簡易檢索 / 詳目顯示

研究生: 徐佑任
Yu-Ren Hsu
論文名稱: 水相四元量子點製備與離子檢測及細胞影像應用
Aqueous synthesis of quaternary quantum dot and its applications in ion sensing and cell imaging
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 江佳穎
Chia-Ying Chiang
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 107
中文關鍵詞: 水相四元量子點離子檢測細胞影像
外文關鍵詞: aqueous phase, quaternary quantum dot, ion sensing, cell imaging
相關次數: 點閱:263下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文結合了奈米合成技術與生物醫學應用,將低毒性之量子點應用於細胞顯影及離子檢測上,成功開發出合成時間短、高量子效率、低毒性、螢光顯影標靶與奠基於材料光學性質的檢測法之多功能量子點材料。
    第一部分:以水為溶劑,使用微波輔助法成功地直接合成出水溶性無毒四元ZAISe及ZCISe量子點。藉由優化前驅物比例以改善材料缺陷性質,分別使用(單穩定劑) 3-mercaptopropionic acid及(雙穩定劑)L-glutathione與Citric acid trisodium salt讓量子點能夠在水中穩定地合成。後續再利用組成元素的比例表現量子點材料的一大優勢,即能提供有別於量子侷限效應的變色模式並解釋量子點的可調性機制。之後以無機材料ZnS包覆而形成ZAISe/ZnS及ZCISe/ZnS核殼型量子點,並利用TEM、XRD、UV、PL、 PL Lifetime來進行量子點的組成結構與光學性質分析。
    第二部分:第一種示範性應用為四元量子點文獻中極少見的離子檢測,首先找出具專一性反應的金屬離子後建立光學變化與待測物濃度間的線性關係,最後利用PL lifetime解釋其螢光淬滅機制是由於鉛離子剝離量子點表面的配位劑而改變其表面性質。第二種示範性應用為利用EDC/Sulfo-NHS共價交聯反應將ZCISe/ZnS量子點表面修飾玻尿酸(hyaluronic acid, HA),使此量子點具有專一性標靶的功能,能夠針對特定的癌細胞進行有效的顯影以及追蹤。癌細胞與人類胚胎肺細胞的毒性實驗,也證明ZCISe/ZnS量子點表面功能化後,依舊為低毒性奈米生醫材料。在細胞影像中,證明ZCISe/ZnS@HA量子點是利用CD44受體介導之胞吞作用進入細胞內部。


    Herein, we present an aqueous based facile microwave-assisted synthesis of ZAISe and ZCISe quaternary quantum dots (QDs). ZAISe was synthesized by using by using 3-mercaptopropionic acid(MPA) as a stabilizing agent, however, ZCISe was using glutathione (GSH) and citric acid trisodium salt (SC) as the dual stabilizing agents. Furthermore, by using the composition-dependent strategy we demonstrated tunable bandgap properties of the synthesized QDs. It was reported that using higher energy band gap materials like ZnS decreases the surface defects of core QDs to enhance the quantum yields (QY). We designed to passivate core ZAISe and ZCISe QDs with ZnS, leading to the formation of ZAISe/ZnS and ZCISe/ZnS core/shell QDs with QY up to 20.36% and 40.87%. The obtained materials were characterized and analyzed by using TEM, XRD, UV, PL and PL lifetime.
    Moreover, to emphasize the novel optical properties of ZAISe/ZnS and ZCISe/ZnS core/shell QDs two demonstrative applications have been conducted. The first one is ion sensing, by finding out analyte which shows specific binding to the material, it’s reasonable to go further for sensitivity quenching experiment in order to demonstrate its probable detection range. The linear relationship between the concentration and intensity were expressed by the Stern-Volmer plot. PL lifetime studies indicated the carrier lifetime gets shorter due to metal ions which quenches the luminescence properties of the obtained quaternary QDs. ZCISe/ZnS core/shell QDs were conjugated with hyaluronic acid (HA) to impart biocompatibility and cancer-specific targeting ability. In vitro experiments also proved that ZCISe/ZnS@HA QDs remains lower toxicity features after surface functionalization. Finally, confocal laser scanning microscopy studies revealed that ZCISe/ZnS@HA QDs effectively uptake by B16F1 cells by CD44 receptor-mediated endocytosis process.

    摘要 I Abstract II 總目錄 V 表目錄 VIII 圖目錄 IX 第一章、緒論 1 1.1 前言 1 1.2 研究動機與內容 2 第二章、文獻回顧 3 2.1奈米材料的緣起與發展 3 2.2奈米材料基本特性 3 2.2.1 小尺寸效應(Small Scale Effect) 3 2.2.2 表面效應(Surface Effect) 4 2.2.3 奈米晶體的能隙 5 2.2.4 量子侷限效應(Quantum Confinement Effect) 6 2.3 量子點發展與合成 9 2.3.1 量子點的發展演進 9 2.3.2 量子點的合成方法 14 2.3.3水相量子點合成方法 17 2.4量子點光學應用於重金屬離子檢測 22 2.4.1 量子點螢光感測的相關策略 23 2.5量子點生物醫學應用 27 2.5.1量子點表面功能化與特異性標靶顯影 29 第三章、實驗儀器與方法 31 3.1 實驗藥品 31 3.2實驗儀器 33 3.3 實驗步驟 35 3.3.1 Zn-Ag-In-Se與Zn-Cu-In-Se水相量子點合成 35 3.3.2硫化鋅(ZnS)母液的製備 36 3.3.3 ZAISe/ZnS及ZCISe/ZnS水相量子點合成 37 3.3.4 ZCISe/ZnS水相量子點與玻尿酸鍵結之合成 37 3.4金屬離子感測實驗 38 3.4.1 選擇性測試 38 3.4.2 敏感性測試 39 3.5細胞培養與細胞實驗 39 3.5.1培養液(medium)與PBS之配製 39 3.5.2解凍細胞(Cells Defrost) 40 3.5.3繼代培養(Cell Culture) 41 3.5.4細胞計數(Cell Counting) 41 3.5.5冷凍細胞(Cell Cryopreservation) 42 3.5.6 ZCISe/ZnS@HA量子點於細胞之螢光顯影試片製作 42 3.5.7 ZCISe/ZnS@HA量子點對於細胞之體外毒性測試 44 第四章、實驗結果與討論 45 4.1 ZAISe/ZnS量子點之合成與光學性質探討 45 4.1.1 ZAISe量子點變色機制探討 46 4.1.2 ZAISe/ZnS核殼水相量子點合成與製備 50 4.1.3 ZAISe/ZnS核殼水相量子點之型態與結構分析 53 4.2 ZCISe/ZnS量子點之合成與光學性質探討 55 4.2.1 ZCISe量子點變色機制探討 55 4.2.2 ZCISe/ZnS核殼水相量子點合成與製備 59 4.2.3 ZCISe/ZnS核殼水相量子點之型態與結構分析 61 4.2.4 ZCISe/ZnS核殼水相量子點光學分析 63 4.3 ZCISe/ZnS在離子檢測上的應用 64 4.4 ZCISe/ZnS水相量子點表面功能化之修飾介紹 67 4.4.1 ZCISe/ZnS@HA水相量子點之功能化合成之鑑定分析 68 4.5 ZCISe/ZnS@HA水相量子點於細胞顯影應用 69 4.5.1 ZCISe/ZnS@HA水相量子點對於細胞之體外毒性測試 69 4.5.2 ZCISe/ZnS@HA水相量子點於癌細胞之生物顯影應用 70 第五章、結論與未來展望 76 參考文獻 77

    [1] 楊忠平、陳儒毅、林志鴻團隊,奈米新世界-奈米博物館-古代奈米技術,2014.
    [2] 馬振基,奈米材料科技原理與應用,全華圖書股份有限公司,2012,台灣
    [3] 賴炤銘, & 李錫隆. (2003). 奈米材料的特殊效應與應用. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), 61(4), 585-597.
    [4] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕,奈米科技導論,全華圖書股份有限公司,2008,台灣
    [5] Manhat, B. A. (2012). Understanding the Emission from Semiconductor Nanoparticles. Dissertations and Theses. Portland State University.
    [6] Wang, Y., & Herron, N. (1991). Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. The Journal of Physical Chemistry, 95(2), 525-532.
    [7] Green, M. (2002). Solution routes to III–V semiconductor quantum dots. Current Opinion in Solid State and Materials Science, 6(4), 355-363.
    [8] Rabouw, F. T., & de Mello Donega, C. (2016). Excited-State Dynamics in Colloidal Semicondctor Nanocrystals. Topics in Current Chemistry, 374(5), 58.
    [9] Lin, C. C., & Liu, R. S. (2017). Introduction to the Basic Properties of Luminescent Materials. In Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications (pp. 1-29). Springer, Berlin, Heidelberg.
    [10] Murray, C., Norris, D. J., & Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 115(19), 8706-8715.
    [11] Deng, D., Cao, J., Qu, L., Achilefu, S., & Gu, Y. (2013). Highly luminescent water-soluble quaternary Zn–Ag–In–S quantum dots for tumor cell-targeted imaging. Physical Chemistry Chemical Physics, 15(14), 5078-5083.
    [12] Jiang, T., Song, J., Wang, H., Ye, X., Wang, H., Zhang, W., ... & Xu, X. (2015). Aqueous synthesis of color tunable Cu doped Zn–In–S/ZnS nanoparticles in the whole visible region for cellular imaging. Journal of Materials Chemistry B, 3(11), 2402-2410.
    [13] Kang, X., Huang, L., Yang, Y., & Pan, D. (2015). Scaling up the aqueous synthesis of visible light emitting multinary AgInS2/ZnS core/shell quantum dots. The Journal of Physical Chemistry C, 119(14), 7933-7940.
    [14] Allen, P. M., & Bawendi, M. G. (2008). Ternary I− III− VI quantum dots luminescent in the red to near-infrared. Journal of the American Chemical Society, 130(29), 9240-9241.
    [15] Li, L., Pandey, A., Werder, D. J., Khanal, B. P., Pietryga, J. M., & Klimov, V. I. (2011). Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. Journal of the American Chemical Society, 133(5), 1176-1179.
    [16] Kim, S., Kang, M., Kim, S., Heo, J. H., Noh, J. H., Im, S. H., ... & Kim, S. W. (2013). Fabrication of CuInTe2 and CuInTe2–x Se x Ternary Gradient Quantum Dots and Their Application to Solar Cells. ACS nano, 7(6), 4756-4763.
    [17] Yue, L., Rao, H., Du, J., Pan, Z., Yu, J., & Zhong, X. (2018). Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Advances, 8(7), 3637-3645.
    [18] Zhang, L., Pan, Z., Wang, W., Du, J., Ren, Z., Shen, Q., & Zhong, X. (2017). Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. Journal of Materials Chemistry A, 5(40), 21442-21451.
    [19] Gong, G., Liu, Y., Mao, B., Tan, L., Yang, Y., & Shi, W. (2017). Ag doping of Zn-In-S quantum dots for photocatalytic hydrogen evolution: Simultaneous bandgap narrowing and carrier lifetime elongation. Applied Catalysis B: Environmental, 216, 11-19.
    [20] Shen, S., Zhao, L., Zhou, Z., & Guo, L. (2008). Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation. The Journal of Physical Chemistry C, 112(41), 16148-16155.
    [21] Chen, B., Zhong, H., Wang, M., Liu, R., & Zou, B. (2013). Integration of CuInS 2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes. Nanoscale, 5(8), 3514-3519.
    [22] Liu, Z., Zhao, K., Tang, A., Xie, Y., Qian, L., Cao, W., ... & Teng, F. (2016). Solution-processed high-efficiency cadmium-free Cu-Zn-In-S-based quantum-dot light-emitting diodes with low turn-on voltage. Organic Electronics, 36, 97-102.
    [23] Li, L., Daou, T. J., Texier, I., Kim Chi, T. T., Liem, N. Q., & Reiss, P. (2009). Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chemistry of Materials, 21(12), 2422-2429.
    [24] Liu, Z., Zhao, K., Tang, A., Xie, Y., Qian, L., Cao, W., ... & Teng, F. (2016). Solution-processed high-efficiency cadmium-free Cu-Zn-In-S-based quantum-dot light-emitting diodes with low turn-on voltage. Organic Electronics, 36, 97-102.
    [25] Zhang, Y., Hong, G., Zhang, Y., Chen, G., Li, F., Dai, H., & Wang, Q. (2012). Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS nano, 6(5), 3695-3702.
    [26] Ma, Q., & Su, X. (2010). Near-infrared quantum dots: synthesis, functionalization and analytical applications. Analyst, 135(8), 1867-1877.
    [27] Xu, H., Zhang, W., Jin, W., Ding, Y., & Zhong, X. (2013). Facile synthesis of ZnS–CdIn2S4-alloyed nanocrystals with tunable band gap and its photocatalytic activity. Journal of Luminescence, 135, 47-54.
    [28] Pan, D., Wang, X., Zhou, Z. H., Chen, W., Xu, C., & Lu, Y. (2009). Synthesis of quaternary semiconductor nanocrystals with tunable band gaps. Chemistry of Materials, 21(12), 2489-2493.
    [29] Gabka, G., Bujak, P., Giedyk, K., Ostrowski, A., Malinowska, K., Herbich, J., ... & Pron, A. (2014). A simple route to alloyed quaternary nanocrystals Ag–In–Zn–S with shape and size control. Inorganic chemistry, 53(10), 5002-5012.
    [30] Chen, S., Gong, X. G., Walsh, A., & Wei, S. H. (2009). Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI 2 compounds. Physical Review B, 79(16), 165211.
    [31] Mao, B., Chuang, C. H., Wang, J., & Burda, C. (2011). Synthesis and photophysical properties of ternary I–III–VI AgInS2 nanocrystals: intrinsic versus surface states. The Journal of Physical Chemistry C, 115(18), 8945-8954.
    [32] Zhang, J., Xie, R., & Yang, W. (2011). A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters. Chemistry of Materials, 23(14), 3357-3361.
    [33] Deng, D., Qu, L., Zhang, J., Ma, Y., & Gu, Y. (2013). Quaternary Zn–Ag–In–Se quantum dots for biomedical optical imaging of RGD-modified micelles. ACS applied materials & interfaces, 5(21), 10858-10865.
    [34] Deng, D., Qu, L., Achilefu, S., & Gu, Y. (2013). Broad spectrum photoluminescent quaternary quantum dots for cell and animal imaging. Chemical Communications, 49(82), 9494-9496.
    [35] Mews, A., Eychmüller, A., Giersig, M., Schooss, D., & Weller, H. (1994). Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. The Journal of physical chemistry, 98(3), 934-941.
    [36] Agrawal, B., & Maity, P. (2017). RECENT DEVELOPMENTS FOR THE SYNTHESIS OF AIR STABLE QUANTUM DOTS. Reviews on Advanced Materials Science, 49(2).
    [37] Reiss, P., Protiere, M., & Li, L. (2009). Core/shell semiconductor nanocrystals. small, 5(2), 154-168.
    [38] Bodnarchuk, M. I., & Kovalenko, M. V. (2013). Engineering Colloidal Quantum Dots. Cambridge University Press: Cambridge.
    [39] Ng, S. M., Koneswaran, M., & Narayanaswamy, R. (2016). A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Advances, 6(26), 21624-21661.
    [40] Zhong, H., Bai, Z., & Zou, B. (2012). Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications. The journal of physical chemistry letters, 3(21), 3167-3175.
    [41] Girma, W. M., Fahmi, M. Z., Permadi, A., Abate, M. A., & Chang, J. Y. (2017). Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. Journal of Materials Chemistry B, 5(31), 6193-6216.
    [42] Mei, S., Zhu, J., Yang, W., Wei, X., Zhang, W., Chen, Q., ... & Guo, R. (2017). Tunable emission and morphology control of the Cu-In-S/ZnS quantum dots with dual stabilizer via microwave-assisted aqueous synthesis. Journal of Alloys and Compounds, 729, 1-8.
    [43] Lai, P. Y., Huang, C. C., Chou, T. H., Ou, K. L., & Chang, J. Y. (2017). Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging. Acta biomaterialia, 50, 522-533.
    [44] Li, P. N., Ghule, A. V., & Chang, J. Y. (2017). Direct aqueous synthesis of quantum dots for high-performance AgInSe2 quantum-dot-sensitized solar cell. Journal of Power Sources, 354, 100-107.
    [45] Chang, J. Y., Chen, G. R., & Li, J. D. (2016). Synthesis of magnetofluorescence Gd-doped CuInS 2/ZnS quantum dots with enhanced longitudinal relaxivity. Physical Chemistry Chemical Physics, 18(10), 7132-7140.
    [46] Chen, Y., Li, S., Huang, L., & Pan, D. (2014). Low-cost and gram-scale synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots in an electric pressure cooker. Nanoscale, 6(3), 1295-1298.
    [47] Liang, Q., Bai, Y., Han, L., Deng, X., Wu, X., Wang, Z., ... & Meng, J. (2013). Hydrothermal synthesis of ZnSe: Cu quantum dots and their luminescent mechanism study by first-principles. Journal of Luminescence, 143, 185-192.
    [48] Regulacio, M. D., Win, K. Y., Lo, S. L., Zhang, S. Y., Zhang, X., Wang, S., ... & Zheng, Y. (2013). Aqueous synthesis of highly luminescent AgInS 2–ZnS quantum dots and their biological applications. Nanoscale, 5(6), 2322-2327.
    [49] Gaponik, N., Talapin, D. V., Rogach, A. L., Hoppe, K., Shevchenko, E. V., Kornowski, A., ... & Weller, H. (2002). Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. The Journal of Physical Chemistry B, 106(29), 7177-7185.
    [50] Vossmeyer, T., Katsikas, L., Giersig, M., Popovic, I. G., Diesner, K., Chemseddine, A., ... & Weller, H. (1994). CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. The Journal of Physical Chemistry, 98(31), 7665-7673.
    [51] Zhu, C. N., Zheng, D. Y., Cao, H. M., Zhu, S. Y., & Liu, X. J. (2017). Aqueous synthesis of highly fluorescent and stable Cu–In–S/ZnS core/shell nanocrystals for cell imaging. RSC Advances, 7(80), 51001-51007.
    [52] Zheng, L., Xu, Y., Song, Y., Wu, C., Zhang, M., & Xie, Y. (2009). Nearly monodisperse CuInS2 hierarchical microarchitectures for photocatalytic H2 evolution under visible light. Inorganic chemistry, 48(9), 4003-4009.
    [53] Saha, A. K., Sharma, P., Sohn, H. B., Ghosh, S., Das, R. K., Hebard, A. F., ... & Moudgil, B. M. (2013). Fe doped CdTeS magnetic quantum dots for bioimaging. Journal of Materials Chemistry B, 1(45), 6312-6320.
    [54] Song, J., Jiang, T., Guo, T., Liu, L., Wang, H., Xia, T., ... & Xia, R. (2015). Facile synthesis of water-soluble Zn-doped AgIn5S8/ZnS core/shell fluorescent nanocrystals and their biological application. Inorganic chemistry, 54(4), 1627-1633.
    [55] Hu, X., Chen, T., Xu, Y., Wang, M., Jiang, W., & Jiang, W. (2018). Hydrothermal synthesis of bright and stable AgInS 2 quantum dots with tunable visible emission. Journal of Luminescence.
    [56] Bilecka, I., & Niederberger, M. (2010). Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2(8), 1358-1374.
    [57] De la Hoz, A., Diaz-Ortiz, A., & Moreno, A. (2005). Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews, 34(2), 164-178.
    [58] Xiong, W. W., Yang, G. H., Wu, X. C., & Zhu, J. J. (2013). Microwave-assisted synthesis of highly luminescent AgInS 2/ZnS nanocrystals for dynamic intracellular Cu (ii) detection. Journal of Materials Chemistry B, 1(33), 4160-4165.
    [59] Kousar, S., & Javed, M. (2012). Evaluation of acute toxicity of copper to four fresh water fish species. International journal of agriculture and biology, 14(5), 801-804.
    [60] Satarug, S., & Moore, M. R. (2004). Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environmental health perspectives, 112(10), 1099.
    [61] Waisberg, M., Joseph, P., Hale, B., & Beyersmann, D. (2003). Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 192(2-3), 95-117.
    [62] Gutknecht, J. (1981). Inorganic mercury (Hg2+) transport through lipid bilayer membranes. The Journal of Membrane Biology, 61(1), 61-66.
    [63] Tchounwou, P. B., Ayensu, W. K., Ninashvili, N., & Sutton, D. (2003). Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental toxicology, 18(3), 149-175.
    [64] Linnik, R. P., & Zaporozhets, O. A. (2003). Solid-phase reagent for molecular spectroscopic determination of heavy metal speciation in natural water. Analytical and bioanalytical chemistry, 375(8), 1083-1088.
    [65] Yan, B., & Worsfold, P. J. (1990). Determination of cobalt (II), copper (II) and iron (II) by ion chromatography with chemiluminescence detection. Analytica Chimica Acta, 236, 287-292.
    [66] Minami, T., Atsumi, K., & Ueda, J. (2003). Determination of cobalt and nickel by graphite-furnace atomic absorption spectrometry after coprecipitation with scandium hydroxide. Analytical sciences, 19(2), 313-315.
    [67] Hutton, E. A., van Elteren, J. T., Ogorevc, B., & Smyth, M. R. (2004). Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP–MS. Talanta, 63(4), 849-855.
    [68] Yan, F., Zou, Y., Wang, M., Mu, X., Yang, N., & Chen, L. (2014). Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sensors and Actuators B: Chemical, 192, 488-495.
    [69] Yuan, C., Zhang, K., Zhang, Z., & Wang, S. (2012). Highly selective and sensitive detection of mercuric ion based on a visual fluorescence method. Analytical chemistry, 84(22), 9792-9801.
    [70] Saleem, M., & Lee, K. H. (2014). Selective fluorescence detection of Cu2+ in aqueous solution and living cells. Journal of Luminescence, 145, 843-848.
    [71] Chen, Y., & Rosenzweig, Z. (2002). Luminescent CdS quantum dots as selective ion probes. Analytical Chemistry, 74(19), 5132-5138.
    [72] Liu, Y., Deng, M., Zhu, T., Tang, X., Han, S., Huang, W., ... & Liu, A. (2017). The synthesis of water-dispersible zinc doped AgInS2 quantum dots and their application in Cu2+ detection. Journal of Luminescence, 192, 547-554.
    [73] Liu, S., Li, Y., & Su, X. (2012). Determination of copper (II) and cadmium (II) based on ternary CuInS 2 quantum dots. Analytical Methods, 4(5), 1365-1370.
    [74] Liu, S., Shi, F., Zhao, X., Chen, L., & Su, X. (2013). 3-Aminophenyl boronic acid-functionalized CuInS2 quantum dots as a near-infrared fluorescence probe for the determination of dopamine. Biosensors and Bioelectronics, 47, 379-384.
    [75] Zhu, F., Zhu, J., & Zhang, Z. (2017). Selective detection of glufosinate using CuInS 2 quantum dots as a fluorescence probe. RSC Advances, 7(76), 48077-48082.
    [76] Zi, L., Huang, Y., Yan, Z., & Liao, S. (2014). Thioglycolic acid-capped CuInS2/ZnS quantum dots as fluorescent probe for cobalt ion detection. Journal of Luminescence, 148, 359-363.
    [77] Liu, Z., Ma, Q., Wang, X., Lin, Z., Zhang, H., Liu, L., & Su, X. (2014). A novel fluorescent nanosensor for detection of heparin and heparinase based on CuInS2 quantum dots. Biosensors and Bioelectronics, 54, 617-622.
    [78] Xu, H., Wang, Z., Li, Y., Ma, S., Hu, P., & Zhong, X. (2013). A quantum dot-based “off–on” fluorescent probe for biological detection of zinc ions. Analyst, 138(7), 2181-2191.
    [79] Liu, Z., Li, G., Ma, Q., Liu, L., & Su, X. (2014). A near-infrared turn-on fluorescent nanosensor for zinc (II) based on CuInS 2 quantum dots modified with 8-aminoquinoline. Microchimica Acta, 181(11-12), 1385-1391.
    [80] Wang, X., & Guo, X. (2009). Ultrasensitive Pb 2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst, 134(7), 1348-1354.
    [81] Zhao, Q., Rong, X., Ma, H., & Tao, G. (2013). Dithizone functionalized CdSe/CdS quantum dots as turn-on fluorescent probe for ultrasensitive detection of lead ion. Journal of hazardous materials, 250, 45-52.
    [82] Schiffman, J. D., & Balakrishna, R. G. (2017). Quantum Dots as Fluorescent Probes: Synthesis, Surface Chemistry, Energy Transfer Mechanisms, and Applications. Sensors and Actuators B: Chemical.
    [83] Rizvi, S. B., Ghaderi, S., Keshtgar, M., & Seifalian, A. M. (2010). Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano reviews, 1(1), 5161.
    [84] Fonoberov, V. A., & Balandin, A. A. (2004). Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes. Applied physics letters, 85(24), 5971-5973.
    [85] Lee, Y. S., Nakano, K., Bu, H. B., & Kim, D. G. (2017). Microwave-assisted hydrothermal synthesis of highly luminescent ZnSe-based quantum dots with a quantum yield higher than 90%. Applied Physics Express, 10(6), 065001.
    [86] Tinjod, F., Moehl, S., Kheng, K., Gilles, B., & Mariette, H. (2004). CdTe/Zn 1− x Mg x Te self-assembled quantum dots: Towards room temperature emission. Journal of applied physics, 95(1), 102-108.
    [87] Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. science, 281(5385), 2013-2016.
    [88] Che, D., Ding, D., Wang, H., Zhang, Q., & Li, Y. (2016). Aqueous synthesis of high bright Ag2SeZnSe quantum dots with tunable near-infrared emission. Journal of Alloys and Compounds, 678, 51-56.
    [89] Liu, L., Hu, R., Law, W. C., Roy, I., Zhu, J., Ye, L., ... & Yong, K. T. (2013). Optimizing the synthesis of red-and near-infrared CuInS 2 and AgInS 2 semiconductor nanocrystals for bioimaging. Analyst, 138(20), 6144-6153.
    [90] Che, D., Zhu, X., Wang, H., Duan, Y., Zhang, Q., & Li, Y. (2016). Aqueous synthesis of high bright and tunable near-infrared AgInSe2–ZnSe quantum dots for bioimaging. Journal of colloid and interface science, 463, 1-7.
    [91] Gao, X., Cui, Y., Levenson, R. M., Chung, L. W., & Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature biotechnology, 22(8), 969.
    [92] Panthani, M. G., Khan, T. A., Reid, D. K., Hellebusch, D. J., Rasch, M. R., Maynard, J. A., & Korgel, B. A. (2013). In Vivo Whole Animal Fluorescence Imaging of a Microparticle-Based Oral Vaccine Containing (CuInSe x S2–x)/ZnS Core/Shell Quantum Dots. Nano letters, 13(9), 4294-4298.
    [93] Zrazhevskiy, P., Sena, M., & Gao, X. (2010). Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews, 39(11), 4326-4354.
    [94] Smith, A. M., Dave, S., Nie, S., True, L., & Gao, X. (2006). Multicolor quantum dots for molecular diagnostics of cancer. Expert review of molecular diagnostics, 6(2), 231-244.
    [95] Lim, E. K., Kim, H. O., Jang, E., Park, J., Lee, K., Suh, J. S., ... & Haam, S. (2011). Hyaluronan-modified magnetic nanoclusters for detection of CD44-overexpressing breast cancer by MR imaging. Biomaterials, 32(31), 7941-7950.
    [96] Grabolle, M., Spieles, M., Lesnyak, V., Gaponik, N., Eychmüller, A., & Resch-Genger, U. (2009). Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Analytical Chemistry, 81(15), 6285-6294.
    [97] Tsuji, I., Kato, H., Kobayashi, H., & Kudo, A. (2004). Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn) x Zn2 (1-x) S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. Journal of the American Chemical Society, 126(41), 13406-13413.
    [98] Tsuji, I., Kato, H., Kobayashi, H., & Kudo, A. (2005). Photocatalytic H2 Evolution under Visible-Light Irradiation over Band-Structure-Controlled (CuIn) x Zn2 (1-x) S2 Solid Solutions. The Journal of Physical Chemistry B, 109(15), 7323-7329.
    [99] Zhang, S. B., Wei, S. H., Zunger, A., & Katayama-Yoshida, H. (1998). Defect physics of the CuInSe 2 chalcopyrite semiconductor. Physical Review B, 57(16), 9642.
    [100] Nose, K., Omata, T., & Otsuka-Yao-Matsuo, S. (2009). Colloidal synthesis of ternary copper indium diselenide quantum dots and their optical properties. The Journal of Physical Chemistry C, 113(9), 3455-3460.
    [101] Sharma, D. K., Hirata, S., Bujak, L., Biju, V., Kameyama, T., Kishi, M., ... & Vacha, M. (2017). Influence of Zn on the photoluminescence of colloidal (AgIn) x Zn 2 (1− x) S 2 nanocrystals. Physical Chemistry Chemical Physics, 19(5), 3963-3969.
    [102] Wang, J., Zhang, R., Bao, F., Han, Z., Gu, Y., & Deng, D. (2015). Water-soluble Zn–Ag–In–Se quantum dots with bright and widely tunable emission for biomedical optical imaging. Rsc Advances, 5(108), 88583-88589.
    [103] Torimoto, T., Ogawa, S., Adachi, T., Kameyama, T., Okazaki, K. I., Shibayama, T., ... & Kuwabata, S. (2010). Remarkable photoluminescence enhancement of ZnS–AgInS 2 solid solution nanoparticles by post-synthesis treatment. Chemical communications, 46(12), 2082-2084.
    [104] Guo, W. (2013). Synthesis of Zn-Cu-In-S/ZnS core/shell quantum dots with inhibited blue-shift photoluminescence and applications for tumor targeted bioimaging. Theranostics, 3(2), 99.
    [105] Pearson, R. G. (1963). Hard and soft acids and bases. Journal of the American Chemical Society, 85(22), 3533-3539.
    [106] Song, J., Ma, C., Zhang, W., Li, X., Zhang, W., Wu, R., ... & Xia, R. (2016). Bandgap and structure engineering via cation exchange: from binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging. ACS applied materials & interfaces, 8(37), 24826-24836.
    [107] Yarema, O., Yarema, M., & Wood, V. (2018). Tuning the Composition of Multicomponent Semiconductor Nanocrystals: The Case of I–III–VI Materials. Chemistry of Materials, 30(5), 1446-1461.
    [108] Feng, J., Sun, M., Yang, F., & Yang, X. (2011). A facile approach to synthesize high-quality Zn x Cu y InS1. 5+ X+ 0.5 Y nanocrystal emitters. Chemical Communications, 47(22), 6422-6424.
    [109] Liu, Z., Tang, A., Wang, M., Yang, C., & Teng, F. (2015). Heating-up synthesis of cadimum-free and color-tunable quaternary and five-component Cu–In–Zn–S-based semiconductor nanocrystals. Journal of Materials Chemistry C, 3(39), 10114-10120.
    [110] Jiang, T., Shen, M., Dai, P., Wu, M., Yu, X., Li, G., ... & Zeng, H. (2017). Cd-free Cu–Zn–In–S/ZnS quantum dots@ SiO2 multiple cores nanostructure: preparation and application for white LEDs. Nanotechnology, 28(43), 435702.
    [111] Li, S., Zhao, Z., Liu, Q., Huang, L., Wang, G., Pan, D., ... & He, X. (2011). Alloyed (ZnSe) x (CuInSe2) 1–x and CuInSe x S2–x Nanocrystals with a Monophase Zinc Blende Structure over the Entire Composition Range. Inorganic chemistry, 50(23), 11958-11964.
    [112] Takei, K., Maeda, T., Gao, F., Yamazoe, S., & Wada, T. (2014). Crystallographic and optical properties of CuInSe2–ZnSe system. Japanese Journal of Applied Physics, 53(5S1), 05FW07.
    [113] Sadhu, S., & Patra, A. (2012). Lattice Strain Controls the Carrier Relaxation Dynamics in Cd x Zn1–x S Alloy Quantum Dots. The Journal of Physical Chemistry C, 116(28), 15167-15173.
    [114] Ding, Q., Zhang, X., Li, L., Lou, X., Xu, J., Zhou, P., & Yan, M. (2017). Temperature dependent photoluminescence of composition tunable Zn x AgInSe quantum dots and temperature sensor application. Optics express, 25(16), 19065-19076.
    [115] Liu, W., Zhang, Y., Zhai, W., Wang, Y., Zhang, T., Gu, P., ... & Zhao, J. (2013). Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots. The Journal of Physical Chemistry C, 117(38), 19288-19294.
    [116] Wang, X., Liang, Z., Xu, X., Wang, N., Fang, J., Wang, J., & Xu, G. (2015). A high efficient photoluminescence Zn–Cu–In–S/ZnS quantum dots with long lifetime. Journal of Alloys and Compounds, 640, 134-140.
    [117] Chai, F., Wang, C., Wang, T., Li, L., & Su, Z. (2010). Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS applied materials & interfaces, 2(5), 1466-1470.
    [118] Mao, X., Li, Z. P., & Tang, Z. Y. (2011). One pot synthesis of monodispersed L-glutathione stabilized gold nanoparticles for the detection of Pb 2+ ions. Frontiers of Materials Science, 5(3), 322-328.
    [119] Chen, J., Zhu, Y., & Zhang, Y. (2016). Glutathione-capped Mn-doped ZnS quantum dots as a room-temperature phosphorescence sensor for the detection of Pb2+ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 164, 98-102.
    [120] Cai, Z., Shi, B., Zhao, L., & Ma, M. (2012). Ultrasensitive and rapid lead sensing in water based on environmental friendly and high luminescent L-glutathione-capped-ZnSe quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 909-914.
    [121] Liang, G. X., Liu, H. Y., Zhang, J. R., & Zhu, J. J. (2010). Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots. Talanta, 80(5), 2172-2176.
    [122] Bandi, R., Dadigala, R., Gangapuram, B. R., & Guttena, V. (2018). Green synthesis of highly fluorescent nitrogen–Doped carbon dots from Lantana camara berries for effective detection of lead (II) and bioimaging. Journal of Photochemistry and Photobiology B: Biology, 178, 330-338.
    [123] Jiang, Y., Wang, Y., Meng, F., Wang, B., Cheng, Y., & Zhu, C. (2015). N-doped carbon dots synthesized by rapid microwave irradiation as highly fluorescent probes for Pb 2+ detection. New Journal of Chemistry, 39(5), 3357-3360.
    [124] Thermoscientific-intstructions:NHS and sulfo-NHS
    [125] Santhanam, S., Liang, J., Baid, R., & Ravi, N. (2015). Investigating thiol‐modification on hyaluronan via carbodiimide chemistry using response surface methodology. Journal of Biomedical Materials Research Part A, 103(7), 2300-2308.

    無法下載圖示 全文公開日期 2023/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE