簡易檢索 / 詳目顯示

研究生: 張安潔
An-Chieh Chang
論文名稱: 以浮除法分離水相中之石墨和磷酸鋰鐵
Flotation Separation of Graphite and Lithium Iron Phosphate in Aqueous Solution
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 顧洋
Young Ku
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 74
中文關鍵詞: 石墨磷酸鋰鐵浮選分離界面活性劑
外文關鍵詞: Flotation, Graphite, Lithium iron phosphate, Separation
相關次數: 點閱:317下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技發展,鋰電池應用逐漸興盛。磷酸鋰鐵 (LFP) 為鋰電池陰極的材料,相較傳統鋰電池,具備價格平價、使用壽命長和高能量密度等優點,逐漸成為主流電池。在廢磷酸鋰鐵電池粉末中,檢測得知碳含量的比例很高,約26%左右,主要來自於電池中的陽極石墨。高碳含量不利於濕法冶金程序,會影響金屬處理量及增加能源消耗。本研究主要目的在於探討浮選作為預處理程序,移除電池中的石墨的可行性。研究中先使用純石墨及純磷酸鋰鐵,分別探討浮選中使用不同表面活性劑、表面活性劑劑量、pH值對單一材料影響,並檢測界達電位及粒徑變化。接續依據與廢棄物相同比例的石墨及磷酸鋰鐵做混合材料實驗,最終嘗試以實際廢磷酸鋰鐵電池浮選分離。
    本研究使用四種不同的表面活性劑:十六烷基三甲基溴化銨 (CTAB)、十二烷基硫酸鈉 (SDS)、油酸鈉 (NaOL) 和 Triton X-100 (TX-100)。研究結果顯示在劑量4 mg/L,CTAB相較其他表面活性劑,可以有效將石墨與磷酸鋰鐵從水中分離,在pH 9.5時回收效率分別為85.24% 和 76.09%。CTAB 能將兩材料從水中分離有效分離是由於負表面與帶正電荷的表面活性劑之間的靜電吸引力。從界達電位分析可看到兩材料使用CTAB後電位顯著提升,且使粒徑大小變得更大。混合實驗及廢磷酸鋰鐵電池實驗由CTAB進行,結果顯示在混合兩材料和廢磷酸鋰鐵電池實驗中,CTAB能都將兩材料同時從水中移除。可是並無法選擇性分離兩者,主要限制應是其等電位點接近。有待後續研究克服。


    With the rapid advancement of technology, the utilization of lithium batteries is gaining immense popularity. Among the various materials employed in the cathode of lithium batteries, lithium iron phosphate (LFP) has emerged as a dominant choice. In the spent LFP battery powder, a significant fraction of carbon content, approximately 26%, was found, mainly from the graphite anode in the battery. The high carbon content is unfavorable to the hydrometallurgical process, which affects the metal processing efficiency and increases energy consumption.
    The main objective of this study is to investigate the feasibility of using flotation as a pretreatment process to remove the carbon from the waste. In this study, pure graphite and pure LFP were used to investigate the effects of surfactant type, surfactant doses, and pH, while the zeta potential and particle size variation were examined as well. The graphite and LFP mixture in the same proportions as the spent LFP batteries was then used for the experiments, and finally the actual spent LFP batteries were tested.
    Four different types of surfactants were used in this study: cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), sodium oleate (NaOL), and Triton X-100 (TX-100). The results showed that CTAB was effective in separating graphite and LFP, respectively, from water at a dose of 4 mg/L, with recovery efficiencies of 85.24% and 76.09% at pH 9.5. It was attributed to the electrostatic attraction between the negatively charged surfaces and the positively charged surfactant. The mixed-sample experiment using CTAB showed that CTAB was able to remove both materials from water simultaneously in both the mixed and spent LFP experiments. However, it was not possible to have a selective separation of graphite and LFP.

    摘要..........................................................................i ABSTRACT.....................................................................ii ACKNOWLEDGEMENT.............................................................iii TABLE OF CONTENTS............................................................iv LIST OF FIGURES.............................................................vii LIST OF TABLES...............................................................ix CHAPTER 1 INTRODUCTION......................................................1-1 1.1 Background..............................................................1-1 1.2 Objectives of study.....................................................1-2 CHAPTER 2 LITERATURE REVIEW.................................................2-1 2.1 Lithium iron phosphate battery..........................................2-1 2.1.1 Battery demand and structure..........................................2-1 2.1.2 Recycling lithium iron phosphate batteries using flotation technology.2-4 2.1.3 Recycling graphite using flotation technology.........................2-7 2.2 Flotation...............................................................2-8 2.2.1 Flotation parameter...................................................2-9 2.2.1.1 Surfactant type.....................................................2-9 2.2.1.2 Concentration of flotation reagent.................................2-10 2.2.1.3 pH.................................................................2-11 2.2.1.4 Gas flow rate and bubble size......................................2-12 CHAPTER 3 MATERIALS AND METHODS.............................................3-1 3.1 Materials...............................................................3-1 3.2 Equipment and Instruments...............................................3-2 3.3 Experimental framework and procedures...................................3-4 3.4 Experimental methods....................................................3-5 3.4.1 Zeta potential and particle size measurement..........................3-5 3.4.2 Flotation experiment..................................................3-6 3.4.3 Elemental Analyzer EA000200...........................................3-8 CHAPTER 4 RESULTS AND DISCUSSION............................................4-1 4.1 Characterization........................................................4-1 4.1.1 XRD result of spent LFP...............................................4-1 4.1.2 Elemental Analyzer result.............................................4-2 4.1.2.1 Spent LFP...........................................................4-2 4.1.2.2 Pure graphite and pure LFP..........................................4-3 4.1.3 Zeta potential of pure graphite and LFP...............................4-4 4.2 Single material.........................................................4-5 4.2.1 Effect of different surfactant types..................................4-5 4.2.1.1 Pure graphite recovery..............................................4-7 4.2.1.2 Pure graphite particle size........................................4-10 4.2.1.3 Pure LFP recovery..................................................4-11 4.2.1.4 Pure LFP particle size.............................................4-13 4.2.2 Effect of surfactant concentration...................................4-14 4.2.2.1 Pure LFP and pure graphite recovery................................4-14 4.2.2.2 Pure LFP and pure graphite particle size...........................4-16 4.3 Mixed material.........................................................4-17 4.3.1 Mixed sample recovery with CTAB......................................4-17 4.4 Spent LFP..............................................................4-20 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS................. .................5-1 5.1 Conclusions.............................................................5-1 5.2 Recommendations.........................................................5-3 REFERENCES..................................................................R-1 APPENDIX....................................................................A-1

    Tawonezvi, T., Nomnqa, M., Petrik, L., and Bladergroen, B. J. (2023). "Recovery and Recycling of Valuable Metals from Spent Lithium-Ion Batteries: A Comprehensive Review and Analysis." Energies, 16(3): 33.
    Wang, L. H., Li, J., Zhou, H. M., Huang, Z. Q., Tao, S. D., Zhai, B. K., Liu, L. Q., and Hu, L. S. (2018). "Regeneration cathode material mixture from spent lithium iron phosphate batteries." Journal of Materials Science-Materials in Electronics, 29(11): 9283-9290.
    Kumar, S., Chand, P., Kumar, A., and Anand, H. (2021). "Effect of different aqueous electrolytes on electrochemical behavior of LiFePO4 as a cathode material: Lithium ion battery and renewable energy nexus." Energy Nexus, 1.
    Liu, J. J., Shi, H., Hu, X. Y., Geng, Y. N., Yang,L. M., Shao, P. H., and Luo, X. B. A. (2022). "Critical strategies for recycling process of graphite from spent lithium-ion batteries: A review." Science of the Total Environment, 816: 12.
    Al-Shammari, H., and Farhad, S. (2021). "Heavy liquids for rapid separation of cathode and anode active materials from recycled lithium-ion batteries." Resources Conservation and Recycling, 174.
    Mousa, E., Hu X. F., and Ye, G. Z. (2022). "Effect of Graphite on the Recovery of Valuable Metals from Spent Li-Ion Batteries in Baths of Hot Metal and Steel." Recycling, 7(1).

    El-bahi, A., Taha, Y., Ait-Khouia, Y., Hakkou R., and Benzaazoua,M. (2023). "Advancing phosphate ore minerals separation with sustainable flotation reagents: An investigation into highly selective biobased depressants." Advances in Colloid and Interface Science, 317: 15.
    Wang, C., Zeng, Y., Shen, L. F., Yang, Y., Sun, W., Cao, X. F., and Tang, H. H. (2023). "Enhancement on the selective flotation separation of carbon coated LiFePO4 and graphite electrode materials." Separation and Purification Technology, 311: 11.
    Li, L., Zhang, X. X., Li, M., Chen, R. J., Wu, F., Amine, K., and Lu, J. (2018). "The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies." Electrochemical Energy Reviews, 1(4): 461-482.
    Salces, A. M., Bremerstein, I., Rudolph, M., and Vanderbruggen, A. (2022). "Joint recovery of graphite and lithium metal oxides from spent lithium-ion batteries using froth flotation and investigation on process water re-use." Minerals Engineering, 184: 8
    Verdugo, L., Zhang, L., Saito, K., Bruckard, W., Menacho, J., and Hoadley, A. (2022). "Flotation behavior of the most common electrode materials in lithium ion batteries." Separation and Purification Technology 301: 11.
    Li, J. P., Zhang, J., Zhao, W., Lu, D. Q., Ren, G. L., and Tu, Y. A. (2022). "Application of Roasting Flotation Technology to Enrich Valuable Metals from Spent LiFePO4 Batteries." Acs Omega, 7(29): 25590-25599.
    Zhang, G. W., He, Y. Q., Feng, Y., Wang, H. F., and Zhu, X. N. (2018). "Pyrolysis-Ultrasonic-Assisted Flotation Technology for Recovering Graphite and LiCoO2 from Spent Lithium-Ion Batteries." Acs Sustainable Chemistry and Engineering, 6(8): 10896-10904.
    Yu, J. D., He, Y. Q., Ge, Z. Z., Li, H., Xie, W. N., and Wang, S. (2018). "A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: Grinding flotation." Separation and Purification Technology, 190: 45-52.
    He, Y. Q., Zhang, T., Wang, F. F., Zhang, G. W., Zhang, W. G., and Wang, J. (2017). "Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation." Journal of Cleaner Production 143: 319-325.
    Chelgani, S. C., Rudolph, M., Kratzsch, R., Sandmann, D., and Gutzmer, J. (2016). " A Review of Graphite Beneficiation Techniques. " Mineral Processing and Extractive Metallurgy Review, 37(1), 58-68.
    Vasumathi, N., Sarjekar, A., Chandrayan, H., Chennakesavulu, K., Reddy, G. R., Kumar, T. V. V., El-Gendy, N. S., and Gopalkrishna, S. J. (2023). "A Mini Review on Flotation Techniques and Reagents Used in Graphite Beneficiation". International Journal of Chemical Engineering, 1007689.
    Kumar, B., Das, B., Garain, A., Rai, S., Begum, W., Inamuddin, M., Mondal, M. H., Bhattarai, A., and Saha, B. (2022). "Diverse utilization of surfactants in coal-floatation for the sustainable development of clean coal production and environmental safety: a review. " Rsc Advances, 12(37), 23973-23988.
    Shean, B. J. and Cilliers, J. J. (2011). "A review of froth flotation control." International Journal of Mineral Processing 100(3-4): 57-71.
    Chen, Y., Li, S. L., Lin, S. R., Chen, M. Z., Tang, C., and Liu, X. H. (2023). "Promising energy-storage applications by flotation of graphite ores: A review." Chemical Engineering Journal 454: 20.
    Neugebauer, J. M. (1990). "Detergents: An overview." Methods in Enzymology, 182(C), 239–253.
    Al-Soufi, W., Piñeiro, L., Novo, M. (2012). "A model for monomer and micellar concentrations in surfactant solutions: Application to conductivity, NMR, diffusion, and surface tension data." Journal of Colloid and Interface Science, 370(1), 102–110.
    Li, Z. X., Fu, Y., Li, Z., Nan, N., Zhu, Y. M., and Li, Y. W. (2019). "Froth flotation giant surfactants." Polymer 162: 58-62.
    Paria, S., and Khilar, K. C. (2004). "A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. " Advances in Colloid and Interface Science, 110(3), 75-95.
    Belhaj, A. F., Elraies, K. A., Mahmood, S. M., Zulkifli, N. N., Akbari, S. and Hussien, O. S. (2020). "The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review." Journal of Petroleum Exploration and Production Technology 10(1): 125-137.
    Yuan, X. Z., Meng, Y. T., Zeng, G. M., Fang Y. Y. and Shi, J. G. (2008). "Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation." Colloids and Surfaces a-Physicochemical and Engineering Aspects 317(1-3): 256-261.
    Yekeen, N., Manan, M. A., Idris, A. K. and Samin, A. M. (2017). "Influence of surfactant and electrolyte concentrations on surfactant Adsorption and foaming characteristics." Journal of Petroleum Science and Engineering 149: 612-622.
    Wungrattanasopon, P., Scamehorn, J. F., Chavedej, S., Saiwan, C., and Harwell, J. H. (1996). "Use of foam flotation to remove tert-butylphenol from water." Separation Science and Technology 31(11): 1523-1540.
    Polat, H., and Erdogan, D. (2007). "Heavy metal removal from waste waters by ion flotation." Journal of Hazardous Materials 148(1-2): 267-273.
    Shrimali, K., Atluri, V., Wang, X. M., and Miller, J. D. (2018). "Adsorption of corn starch molecules at hydrophobic mineral surfaces." Colloids and Surfaces a-Physicochemical and Engineering Aspects 546: 194-202.
    Lu, J.W.(2021). "Elemental Analyzer principle introduction and instrument introduction." Elemental Analyzer Room, Instrumentation Center, National Taiwan University, August(6).
    Rahman , A., and Brown, C. W.(1983). "Effect of pH on the critical micelle concentration of sodium dodecyl sulphate."Applied Polymer 28(4): 1331-1334.
    Dharaiya, N., Patel, U., Ray, D., Aswal, V. K., Sastry, N. V., and Bahadur, P. (2017). "Different pH triggered aggregate morphologies in sodium oleate-cationic surfactants mixed systems." New Journal of Chemistry 41(17): 9142-9151.
    Wang, H. N., Yang,W. Q., Yan, X. K., Wang, L. J., Wang, Y. T., and Zhang, H. J. (2020). "Regulation of bubble size in flotation: A review." Journal of Environmental Chemical Engineering 8(5): 17.
    Li, J. L., Armstrong, B. L., Kiggans, J., Daniel, C., and Wood, D. L. (2012). "Optimization of LiFePO4 Nanoparticle Suspensions with Polyethyleneimine for Aqueous Processing." Langmuir 28(8): 3783-3790.
    Mandzy, N., Grulke, E., and Druffel, T. (2005). Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technology, 160(2), 121-126.
    Kallay, N., Kovačević, D., and Žalac S. (2006). " Thermodynamics of the solid/liquid interface - its application to adsorption and colloid stability." Interface Science and Technology 11,113.
    Kumar, P., and Bohidar, H. B. (2010). "Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions. " Colloids and Surfaces a-Physicochemical and Engineering Aspects, 361(1-3), 13-24.
    Yuan, X. Z., Meng, Y. T., Zeng, G. M., Fang, Y. Y., and Shi, J. G. (2008). "Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. " Colloids and Surfaces a-Physicochemical and Engineering Aspects, 317(1-3), 256-261.
    Zhang, Y.,Zhu, H. Z., Zhu, J.B., Min, F .F., Chen, J., and Shi, Q. H. (2022). "Effect of inorganic cations on enhancing graphite/kerosene adsorption and reducing carbon emission in graphite flotation." Fuel, 314(15), 122740.

    QR CODE