based materials, and their applications in solar energy conversion and environmental remediation. Sustainable Energy & Fuels 2019, 3 (11), 2907-2925, DOI: 10.1039/C9SE00422J.
    (135) Chetia, T. R.; Ansari, M. S.; Qureshi, M. Graphitic carbon nitride as a photovoltaic booster in quantum dot sensitized solar cells: a synergistic approach for enhanced charge separation and injection. Journal of Materials Chemistry A 2016, 4 (15), 5528-5541, DOI: 10.1039/C6TA00761A.
    (136) Lv, H.; Hu, H.; Cui, C.; Lin, P.; Wang, P.; Wang, H.; Xu, L.; Pan, J.; Li, C. Enhanced performance of dye-sensitized solar cells with layered structure graphitic carbon nitride and reduced graphene oxide modified TiO2 photoanodes. Applied Surface Science 2017, 422, 1015-1021, DOI: https://doi.org/10.1016/j.apsusc.2017.06.126.
    (137) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials 2009, 8 (1), 76-80, DOI: 10.1038/nmat2317.
    (138) Chakrapani, V.; Baker, D.; Kamat, P. V. Understanding the Role of the Sulfide Redox Couple (S2–/Sn2–) in Quantum Dot-Sensitized Solar Cells. Journal of the American Chemical Society 2011, 133 (24), 9607-9615, DOI: 10.1021/ja203131b.
    (139) Zhou, M.; Shen, G.; Pan, Z.; Zhong, X. Selenium cooperated polysulfide electrolyte for efficiency enhancement of quantum dot-sensitized solar cells. Journal of Energy Chemistry 2019, 38, 147-152, DOI: https://doi.org/10.1016/j.jechem.2018.12.010.
    (140) Babar, S.; Gavade, N.; Shinde, H.; Mahajan, P.; Lee, K. H.; Mane, N.; Deshmukh, A.; Garadkar, K.; Bhuse, V. Evolution of Waste Iron Rust into Magnetically Separable g-C3N4–Fe2O3 Photocatalyst: An Efficient and Economical Waste Management Approach. ACS Applied Nano Materials 2018, 1 (9), 4682-4694, DOI: 10.1021/acsanm.8b00936.
    (141) Abate, M. A.; Chang, J.-Y. Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture. Solar Energy Materials and Solar Cells 2018, 182, 37-44, DOI: https://doi.org/10.1016/j.solmat.2018.03.008.
    (142) Han, X.; Yuan, A.; Yao, C.; Xi, F.; Liu, J.; Dong, X. Synergistic effects of phosphorous/sulfur co-doping and morphological regulation for enhanced photocatalytic performance of graphitic carbon nitride nanosheets. Journal of Materials Science 2019, 54 (2), 1593-1605, DOI: 10.1007/s10853-018-2925-9.
    (143) Yi, F.; Gan, H.; Jin, H.; Zhao, W.; Zhang, K.; Jin, H.; Zhang, H.; Qian, Y.; Ma, J. Sulfur- and chlorine-co-doped g-C3N4 nanosheets with enhanced active species generation for boosting visible-light photodegradation activity. Separation and Purification Technology 2020, 233, 115997, DOI: https://doi.org/10.1016/j.seppur.2019.115997.
    (144) Fina, F.; Callear, S. K.; Carins, G. M.; Irvine, J. T. S. Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction. Chemistry of Materials 2015, 27 (7), 2612-2618, DOI: 10.1021/acs.chemmater.5b00411.
    (145) Guo, Q.; Zhang, Y.; Qiu, J.; Dong, G. Engineering the electronic structure and optical properties of g-C3N4 by non-metal ion doping. Journal of Materials Chemistry C 2016, 4 (28), 6839-6847, DOI: 10.1039/C6TC01831A.
    (146) Li, Y.; Wang, S.; Chang, W.; Zhang, L.; Wu, Z.; Song, S.; Xing, Y. Preparation and enhanced photocatalytic performance of sulfur doped terminal-methylated g-C3N4 nanosheets with extended visible-light response. Journal of Materials Chemistry A 2019, 7 (36), 20640-20648, DOI: 10.1039/C9TA07014A.
    (147) Jourshabani, M.; Shariatinia, Z.; Achari, G.; Langford, C. H.; Badiei, A. Facile synthesis of NiS2 nanoparticles ingrained in a sulfur-doped carbon nitride framework with enhanced visible light photocatalytic activity: two functional roles of thiourea. Journal of Materials Chemistry A 2018, 6 (27), 13448-13466, DOI: 10.1039/C8TA03068E.
    (148) Ye, S.; Qiu, L.-G.; Yuan, Y.-P.; Zhu, Y.-J.; Xia, J.; Zhu, J.-F. Facile fabrication of magnetically separable graphitic carbon nitride photocatalysts with enhanced photocatalytic activity under visible light. Journal of Materials Chemistry A 2013, 1 (9), 3008-3015, DOI: 10.1039/C2TA01069K.
    (149) Zhang, G.; Wang, P.; Lu, W.-T.; Wang, C.-Y.; Li, Y.-K.; Ding, C.; Gu, J.; Zheng, X.-S.; Cao, F.-F. Co Nanoparticles/Co, N, S Tri-doped Graphene Templated from In-Situ-Formed Co, S Co-doped g-C3N4 as an Active Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (34), 28566-28576, DOI: 10.1021/acsami.7b08138.
    (150) Wahid, M.; Parte, G.; Phase, D.; Ogale, S. Yogurt: a novel precursor for heavily nitrogen doped supercapacitor carbon. Journal of Materials Chemistry A 2015, 3 (3), 1208-1215, DOI: 10.1039/C4TA06068G.
    (151) Jiang, L.; Yuan, X.; Zeng, G.; Chen, X.; Wu, Z.; Liang, J.; Zhang, J.; Wang, H.; Wang, H. Phosphorus- and Sulfur-Codoped g-C3N4: Facile Preparation, Mechanism Insight, and Application as Efficient Photocatalyst for Tetracycline and Methyl Orange Degradation under Visible Light Irradiation. ACS Sustainable Chemistry & Engineering 2017, 5 (7), 5831-5841, DOI: 10.1021/acssuschemeng.7b00559.
    (152) Ke, L.; Li, P.; Wu, X.; Jiang, S.; Luo, M.; Liu, Y.; Le, Z.; Sun, C.; Song, S. Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible Light. Applied Catalysis B: Environmental 2017, 205, 319-326, DOI: https://doi.org/10.1016/j.apcatb.2016.12.043.
    (153) Fantauzzi, M.; Elsener, B.; Atzei, D.; Rigoldi, A.; Rossi, A. Exploiting XPS for the identification of sulfides and polysulfides. RSC Advances 2015, 5 (93), 75953-75963, DOI: 10.1039/C5RA14915K.
    (154) Manikandan, R.; Raj, C. J.; Nagaraju, G.; Pyo, M.; Kim, B. C. Selective design of binder-free hierarchical nickel molybdenum sulfide as a novel battery-type material for hybrid supercapacitors. Journal of Materials Chemistry A 2019, 7 (44), 25467-25480, DOI: 10.1039/C9TA08527K.
    (155) Bisquert, J. Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Physical Chemistry Chemical Physics 2003, 5 (24), 5360-5364, DOI: 10.1039/B310907K.
    (156) Jumabekov, A. N.; Siegler, T. D.; Cordes, N.; Medina, D. D.; Böhm, D.; Garbus, P.; Meroni, S.; Peter, L. M.; Bein, T. Comparison of Solid-State Quantum-Dot-Sensitized Solar Cells with ex Situ and in Situ Grown PbS Quantum Dots. The Journal of Physical Chemistry C 2014, 118 (45), 25853-25862, DOI: 10.1021/jp5051904.
    (157) Song, H. M.; Seo, K. D.; Kang, M. S.; Choi, I. T.; Kim, S. K.; Eom, Y. K.; Ryu, J. H.; Ju, M. J.; Kim, H. K. A simple triaryl amine-based dual functioned co-adsorbent for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry 2012, 22 (9), 3786-3794, DOI: 10.1039/C2JM16021H.
    (158) Xiong, B.-T.; Zheng, R.-F.; Zhang, C.-H.; Yang, H.-P.; Shi, Y. Simulation studies of the characteristics of nitrogen-containing additive molecules for solar cells. Chemical Papers 2019, 73 (9), 2341-2351, DOI: 10.1007/s11696-019-00786-x.
    (159) Kim, T.-Y.; Song, D.; Barea, E. M.; Lee, J. H.; Kim, Y. R.; Cho, W.; Lee, S.; Rahman, M. M.; Bisquert, J.; Kang, Y. S. Origin of high open-circuit voltage in solid state dye-sensitized solar cells employing polymer electrolyte. Nano Energy 2016, 28, 455-461, DOI: https://doi.org/10.1016/j.nanoen.2016.09.006.
    (160) Dong, J.; Zhu, Y.; Jia, S.; Zhu, Z. Blocking the back reaction in quantum dot sensitized solar cells via surface modification with organic molecules. RSC Advances 2016, 6 (17), 14224-14228, DOI: 10.1039/C5RA26168F.
    (161) Xiao, X.; Wang, Y.; Bo, Q.; Xu, X.; Zhang, D. One-step preparation of sulfur-doped porous g-C3N4 for enhanced visible light photocatalytic performance. Dalton Transactions 2020, 49 (24), 8041-8050, DOI: 10.1039/D0DT00299B.
    (162) Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Applied Catalysis B: Environmental 2015, 176-177, 44-52, DOI: https://doi.org/10.1016/j.apcatb.2015.03.045.
    (163) Tran Doan, A.; Phuc, N.; Tri, N.; Phu, H.; nguyen phi, H.; Vo, V. Sulfur-Doped g-C3N4 with Enhanced Visible-Light Photocatalytic Activity. Applied Mechanics and Materials 2019, 889, 43-50, DOI: 10.4028/www.scientific.net/AMM.889.43.
    (164) Ye, L.; Wang, D.; Chen, S. Fabrication and Enhanced Photoelectrochemical Performance of MoS2/S-Doped g-C3N4 Heterojunction Film. ACS Applied Materials & Interfaces 2016, 8 (8), 5280-5289, DOI: 10.1021/acsami.5b11326.
    (165) Allen, L. C. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. Journal of the American Chemical Society 1989, 111 (25), 9003-9014, DOI: 10.1021/ja00207a003.
    (166) COTTRELL, T. THE STRENGTHS OF CHEMICAL BONDS, LONDON, BUTTERWORTHS: 1954.
    (167) Bayoumi, F. M.; Ghanem, W. A. Effect of nitrogen on the corrosion behavior of austenitic stainless steel in chloride solutions. Materials Letters 2005, 59 (26), 3311-3314, DOI: https://doi.org/10.1016/j.matlet.2005.05.063.
    (168) Yoo, S.-H.; Kim, Y.-W.; Chung, K.; Kim, N.-K.; Kim, J.-S. Corrosion Inhibition Properties of Triazine Derivatives Containing Carboxylic Acid and Amine Groups in 1.0 M HCl Solution. Industrial & Engineering Chemistry Research 2013, 52 (32), 10880-10889, DOI: 10.1021/ie303092j.
    (169) Rasal, A. S.; Chen, Y. H.; Dehvari, K.; Getachew, G.; Tseng, P. J.; Waki, K.; Bela, S.; Chang, J. Y. Efficient quantum-dot-sensitized solar cells with improved stability using thixotropic polymer/nanoparticles-based gel electrolyte. Materials Today Energy 2021, 19, 100615, DOI: https://doi.org/10.1016/j.mtener.2020.100615.
    (170) rasal, a. s.; Dehvari, K.; Getachew, G.; korupalli, c.; Ghule, A. V.; Chang, J.-Y. Efficient Quantum Dot-Sensitized Solar Cells through Sulfur-rich Carbon Nitride Modified Electrolyte. Nanoscale 2021, DOI: 10.1039/D0NR07963D.
    (171) Lin, Y.; Song, H.; Zhang, J.; Rao, H.; Pan, Z.; Zhong, X. Hole transport materials mediating hole transfer for high efficiency quantum dot sensitized solar cells. Journal of Materials Chemistry A 2021, DOI: 10.1039/D0TA10702F.
    (172) Du, Z.; Yin, F.; Han, D.; Mao, S.; Wang, J.; Aleem, A. R.; Pan, Z.; Tang, J. Plasmonic Effect with Tailored Au@TiO2 Nanorods in Photoanode for Quantum Dot Sensitized Solar Cells. ACS Applied Energy Materials 2019, 2 (8), 5917-5924, DOI: 10.1021/acsaem.9b01048.
    (173) Kumar, P. N.; Kolay, A.; Deepa, M.; Shivaprasad, S. M.; Srivastava, A. K. Stability, Scale-up, and Performance of Quantum Dot Solar Cells with Carbonate-Treated Titanium Oxide Films. ACS Applied Materials & Interfaces 2017, 9 (30), 25278-25290, DOI: 10.1021/acsami.7b05726.
    (174) Li, Y.; Zhao, L.; Du, Z.; Du, J.; Wang, W.; Wang, Y.; Zhao, L.; Cao, X.-M.; Zhong, X. Metal–organic framework derived Co,N-bidoped carbons as superior electrode catalysts for quantum dot sensitized solar cells. Journal of Materials Chemistry A 2018, 6 (5), 2129-2138, DOI: 10.1039/C7TA09976B.
    (175) Rajendra Prasad, M. B.; Tamboli, P. S.; Bhalekar, V. P.; Kadam, V.; Abraham, J. T.; Rajesh, C.; Pathan, H. M. Impact of composition of polysulphide electrolyte on the photovoltaic performance in quantum dot sensitized solar cells. Materials Research Express 2018, 5 (6), 066208, DOI: 10.1088/2053-1591/aacdb5.
    (176) Phan, T. A. P.; Nguyen, N. P.; Nguyen, L. T.; Nguyen, P. H.; Le, T. K.; Huynh, T. V.; Lund, T.; Tsai, D.-H.; Wei, T.-C.; Nguyen, P. T. Direct experimental evidence for the adsorption of 4-tert-butylpyridine and 2,2′-bipyridine on TiO2 surface and their influence on dye-sensitized solar cells’ performance. Applied Surface Science 2020, 509, 144878, DOI: https://doi.org/10.1016/j.apsusc.2019.144878.
    (177) Afrooz, M.; Dehghani, H. Effects of triphenyl phosphate as an inexpensive additive on the photovoltaic performance of dye-sensitized nanocrystalline TiO2 solar cells. RSC Advances 2015, 5 (62), 50483-50493, DOI: 10.1039/C5RA06849E.
    (178) Afrooz, M.; Dehghani, H. Significant improvement of photocurrent in dye-sensitized solar cells by incorporation thiophene into electrolyte as an inexpensive and efficient additive. Organic Electronics 2016, 29, 57-65, DOI: https://doi.org/10.1016/j.orgel.2015.11.024.
    (179) Cheng, W.; Zeng, X.; Chen, H.; Li, Z.; Zeng, W.; Mei, L.; Zhao, Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS Nano 2019, 13 (8), 8537-8565, DOI: 10.1021/acsnano.9b04436.
    (180) Lee, H. A.; Park, E.; Lee, H. Polydopamine and Its Derivative Surface Chemistry in Material Science: A Focused Review for Studies at KAIST. Advanced Materials 2020, 32 (35), 1907505, DOI: https://doi.org/10.1002/adma.201907505.
    (181) Huang, Q.; Chen, J.; Liu, M.; Huang, H.; Zhang, X.; Wei, Y. Polydopamine-based functional materials and their applications in energy, environmental, and catalytic fields: State-of-the-art review. Chemical Engineering Journal 2020, 387, 124019, DOI: https://doi.org/10.1016/j.cej.2020.124019.
    (182) Yin, H.; Zhang, K.; Wang, L.; Zhou, K.; Zeng, J.; Gao, D.; Xia, Z.; Fu, Q. Redox modulation of polydopamine surface chemistry: a facile strategy to enhance the intrinsic fluorescence of polydopamine nanoparticles for sensitive and selective detection of Fe3+. Nanoscale 2018, 10 (37), 18064-18073, DOI: 10.1039/C8NR05878D.
    (183) Yang, X.; Duan, L.; Cheng, X.; Ran, X. Effect of polydopamine coating on improving photostability of poly(1,3,4-oxadiazole)s fiber. Journal of Polymer Research 2016, 23 (5), 87, DOI: 10.1007/s10965-016-0981-x.
    (184) Yang, X.; Duan, L.; Ran, X. Effect of polydopamine coating on improving photostability of polyphenylene sulfide fiber. Polymer Bulletin 2017, 74 (3), 641-656, DOI: 10.1007/s00289-016-1735-y.
    (185) Liu, H.; Qu, X.; Tan, H.; Song, J.; Lei, M.; Kim, E.; Payne, G. F.; Liu, C. Role of polydopamine’s redox-activity on its pro-oxidant, radical-scavenging, and antimicrobial activities. Acta Biomaterialia 2019, 88, 181-196, DOI: https://doi.org/10.1016/j.actbio.2019.02.032.
    (186) Bao, X.; Zhao, J.; Sun, J.; Hu, M.; Yang, X. Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease. ACS Nano 2018, 12 (9), 8882-8892, DOI: 10.1021/acsnano.8b04022.
    (187) Lin, J.-S.; Tsai, Y.-W.; Dehvari, K.; Huang, C.-C.; Chang, J.-Y. A carbon dot based theranostic platform for dual-modal imaging and free radical scavenging. Nanoscale 2019, 11 (43), 20917-20931, DOI: 10.1039/C9NR05746C.
    (188) Luo, H.; Gu, C.; Zheng, W.; Dai, F.; Wang, X.; Zheng, Z. Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. RSC Advances 2015, 5 (18), 13470-13477, DOI: 10.1039/C4RA16469E.
    (189) Huang, Y.; Liu, Z.; Liu, C.; Zhang, Y.; Ren, J.; Qu, X. Selenium-Based Nanozyme as Biomimetic Antioxidant Machinery. Chemistry – A European Journal 2018, 24 (40), 10224-10230, DOI: https://doi.org/10.1002/chem.201801725.
    (190) Batul, R.; Bhave, M.; J. Mahon, P.; Yu, A. Polydopamine Nanosphere with In-Situ Loaded Gentamicin and Its Antimicrobial Activity. Molecules 2020, 25 (9), 2090.
    (191) Walekar, L. S.; Zheng, M.; Zheng, L.; Long, M. Selenium and nitrogen co-doped carbon quantum dots as a fluorescent probe for perfluorooctanoic acid. Microchimica Acta 2019, 186 (5), 278, DOI: 10.1007/s00604-019-3400-2.
    (192) Xue, P.; Sun, L.; Li, Q.; Zhang, L.; Guo, J.; Xu, Z.; Kang, Y. PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells. Colloids and Surfaces B: Biointerfaces 2017, 160, 11-21, DOI: https://doi.org/10.1016/j.colsurfb.2017.09.012.
    (193) Margraf, J. T.; Ruland, A.; Sgobba, V.; Guldi, D. M.; Clark, T. Quantum-Dot-Sensitized Solar Cells: Understanding Linker Molecules through Theory and Experiment. Langmuir 2013, 29 (7), 2434-2438, DOI: 10.1021/la3047609.
    (194) Zhang, L.; Rao, H.; Pan, Z.; Zhong, X. ZnSxSe1–x Alloy Passivation Layer for High-Efficiency Quantum-Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (44), 41415-41423, DOI: 10.1021/acsami.9b14579.
    (195) Bang, J. H.; Kamat, P. V. Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe. ACS Nano 2009, 3 (6), 1467-1476, DOI: 10.1021/nn900324q.
    (196) Pathak, S. K.; Abate, A.; Leijtens, T.; Hollman, D. J.; Teuscher, J.; Pazos, L.; Docampo, P.; Steiner, U.; Snaith, H. J. Towards Long-Term Photostability of Solid-State Dye Sensitized Solar Cells. Advanced Energy Materials 2014, 4 (8), 1301667, DOI: https://doi.org/10.1002/aenm.201301667.
    (197) Dong, X.; Fang, X.; Lv, M.; Lin, B.; Zhang, S.; Wang, Y.; Yuan, N.; Ding, J. Method for improving illumination instability of organic–inorganic halide perovskite solar cells. Science Bulletin 2016, 61 (3), 236-244, DOI: https://doi.org/10.1007/s11434-016-0994-1.
    (198) Cheng, P.; Zhan, X. Stability of organic solar cells: challenges and strategies. Chemical Society Reviews 2016, 45 (9), 2544-2582, DOI: 10.1039/C5CS00593K.
    (199) Kamat, P. V.; Christians, J. A.; Radich, J. G. Quantum Dot Solar Cells: Hole Transfer as a Limiting Factor in Boosting the Photoconversion Efficiency. Langmuir 2014, 30 (20), 5716-5725, DOI: 10.1021/la500555w.
    (200) Carter, E.; Carley, A. F.; Murphy, D. M. Evidence for O2- Radical Stabilization at Surface Oxygen Vacancies on Polycrystalline TiO2. The Journal of Physical Chemistry C 2007, 111 (28), 10630-10638, DOI: 10.1021/jp0729516.
    (201) Dehvari, K.; Chiu, S.-H.; Lin, J.-S.; Girma, W. M.; Ling, Y.-C.; Chang, J.-Y. Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy. Acta Biomaterialia 2020, 114, 343-357, DOI: https://doi.org/10.1016/j.actbio.2020.07.022.

    無法下載圖示 全文公開日期 2024/06/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE