簡易檢索 / 詳目顯示

研究生: 馮國璋
Kuo-Chang Feng
論文名稱: 基於混合式被動光纖網路系統在智慧城市中之高效益行動傳輸網路架構
High Efficiency METAhaul Framework with Hybrid PON in Smart City
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
San-Liang Lee
宋峻宇
Jun-Yu Sung
徐世祥
Shih-Hsiang Hsu
周錫熙
Hsi-Hsir Chou
曹恆偉
Heng-Wei Tsao
楊淳良
Chun-Liang Yang
王井煦
CHING-SHEU WANG
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 94
中文關鍵詞: 混合式被動光纖網路系統第五代行動通訊傳輸網路網路切片能源效率比
外文關鍵詞: Hybrid PON, 5G Transport Network, Network Slicing, Energy Efficiency Rating
相關次數: 點閱:251下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出創新混合式被動光纖網路系統(HPON),透過基於分時多工、分波多工,以及分時分波多工之混合式被動光纖網路,與光分佈網路之組合,有效地作為第五代行動通訊(5G)之傳輸網路。
    在無線接取網路(RAN)演進過程中,挑戰著傳輸網路必須彈性地依照其功能分割作集中單元(CU)、分佈單元(DU),以及遠端單元(RU),作前傳 (MFH)、中傳(MMH)及後傳 (MBH)能力。以符合行動寬頻提升(eMBB)、巨量物聯通訊(mMTC),與極可靠及低時延(URLLC)等應用需求。本論文研究及分析得到,HPON具備彈性混合架構;提出之網路切片架構,透過協調運作層與波長光柵路由器(WGR)運作,得以彈性調度波長(DWAS),使RU間具備互通能力。相較光傳輸網路(OTN)及電信等級乙太網路(CE)在各種頻譜與MIMO數值下,具備節省36.51%~79.62%功耗表現,而能源效率比(EER)數值在涵蓋15顆RU時,更達OTN及CE 的3倍。針對傳輸網路可涵蓋RU之數量分析中,依據實際測試HPON傳輸流量及RU之計算,提出佈建分析;並透過HPON各種模型之功率預算,進行可擴充涵蓋RU之分析。
    研究及分析確認,HPON為符合RAN彈性之架構,具備網路切片應用能力、最佳能耗表現,以及可擴充涵蓋RU之高效益傳輸網路。


    We propose Hybrid PON (HPON) on top of Mobile Evaluation Transport Architecture haul (METAhaul) to facilitate effectively with concurrent mobile fronthaul (MFH), mobile midhaul (MMH), and mobile backhaul (MBH) in one platform. It can accommodate the fifth generation (5G) Radio Access Network (RAN) evolution for enhanced mobile broadband (eMBB), massive machine type communications (mMTC), and ultra-reliable and low latency communications (URLLC) in the smart city.
    Our novel framework provides flexible network services and management with coexistence of the Time Division Multiplexing Passive Optical Network (TDM-PON), Wavelength Division Multiplexing Passive Optical Network (WDM-PON), and hybrid Time Wavelength Division Multiplexed Passive Optical Network (TWDM-PON). The propose network slicing schematic allows orchestrators to manage cross domains and perform radio unit (RU) interconnection among inter cells by using the wavelength grating router (WGR) which acts as the core component for dynamic wavelength assignment scheme (DWAS). The analysis shows that the HPON can reduce 36.51% to 79.62% power consumption against the Optical Transport Network (OTN), and Carrier Ethernet (CE). The energy efficient rating (EER) is even 3 times of the value than OTN and CE while converging 15 RUs. Moreover, we verify the scalability of the proposed HPON by lab experimental, RU calculation, and power budget analysis.
    Consequently, the HPON is justified to achieve high efficiency for 5G transport network, in terms of its compliant with RAN evolution, equipped network slicing scheme, best performance at reduced power consumption, and the roll out RUs with scalability in smart city.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 專有名詞目錄 X 第一章 導論 1 1.1 前言 1 1.2 第五代行動通訊之傳輸網路 2 1.3 研究動機 4 1.4 文獻探討 5 1.5 論文架構 10 第二章 行動傳輸網路架構介紹 11 2.1 前言 11 2.2 行動傳輸網路架構 11 2.2.1 光傳輸網路 (Optical Transport Network, OTN) 11 2.2.2 電信等級乙太網路 (Carrier Ethernet, CE) 13 2.2.3 混合PON接取網路 (HPON) 14 2.3 傳輸網路效能比較 15 2.3.1 傳輸網路功能說明 15 2.3.2 傳輸網路功率消耗方程式 18 2.3.3 傳輸網路功率消耗比較 20 2.1 本章小結 28 第三章 METAhaul網路架構 29 3.1 前言 29 3.2 METAhaul架構 29 3.3 HPON模型 32 3.3.1 TDM-PON模型 32 3.3.2 TWDM-PON模型 33 3.3.3 WDM-PON模型 34 3.3.4 其它共存模型 35 3.4 RU互通機制 36 3.4.1 網路切片 36 3.4.2 RU互通應用與機制 38 3.5 本章小結 43 第四章 METAhaul量測與分析 44 4.1 前言 44 4.2 METAhaul系統之量測 44 4.2.1 基於HPON架構之傳輸網路 44 4.2.2 HPON架構之數據量測結果 47 4.2.3 HPON架構涵蓋RU之分析 49 4.3 各種HPON模型之光功率預算分析 51 4.3.1 TDM-PON模型之光功率預算分析 52 4.3.2 TWDM-PON模型之光功率預算分析 56 4.3.3 WDM-PON模型之光功率預算分析 59 第五章 結論 68 5.1 研究成果討論 68 5.2 未來研究方向 69 參考文獻

    [1] Minimum requirements related to technical performance for IMT-2020 radio interface(s), ITU-R M.2410-0, Nov. 2017.
    [2] Transport network support of IMT-2020/5G, ITU-T Technical Report, 9 Feb. 2018.
    [3] M. Shafi, A. F. Molish, P. J. Smith, T. Haustein, P. Zh, P. D. Silva, F. Tufvesson, A. Benjebbour, G. Wunder, “5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice”, IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201-1221, Jun. 2017.
    [4] 5G wireless fronthaul requirements in a passive optical network context, ITU-T Series G Supplement 66, Oct. 2018.
    [5] RAN Rel-16 progress and Rel-17 potential work areas, Jul. 2019, [Online]. Available: https://www.3gpp.org/news-events/2058-ran-rel-16-progress-and-rel-17-potential-work-areas
    [6] M. Jaber, et al, “5G Backhaul Challenges and Emerging Research Directions: A Survey”, IEEE Access, vol. 4, pp.1743-1766, Apr. 2016
    [7] J. Wey, J. Zhang, “Passive Optical Networks for 5G Transport: Technology and Standards”, J. Lightw. Technol., vol. 37, no. 12, pp. 2830-2837, Jun. 15, 2019.
    [8] PON transmission technologies above 10 Gb/s per wavelength, [Online]. Available: https://www.itu.int/rec/T-REC-G.Sup64/en
    [9] H. Uzawa, et al, “First Demonstration of Bandwidth-Allocation Scheme for Network-Slicing-Based TDM-PON toward 5G and IoT Era”, in Proc. Opt. Fiber Commun. Conf. Exhibit. (OFC), Mar. 2019, pp.1-3.
    [10] P. Sehier, P. Chanclou, N. Benzaoui, D. Chen, K. Kettunen, M. Lemke, Y. Pointurier, P. Dom, “Transport Evolution for the RAN of the Future”, J. OPT. Commun. Netw., vol. 11, no. 4, pB97-pB108, Apr. 2019.
    [11] N. Chand, X. Liu, L. Zhou, G. Peng, and F. Effenberger, “Demonstration of Coexistence of Legacy Video and OFDMPON in the Video Wavelength Band for Enhancing the Throughput and Flexibility of TDM PON Systems”, Asia Commun. and Photonics Conf. (ACP), Nov. 2014, pp.1-3.
    [12] H. Qiao, C. Gan, Y. Ya , X. Li,” Tg-minimised bandwidth-allocated scheme for multi-subsystem-based VPON in metroaccess optical network”, IET Commun. Vol. 13, no. 9, pp. 1192-1199, Feb. 2019
    [13] K. Kim, et al, “High Speed and Low Latency Passive Optical Network for 5G Wireless Systems”, J. Lightw. Technol., vol. 37, no. 12, pp. 2873-2882, Jun. 2019.
    [14] H. Uzawa, Y. Arikawa, K. Kawai, S. Shigematsu, “Data Transmission Scheme for Enhancing Effective Downlink Bandwidth in 5G Mobile Fronthaul with TDM-PON”, in Proc. Eur. Conf. on Opt. Commun. (ECOC), Sept. 2015, pp. 1-3.
    [15] D. Liang, R. Gu, Q. Guo, Y. Ji, “Demonstration of Multi -vendor Multi -standard PON Networks for Network Slicing in 5G -oriented Mobile Network”, Asia Commun. and Photonics Conf. (ACP), Nov. 2017, pp. 1-3.
    [16] H. Khalili, P. S. Khodashenas, D. Rincon, S. Siddiqui, J. R. Piney, and S. Sallent, “Design Considerations for an Energy-Aware SDN-Based Architecture in 5G EPON Nodes”, Int. Conf. on Trans. Opt. Netw. (ICTON), Jul. 2018, pp. 1-4.
    [17] S. Zhou, X. Liu, F. Effenberger, and J. Chao, “Low-Latency High-Efficiency Mobile Fronthaul With TDM-PON (Mobile-PON)”, IEEE/OSA J. Opt. Commun. Netw., vol. 10, no. 1, pp. A20-A26, Nov. 2018.
    [18] H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto, Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical Mobile-DBA Scheme Considering Data Arrival Period for 5G Mobile Fronthaul with TDM-PON”, in Proc. Eur. Conf. on Opt. Commun. (ECOC), Sept. 2017, pp. 1-3.
    [19] H. Sato, H. Yukio, K. Nakura, and S. Kozaki, “Reducing Uplink Transmission Latency for Applying TDM-PON to Mobile Fronthaul”, in Proc. Eur. Conf. on Opt. Commun. (ECOC), Sept. 2018, pp. 1-3.
    [20] Y. Fu, R. Gu, Y. Ji, “Experimental Demonstration of “PON + Embedded-HardwareSwitch” for Low-latency Communication in Dual-stage 5G Fronthaul Network Architecture”, in Proc. Eur. Conf. on Opt. Commun. (ECOC), Sept. 2017, pp. 1-3.
    [21] X. Liu and F. Effenberger, “Emerging Optical Access Network Technologies for 5G Wireless”, IEEE/OSA J. Opt. Commun. Netw., vol. 6, no. 12, pp. B70-B79, Nov. 2016
    [22] W. Xie, N. T. Mao, and K. Rundberget, “Cost Comparisons of Backhaul Transport Technologies for 5G Fixed Wireless Access”, IEEE 5G World Forum (5GWF), Jul. 2018, pp. 159-163.
    [23] A. D. Giglio and A. Pagano, “Scenarios and Economic Analysis of Fronthaul in 5G Optical Networks”, J. Lightw. Technol., vol. 37, no. 2, pp. 585-591, Jan. 15, 2019.
    [24] H. Chen, Y. Li, S. K. Bose, W. Shao, L. Xiang, Y. Ma, and G. Shen, “Cost-Minimized Design for TWDM-PONBased 5G Mobile Backhaul Networks”, IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 11, pp. B1-B11, Nov. 2016.
    [25] S. L. Lee, C. H. Sun, and K. C. Feng, “Hybrid Passive Optical Networking Architecture and Techniques for Constructing Green Broadband Access Networks”, in Proc. OptoElectronics. and Commun. Conf. (OECC), Jul. 2014, pp. 153-155.
    [26] T. Pfeiffer, “Next Generation Mobile Fronthaul and Midhaul Architectures”, IEEE/OSA J. Opt. Commun. Netw., vol. 7, no. 11, pp. B38-B45, Nov. 2015
    [27] B. Skubic, M. Fiorani, S. Tombaz, A. Furuskär, J. Mårtensson, and P. Monti, “Optical Transport Solutions for 5G Fixed Wireless Access”, IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 9, pp. D10-D18, Nov. 2017.
    [28] E. Harstead, et al, “Technology Roadmap for Time-Division Multiplexed Passive Optical Networks (TDM PONs)”, J. Lightw. Technol., vol. 37, no. 2, pp. 657-664, Jan. 2019.
    [29] Mesodiakaki, P. Maniotis, Ch. Vagionas, M. Gatzianas, E. Datsika, E. Kartsakli, J. Vardakas, and G. Kalfas, “Medium-transparent Dynamic Bandwidth Allocation for 5G Fiber Wireless Dense Fronthaul Networks”, in Proc. IEEE 23rd Int. Workshop Comput. Aided Modeling Design Commun. Links Netw. (CAMAD), Sept. 2018, pp. 1-6.
    [30] R. I. Tinini, D. M. Batista, G. B. Figueiredo, M. Tornatore, and B. Mukherjee, “Low-Latency and Energy-Efficient BBU Placement and VPON Formation in Virtualized Cloud-Fog RAN” IEEE/OSA J. Opt. Commun. Netw., vol. 11, no. 4, pp. B37-B48, Apr. 2019.
    [31] Y. Nakayama, H. Uzawa, D. Hisano, H. Ujikawa, H. Nakamura, J. Terada, A. Otaka, “Efficient DWBA Algorithm for TWDM-PON with Mobile Fronthaul in 5G Networks”, in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2017, pp. 1-6.
    [32] X. Wang, C. Cavdar, L. Wang, M. Tornatore, H. S. Chung, H. H. Lee, S. M. Park, and B. Mukherjee, “Virtualized Cloud Radio Access Network for 5G Transport”, IEEE Commun. Mag., vol. 55, no. 9, pp. 202-209, Sept. 2018.
    [33] X. Wang, L. Wang, C. Cavdar, M. Tornatore, G. B. Figueiredo, H. S. Chung, H. H. Lee, S. Park, and B. Mukherjee, “Handover Reduction in Virtualized Cloud Radio Access Networks Using TWDM-PON Fronthaul”, IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 12, pp. B124-B134, Nov. 2016.
    [34] K. Sone, et al, “Demonstration of Simultaneous Multiple ONUs Activation in WDM-PON System for 5G Fronthaul”, in Proc. Opt. Fiber Commun. Conf. Exhibit. (OFC), Mar. 2018, pp. 1-3
    [35] M. H. Eiselt, J. Zou, M. Lawin, C. Wagner, J. P. Elbers, “Optical Transceivers for Mobile Front-Haul and PON Applications”, in Proc. Eur. Conf. on Opt. Commun. (ECOC), Sept. 2017, pp. 1-3.
    [36] D. Breuer, E. Weis, S. Krauß, M. Düser, “5G Converged Transport in Future Access Networks”, ITG Conf. Broadband Coverage in Germany, Mar. 2017, pp. 1-4.
    [37] J. K. Chaudhary, J. Zou and G. Fettweis, “Cost Saving Analysis in Capacity-Constrained C-RAN Fronthaul”, in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1-7.
    [38] 40-Gigabit-capable passive optical networks (NG-PON2): General requirements, ITU-T G.989.1, Mar. 2013.
    [39] D. Zhang, et al, “High speed WDM-PON technology for 5G fronthaul network”, Asia Commun. and Photonics Conf. (ACP), Oct. 2018, pp. 1-3.
    [40] Yejun Liu and Lei Guo, “Planning of Resilient OFDM-PON in Support of 5G Backhaul”, Int. Conf. on Trans. Opt. Netw. (ICTON), Jul. 2018, pp. 1-4.
    [41] Y. Liu, Y. Liu, N. Yan, P.o Han ; L. Guo, “Standard-Compliant Dynamic Bandwidth Allocation in OFDM-PON Supporting Multi-Service”, Asia Commun. and Photonics Conf. (ACP), Oct. 2018, pp. 1-3.
    [42] J. H., F. Long, R. Deng, J. Shi, M. Dai, and L. Chen, “Flexible Multiband OFDM Ultra-Wideband Services Based on Optical Frequency Combs”, IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 5, pp. 393-400, Nov. 2017.
    [43] Y. Liu, C. Ranaweera, C. Lim, L. Guo, A. Nirmalathas, “Convergence of 5G RAN and Optical Access: A Coordinated Resource Allocation Framework”, Asia Commun. and Photonics Conf. (ACP), Oct. 2018, pp. 1-3.
    [44] Y. Dong, R. P. Giddings, J. Tang, “Hybrid OFDM-Digital Filter Multiple Access PONs”, J. Lightw. Technol., vol. 36, no. 23, pp. 5640-5649, Dec. 1, 2018.
    [45] Y. LI, J. HAN, X. ZHAO, “Performance Investigation of a Cost- and Power-Effective High Nonlinearity Tolerance OFDMA-PON Scheme Based on Sub-Nyquist Sampling Rate and DFT-Spread”, IEEE Access, vol. 7, pp. 43137-43142, Apr. 2019
    [46] V. Eramo, M. Listanti, F.G. Lavacca, P. Iovanna, “Dimensioning of OTN/WDM Rings for the transport of Ethernet/CPRI Flows in 5G Scenario”, International Conference on Transparent Optical Networks (ICTON), July 2018
    [47] S. Bjørnstad, “Can OTN be replaced by Ethernet?”, International Conference on Optical Network Design and Modeling, May 2018
    [48] M. Kourtis, G. Xilouris, D. Makris, A. Sarlas, T. Soenen, H. Koumaras, A Kourtis, “An End-to-End Carrier Ethernet MEF enabled 5G network architecture”, IFIP/IEEE Symposium on Integrated Network and Service Management (IM), April 2019, pp. 20-24
    [49] L. Pulcini ; P. Grazioso ; A. Valenti ; F. Matera ; D. Del Buono ; V. Attanasio, “ Software defined networks over carrier ethernet for 5G: Tests from a GMPLS test bed“, 18th Italian National Conference on Photonic Technologies, June 2016
    [50] B. Paolo, “Code of Conduct on Energy Consumption of Broadband Equipment”, 2019. [Online]. Available: https://e3p.jrc.ec.europa.eu/publications/eu-code-conduct-energy -consumption-broadband-equipment-version-7
    [51] Lambert, S., B. Lannoo, D. Colle, M. Pickavet, J. Montalvo, J. A. Torrijos, P. Vetter. 2013. “Power Consumption Evaluation for Next-Generation Passive Optical Networks”, 24th Tyrrhenian International Workshop on Digital Communications - Green ICT (TIWDC)
    [52] Nokia 7360 ISAM FX. 2018. [Online]. Available: https://static1.squarespace.com/static/519f78cae4b0cc7b837ad9d2/t/5b3395aa6d2a73a4df3822be/1530107309398/Nokia_7360_ISAM_FX_ETSI_for_Optical_LAN_Data_Sheet_EN.pdf
    [53] W. V. Heddghem, F. Idzikowski, “Equipment power consumption in optical multilayer networks-source data”, 2012. [Online]. Available: http://nss.et.put.poznan.pl/stik/pl/files/idzikowski/pdfs/technical-reports/HeddeghemIdzikowski2012ibcn.pdf
    [54] Coiant Groove G30 Network Disaggregation Platform, Coriant. 2018. [Online]. Available: https://cdn.extranet.coriant.com/esources/Solutions-Briefs/SB_Groove_G30_NDP_74C0128.pdf
    [55] Cisco NCS 5500 update. 2019. [Online]. Available: https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1106-msn-ckn.pdf
    [56] N. Fevrier, “NCS540/ NCS 560 and NCS 5500 Deepdive in the New Generation Service Providers Routers”, 2019. [Online]. Available: https://www.ciscolive.com/c/dam/r/ciscolive/apjc/docs/2019/pdf/BRKSPG-3279.pdf
    [57] Cisco NCS 560 Series Routers Interface Modules, Cisco. 2019. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/mobile-internet/datasheet-c78-742029.html
    [58] Cisco Network Convergence System 540 Router. 2019. [Online]. Available: https://www.cisco.com/c/en/us/products/collateral/routers/network-convergence-system-500-series-routers/datasheet-c78-740296.pdf
    [59] Informative values on the energy efficiency of telecommunication equipment, ITU-T L.1340, Feb. 2014
    [60] E. Harstead, et al, “Technology Roadmap for Time-Division Multiplexed Passive Optical Networks (TDM PONs)”, J. Lightw. Technol., vol. 37, no. 2, pp. 657-664, Jan. 2019.
    [61] Anwer Al-Dulaimi, Xianbin Wang, Chih-Lin I, "Network Slicing for 5G Networks”, Wiley-IEEE Press, 2018, pp. 327 – 370
    [62] X. Li, R. Casellas, G. Landi, A. d. l. Oliva, X. C. Pérez, A. G. Saavedra, T. Deiß, L. Cominardi, and R. Vilalta, “5G-Crosshaul Network Slicing: Enabling Multi-Tenancy in Mobile Transport Networks”, IEEE Commun. Mag., vol. 55, no. 8, pp. 128-137, Aug. 2017.
    [63] Multi-wavelength PON inter-Channel-Termination Protocol (ICTP) Specification, TR-352, broadband forum, Mar. 2017. [Online]: Available: https://www.broadband-forum.org/download/TR-352.pdf
    [64] Y. Mao, C. You, J. Zhang, K. Huang, K. B. Letaief, “A Survey on Mobile Edge Computing: The Communication Perspective”, IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, fourth quarter 2018.
    [65] XGSPON OLT Transceiver XFP Module, ACCELINK. [Online]. Available: http://en.accelink.com/d/file/content/ 2017/09/ 59c0865005f52.pdf
    [66] XGS-PON ONU Optical Transceiver, ACCELINK. [Online]. Available: http://en.accelink.com/d/file/ content/2017 /09/ 59c0863cd3d12.pdf
    [67] Ed H., “25G EPON PR20 loss budget, updated”, [Online]. Available: http://www.ieee802.org/3/ca/public/ meeting_ archive/ 2018/07/harstead_3ca_1_0718.pdf
    [68] D. Liu, S. Shuai, “50Gb/s technical feasibility analysis”, [Online]. Available: http://www.ieee802.org/3/ca/public/meeting_archive/ 2017/09/liu_3ca_2a_0917.pdf
    [69] N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, K. Motoshima, “100Gb/s to 1Tb/s Based Coherent Passive Optical Network Technology”, J. Lightw. Technol., vol. 36, no. 8, pp. 1485-1491, Apr. 15, 2018.
    [70] 100Gbps QSFP28 CWDM4 BiDi Optical Transceiver Module OPCW-W02-13-CB datasheet, optech. [Online]. Available: httpwww.optech.com.twWebMasteruploadsmallimageDS%2040GOPCW-W02-13-CB.pdf
    [71] NGPON2 OLT Transceiver XFP Module, ACCELINK. [Online]. Available: http://en.accelink.com/d/file/content/ 2017/ 09/ 59c086e763512.pdf
    [72] NGPON2 ONU Optical Transceiver XFP Module, ACCELINK. [Online]. Available: http://www.accelink.com/d/file/ content/ 2017/ 06/ 59561ffc63da8.pdf
    [73] Y. Guo, et al, “Demostration of 25Gbit/s per Channel NRZ Transmission with 35 dB Power Budget using 25G Ge/Si APD for Next Generation 100G-PON”, in Proc. Opt. Fiber Commun. Conf. Exhibit. (OFC), Mar. 2017, pp.1-3.
    [74] D. Liu, S. Shuai, “50Gb/s technical feasibility analysis”, 2017, [Online]. Available: http://www.ieee802.org/3/ca/public/meeting_archive/2017/09/liu_3ca_2a_0917.pdf
    [75] L. Xue, L. Yi, H. Ji, P. Li, W. Hu, “Symmetric 100-Gb/s TWDM-PON in O-Band Based on 10G-Class Optical Devices Enabled by Dispersion-Supported Equalization”, J. Lightw. Technol., vol. 36, no. 2, pp. 580-586, Jan. 15, 2018.
    [76] Y. Sone, “Optical transmission feasibility for 400GbE extended reach PMD”, May 2016. [Online]. Available: http://www.ieee802.org/3/ad_hoc/ngrates/public/16_05/sone_ecdc_01b_0516.pdf
    [77] A. Thirion, “White Paper, 100G beyond 10km A global study coherent and PAM4 Technology”, Prolabs. [Online]. Available: https://www.prolabs.com/assets/uploads/docs/White-Paper-100G-beyond-10Km.pdf
    [78] 400G CWDM8 10 km Optical Interface Technical Specifications Revision 1.1, MSA Group, Feb. 2018. [Online]. Available: https://www.cwdm8-msa.org/media/400G_CWDM8_MSA_ 10km_ Optical_ Interface_Specifications_r1_1.pdf
    [79] A. Shahpari, et al., “Coherent Access: A Review”, J. Lightw. Technol., vol. 35, no. 4, pp. 1050-1058, Feb. 15, 2017.
    [80] Md. S. Faruk, et al., “Technology Requirements for an Alamouti-Coded 100Gb/s Digital Coherent Receiver Using 3x3 Couplers for Passive Optical Networks”, IEEE Photonics J., vol. 10, no. 1, Feb. 2018.
    [81] E. Harstead, “25G Based PON Technology”, in Proc. Opt. Fiber Commun. Conf. Exhibit. (OFC), Mar. 2018, pp.1-3.
    [82] H. C. Chien, et al, “Approaching Terabits Per Carrier Metro-Regional Transmission Using Beyond-100GBd Coherent Optics With Probabilistically Shaped DP-64QAM Modulation”, J. Lightw. Technol., vol. 37, no. 8, pp. 1751-1755, Apr. 15, 2019
    [83] D. Lavery, et al., “Digital Coherent Receivers for Long-Reach Optical Access Networks”, J. Lightw. Technol., vol. 31, no. 4, pp. 609-620, Feb. 15, 2013.
    [84] V. Houtsma, D. V. Veen, “Bi-Directional 25G/50G TDM-PON With Extended Power Budget Using 25G APD and Coherent Detection”, J. Lightw. Technol., vol. 36, no. 1, pp. 122-127, Jan. 1, 2018.
    [85] R. Matsumoto, et al., “Burst-Mode Coherent Detection Using Fast-Fitting Pilot Sequence for 100-Gb/s/λ Coherent TDM-PON System”, in Proc. Eur. Conf. on Opt. Commun. (ECOC), Sept. 2017, pp. 1-3.
    [86] T. Funada, “Consideration on optical crosstalk and required wavelength block filter for receiver”, July 2016, [Online]. Available: http://www.ieee802.org/3/ca/public/meeting_archive/2016/07/funada_3ca_1a_0716.pdf
    [87] K. C. Feng, G. Keiser, S. L. Lee, “Power consumption in hybrid access and home networking”, in Proc. Opt. Fiber Commun. Conf. Exhibit. (OFC), Mar. 2011, pp. 1-3

    QR CODE