簡易檢索 / 詳目顯示

研究生: 周朋毅
Peng-Yi Chou
論文名稱: 有機/無機石墨烯奈米混成材料製備及其超疏水薄膜及染料敏化太陽能電池應用之研究
A Study on Organic/Inorganic Graphene Nanohybrid Materials and Their Applications in Manipulating Superhydrophobic Surface and Dye-Sensitized Solar Cells
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 陳良益
Liang-Yih Chen
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 121
中文關鍵詞: 石墨烯碳管碳黑混成超疏水染料敏化太陽能電池
外文關鍵詞: Graphene, carbon nanotubes, carbon black, hybrid, superhydrophobic, dye-sensitized solar cells
相關次數: 點閱:385下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的是探討以微米/奈米分散技術製備石墨烯混成材料及其相關應用。結果討論將分成兩個部份探討,第四章主要是以設計及合成高分子型分散劑並控制石墨烯不同的分散程度及薄膜表面粗超度,將可製備出超疏水表面的薄膜;第五章為利用石墨烯混成材料製備染料敏化太陽能電池的對電極之應用研究。
    第四章討論分散少層的還原後氧化石墨烯並且製備超疏水薄膜。還原後氧化石墨烯不同的含氧量(oxygen content)、分散溶劑為極性(polar)或非極性(non-polar)以及添加不同比例的星狀油溶性分散劑,對於還原後氧化石墨烯的分散性和疏水性都會有所影響。混合其它奈米尺度的材料,例如奈米碳管(Carbon Nanotubes,CNTs)和碳黑(Carbon Black,CB),將可以提高薄膜表面的粗糙度,此結果可以仿造荷葉表面微米奈米結構的超疏水表面。最後,再添加聚甲基丙烯酸甲酯( Polymethylmethacrylate,PMMA ),提升微米奈米結構的機械性質。
    第五章為選用實驗室中品質較好的rGO,利用rGO本身優異的導電性以及催化特性運用於染料敏化太陽能電池(Dye Sensitive Solar Cell,DSSC)中的對電極(Counter Electrode,CE)。對電極選擇滴落塗佈(drop coating)以及非燒結(non-annealing)低溫( 80 o C )除去溶劑的簡單製程。從結果顯示添加高分子型分散劑可以幫助高品質石墨烯的分散,並進一步混成奈米碳管以及碳黑,優化對電極製備出石墨烯/奈米碳管/碳黑複合電極,期望可以取代傳統昂貴的白金對電極材料。


    Nano-manipulation is considered to be very important foundation research in nanotechnology. With the development of technology, the products have become the trend of miniaturization of materials that size from microns to nanometers. Therefore, the dispersion techniques urgently need to promote in order to approach the current demand. In this thesis, there are two parts describing the polymeric dispersants to achieve the nanohybrids of graphene platelets/-particle/-tubes nanomaterials or complexes will be prepared via the geometric shape in-homogeneity factor dispersing method and the corresponding functions including hydrophilic/hydrophobic dispersing properties. According to their functions, it could be searched possible applications, such as superhydrophobic surface and electrodes in dye-sensitized solar cells. The content of study is described as follow:
    In this study, the first part we report the micro-/nano- manipulation of highly surface roughness by star-shaped highly hydrophobic polymeric dispersants finely stabilized the nanohybrids of carbon black (CB), carbon nanotubes (CNTs), and reduced graphene oxide (rGO). The star-shaped organic dispersant, namely a polyisobutylene-imide copolymer (PIB-imide), was synthesized via amidation and imidation reactions of polyisobutylene-g-succinic anhydride (PIB-SA) and poly(oxypropylene)-triamine (Jeffamine T403) of approximately 440 average molecular weight (Mw). The dispersion mechanism between the carbon materials and the PIB-imide through non-covalent interactions such as hydrophobic effect. Furthermore, the hybrid films exhibiting a highly water-droplet contact angle of 158o and the sliding angle of 2o. Adding PMMA enhance the mechanism of micro/nanostructure also exhibiting a highly water-droplet CA of 152o and SA of 3o. The organic/inorganic nanohybrids are proven to be a convenient method for mimicking Lotus leaf surfaces and potential useful for manufacturing superhydrophobic coating.
    The second part choosing of reduced-grapheme oxide. Graphene has excellent electrical conductivity and catalytic properties. Adding an organic dispersant to help graphene dispersed and fabrication grapheme-carbon nanotubes and grapheme-carbon black composite electrode optimization of counter electrodes replace expensive platinum electrodes in dye-sensitized solar cells.

    摘要 I Abstract III 第一章 : 緒論 1 1.1前言 1 1.2 石墨烯介紹 1 1.2.2 氧化石墨(Graphite oxide) 3 1.2.2 氧化石墨烯(Graphene oxide) 4 1.2.3 還原氧化石墨烯(Reduced Graphene oxide) 4 1.3 液體潤濕表面現象 5 1.3.1超疏水基礎原理介紹 7 1.3.2表面接觸角量測 10 1.3.4遲滯角 11 1.3.5滾動角 12 1.4 太陽能基本介紹 13 1.4.1太陽能的優點 13 1.4.2太陽能電池介紹 13 1.5染料敏化太陽能電池介紹 14 1.5.1染料敏化太陽能電池結構 14 1.5.3染料敏化太陽能電池優點及缺點 17 1.5.4 對電極中的反應 18 1.5.5對電極在DSSC的重要性 18 第二章 : 文獻回顧 20 2.2 石墨烯的分散 22 2.3以石墨烯製備超疏水表面 23 2.3.1 表面官能化改質(Surface functionalization) 24 2.3.2溶劑改質(Solvent modification) 26 2.3.3 冷凍乾燥(Freeze-drying) 28 2.3.4 Template method(製備模板) 28 2.4染料敏化太陽能電池 30 2.4.1染料敏化太陽能電池的歷史 30 2.4.2 替換白金對電極的原因 31 2.5碳材為基礎材料的對電極 32 2.5.2石墨烯為基礎的對電極(Graphene-based counter electrodes) 35 2.5.3 石墨烯-碳管複合對電極 37 2.6 研究動機與目的 38 第三章 : 實驗方法 40 3.1實驗流程圖 40 3.2 實驗藥品與設備儀器 41 3.2.1 藥品/耗材名稱 41 3.2.2 實驗設備 43 3.2.3 分析儀器 43 3.3 實驗步驟 47 3.3.1還原後的氧化石墨烯製備超疏水薄膜 47 3.3.2製備染料敏化太陽能電池的對電極 48 第四章 : 還原後氧化石墨烯製備超疏水薄膜 51 4.1星狀油溶性有機分散劑 51 4.2 含氧量不同的還原後氧化石墨烯對於分散及接觸角的影響 55 4.3 極性不同的有機溶劑對於分散還原後氧化石墨烯以及接觸角的影響-溶劑改質 61 4.4 製備微米奈米結構的超疏水薄膜 67 4.5 提升微米奈米超疏水結構的機械性質 78 第五章 : 還原氧化石墨烯製備對電極 84 5.1石墨烯的選擇 84 5.2 石墨烯對電極厚度的影響 87 5.2.1 合成有機分散劑 87 5.2.2 石墨烯的分散 90 第六章 : 結論 103 第七章 : 未來展望 104 還原氧化石墨烯製備對電極 104 第八章 : 參考文獻 105

    Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.
    2 Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., & Chen, J. (2008). One‐step ionic‐liquid‐assisted electrochemical synthesis of ionic‐liquid‐functionalized graphene sheets directly from graphite. Advanced Functional Materials, 18(10), 1518-1525.
    3 Al-Shurman, K. M., & Naseem, H. (2014). CVD Graphene Growth Mechanism on Nickel Thin Films. In Proceedings of the 2014 COMSOL Conference in Boston.
    4 Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339.
    5 Lerf, A., He, H., Forster, M., & Klinowski, J. (1998). Structure of graphite oxide revisited||. The Journal of Physical Chemistry B, 102(23), 4477-4482.
    6 Cote, L. J., Kim, J., Tung, V. C., Luo, J., Kim, F., & Huang, J. (2010). Graphene oxide as surfactant sheets. Pure and Applied Chemistry, 83(1), 95-110.
    7 Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65-87.
    8 Wang, J. N., Zhang, Y. L., Liu, Y., Zheng, W., Lee, L. P., & Sun, H. B. (2015). Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications. Nanoscale, 7(16), 7101-7114.
    9 Ball, P. (1999). Engineering shark skin and other solutions. Nature, 400(6744), 507-509.
    10 Wang, H., He, G., & Tian, Q. (2012). Experimental study of the supercooling heat exchanger coated with fluorocarbon coating. Energy and Buildings, 55, 526-532.
    11 Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water.Industrial & Engineering Chemistry, 28(8), 988-994.
    12 Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546-551.
    13 Korhonen, J. T., Huhtamäki, T., Ikkala, O., & Ras, R. H. (2013). Reliable measurement of the receding contact angle. Langmuir, 29(12), 3858-3863.
    14 Wong, T. S., Kang, S. H., Tang, S. K., Smythe, E. J., Hatton, B. D., Grinthal, A., & Aizenberg, J. (2011). Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477(7365), 443-447.
    15 Organisation for Economic Co-operation and Development (2015). Energy Technology Perspectives 2015. Paris, France: International Energy Agency,
    16 Philibert, C., Solar energy perspectives (2011). Paris, France: Organisation for Economic Co-operation and Development & International Energy Agency.
    17 International Technology Roadmap for Photovoltaic (ITRPV). http://www.itrpv.net.
    18 Bradford, T., Solar revolution: the economic transformation of the global energy industry. MIT Press, 2008.
    9 Balzani, V., & Armaroli, N. (2010). Energy for a sustainable world: from the oil age to a sun-powered future. John Wiley & Sons.
    20 Kraushaar, J. J., & Ristinen, R. A. (2006). Energy and the Environment.
    21 Rath, J. K. (2003). Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications. Solar Energy Materials and Solar Cells, 76(4), 431-487.
    22 Shah, A. V., Schade, H., Vanecek, M., Meier, J., Vallat‐Sauvain, E., Wyrsch, N., Kroll, U., Droz, C.& Bailat, J. (2004). Thin‐film silicon solar cell technology. Progress in photovoltaics: Research and applications, 12(2‐3), 113-142.
    23 Holdren, J. P. (2008). Science and technology for sustainable well-being. Science, 319(5862), 424-434.
    24 Liu, X., Coxon, P. R., Peters, M., Hoex, B., Cole, J. M., & Fray, D. J. (2014). Black silicon: fabrication methods, properties and solar energy applications. Energy & Environmental Science, 7(10), 3223-3263.
    25 Bloss, W. H., Pfisterer, F., Schubert, M., & Walter, T. (1995). Thin‐film solar cells. Progress in Photovoltaics: Research and Applications, 3(1), 3-24.
    26 Shah, A., Torres, P., Tscharner, R., Wyrsch, N., & Keppner, H. (1999). Photovoltaic technology: the case for thin-film solar cells. Science, 285(5428), 692-698.
    27 Rühle, S., Shalom, M., & Zaban, A. (2010). Quantum‐dot‐sensitized solar cells. ChemPhysChem, 11(11), 2290-2304.
    28 Coakley, K. M., & McGehee, M. D. (2004). Conjugated polymer photovoltaic cells. Chemistry of materials, 16(23), 4533-4542.
    29 Cheng, Y. J., Yang, S. H., & Hsu, C. S. (2009). Synthesis of conjugated polymers for organic solar cell applications. Chemical reviews, 109(11), 5868-5923.
    30 Chopra, K. L., Paulson, P. D., & Dutta, V. (2004). Thin‐film solar cells: An overview. Progress in Photovoltaics: Research and Applications, 12(2‐3), 69-92.
    31 Kamat, P. V. (2008). Quantum dot solar cells. Semiconductor nanocrystals as light harvesters†. The Journal of Physical Chemistry C, 112(48), 18737-18753.
    32 Papageorgiou, N., Maier, W. F., & Grätzel, M. (1997). An iodine/triiodide reduction electrocatalyst for aqueous and organic media. Journal of the Electrochemical Society, 144(3), 876-884.
    33 Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical reviews, 110(11), 6595-6663.
    34 Thomas, S., Deepak, T. G., Anjusree, G. S., Arun, T. A., Nair, S. V., & Nair, A. S. (2014). A review on counter electrode materials in dye-sensitized solar cells. Journal of Materials Chemistry A, 2(13), 4474-4490.
    35 Kalyanasundaram, K. (2010). Dye-sensitized solar cells. EPFL press.
    36 Conibeer, G. (2007). Third-generation photovoltaics. Materials today, 10(11), 42-50.
    37 M. Gr.tzel, Science 2011, 334, 629–634. Yella, A., Lee, H. W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., Diau, E. W.-G., Yeh, C.-Y., Zakeeruddin, S. M.& Grätzel, M. (2011). Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 334(6056), 629-634.
    38 Gr, M. (2003). ñtzel," Dye-sensitized solar cells. J. Photochem. Photobiol. C, 4, 145-153.
    39 Boschloo, G., & Hagfeldt, A. (2009). Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Accounts of Chemical Research, 42(11), 1819-1826.
    40 Zhang, B., Wang, D., Hou, Y., Yang, S., Yang, X. H., Zhong, J. H., Liu, J., Wang, H. F., Hu, P., Zhao, H. J.& Yang, H. G. (2013). Facet-dependent catalytic activity of platinum nanocrystals for triiodide reduction in dye-sensitized solar cells. Scientific reports, 3, 1836.
    41 Sobon, G., Sotor, J., Jagiello, J., Kozinski, R., Zdrojek, M., Holdynski, M., Paletko, P., Boguslawski, J., Lipinska, L. & Abramski, K. M. (2012). Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Optics express, 20(17), 19463-19473.
    42 Thomsen, C., & Reich, S. (2000). Double resonant Raman scattering in graphite. Physical Review Letters, 85(24), 5214.
    43 Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A., & Tascon, J. M. D. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24(19), 10560-10564.
    44 S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A., R.S. Ruoff, Nano Lett. 9 (2009) 1593–1597.
    45 Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A.& Ruoff, R. S. (2009). Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano letters, 9(4), 1593-1597.
    46 Hernandez, Y., Lotya, M., Rickard, D., Bergin, S. D., & Coleman, J. N. (2009). Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 26(5), 3208-3213.
    47 Wang, S., Zhang, Y., Abidi, N., & Cabrales, L. (2009). Wettability and surface free energy of graphene films. Langmuir, 25(18), 11078-11081.
    48 Xue, Y., Liu, Y., Lu, F., Qu, J., Chen, H., & Dai, L. (2012). Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. The journal of physical chemistry letters, 3(12), 1607-1612.
    49 Rafiee, J., Rafiee, M. A., Yu, Z. Z., & Koratkar, N. (2010). Superhydrophobic to superhydrophilic wetting control in graphene films. Advanced Materials, 22(19), 2151-2154.
    50 Lin, Y., Ehlert, G. J., Bukowsky, C., & Sodano, H. A. (2011). Superhydrophobic functionalized graphene aerogels. ACS applied materials & interfaces, 3(7), 2200-2203.
    51 Lee, J. S., Yoon, J. C., & Jang, J. H. (2013). A route towards superhydrophobic graphene surfaces: surface-treated reduced graphene oxide spheres. Journal of Materials Chemistry A, 1(25), 7312-7315.
    52 O’regan, B., & Grfitzeli, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized. Nature, 353(6346), 737-740.
    53Papageorgiou, N., Maier, W. F., & Grätzel, M. (1997). An iodine/triiodide reduction electrocatalyst for aqueous and organic media. Journal of the Electrochemical Society, 144(3), 876-884.
    54 Kim, S. S., Nah, Y. C., Noh, Y. Y., Jo, J., & Kim, D. Y. (2006). Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells. Electrochimica Acta, 51(18), 3814-3819.
    55 Fang, X., Ma, T., Guan, G., Akiyama, M., Kida, T., & Abe, E. (2004). Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 570(2), 257-263.
    56 Grätzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 164(1), 3-14.
    57 Kim, J. M., & Rhee, S. W. (2012). Electrochemical properties of porous carbon black layer as an electron injector into iodide redox couple. Electrochimica Acta, 83, 264-270.
    58 Murakami, T. N., & Grätzel, M. (2008). Counter electrodes for DSC: application of functional materials as catalysts. Inorganica Chimica Acta, 361(3), 572-580.
    59 Lee, W. J., Ramasamy, E., Lee, D. Y., & Song, J. S. (2008). Grid type dye-sensitized solar cell module with carbon counter electrode. Journal of Photochemistry and Photobiology A: Chemistry, 194(1), 27-30.
    60 Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P., & Reck, B. K. (2015). Criticality of metals and metalloids. Proceedings of the National Academy of Sciences, 112(14), 4257-4262.
    61 Graedel, T. E., Harper, E. M., Nassar, N. T., & Reck, B. K. (2015). On the materials basis of modern society. Proceedings of the National Academy of Sciences, 112(20), 6295-6300.
    62 Erdmann, L., & Graedel, T. E. (2011). Criticality of non-fuel minerals: a review of major approaches and analyses. Environmental science & technology, 45(18), 7620-7630.
    63 Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V.& Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.
    64 Novoselov, K. S. A., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S. V.& Firsov, A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. nature, 438(7065), 197-200.
    65 Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
    66 Geim, A. K. (2009). Graphene: status and prospects. Science, 324(5934), 1530-1534.
    67 Geim, A. K. (2011). Nobel Lecture: Random walk to graphene. Reviews of Modern Physics, 83(3), 851.
    68 Novoselov, K. S. (2011). Nobel lecture: graphene: materials in the flatland. Reviews of Modern Physics, 83(3), 837.
    69 Novoselov, K. S., Fal, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., & Kim, K. (2012). A roadmap for graphene. Nature, 490(7419), 192-200.
    70 Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R.& Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308-1308.
    71 Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385-388.
    72 L., Liang, J., Huang, Y., Ma, Y., Wang, Y., & Chen, Y. (2009). Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon, 47(14), 3365-3368.
    73 Zhang, D. W., Li, X. D., Li, H. B., Chen, S., Sun, Z., Yin, X. J., & Huang, S. M. (2011). Graphene-based counter electrode for dye-sensitized solar cells.Carbon, 49(15), 5382-5388.
    74 Roy-Mayhew, J. D., Bozym, D. J., Punckt, C., & Aksay, I. A. (2010). Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. Acs Nano, 4(10), 6203-6211.
    75 Battumur, T., Mujawar, S. H., Truong, Q. T., Ambade, S. B., Lee, W., Han, S. H., & Lee, S. H. (2012). Graphene/carbon nanotubes composites as a counter electrode for dye-sensitized solar cells. Current Applied Physics, 12, e49-e53.
    76 Zhu, G., Pan, L., Lu, T., Xu, T., & Sun, Z. (2011). Electrophoretic deposition of reduced graphene-carbon nanotubes composite films as counter electrodes of dye-sensitized solar cells. Journal of Materials Chemistry, 21(38), 14869-14875.
    77 Velten, J., Mozer, A. J., Li, D., Officer, D., Wallace, G., Baughman, R., & Zakhidov, A. (2012). Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology, 23(8), 085201.
    78 Novoselov, K. S. A., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I. Dubonos, S. V.& Firsov, A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. nature, 438(7065), 197-200.
    79 Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
    80 Geim, A. K. (2009). Graphene: status and prospects. Science, 324(5934), 1530-1534.
    81 Geim, A. K. (2011). Nobel Lecture: Random walk to graphene. Reviews of Modern Physics, 83(3), 851.
    82 Novoselov, K. S. (2011). Nobel lecture: graphene: materials in the flatland. Reviews of Modern Physics, 83(3), 837.
    83 Novoselov, K. S., Fal, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., & Kim, K. (2012). A roadmap for graphene. Nature, 490(7419), 192-200.
    84 Zhang, D. W., Li, X. D., Li, H. B., Chen, S., Sun, Z., Yin, X. J., & Huang, S. M. (2011). Graphene-based counter electrode for dye-sensitized solar cells. Carbon, 49(15), 5382-5388.

    無法下載圖示 全文公開日期 2021/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2021/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE