簡易檢索 / 詳目顯示

研究生: 許馨予
Hsin-Yu Hsu
論文名稱: 紫外光臭氧處理和ITO奈米顆粒改質石墨烯 應用於光及氨氣感測器
Graphene Modified by UV/ozone Treatment and ITO Nanoparticles as Photodetector and Ammonia Sensor
指導教授: 周賢鎧
Shyan-Kay Jou
口試委員: 黃柏仁
Bohr-Ran Huang
胡毅
Hu Yi
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 202
中文關鍵詞: 石墨烯紫外光臭氧處理氧化銦錫蕭特基元件氨氣感測器光感測器
外文關鍵詞: UV/ozone Treatment, ITO, Ammonia Sensor, Photodetector
相關次數: 點閱:391下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過化學氣相沉積法生成雙層石墨烯,並利用兩種改質方式修飾石墨烯,一種為紫外光臭氧處理,可以提高石墨烯表面含氧官能基,增加氨氣吸附能力及光電子轉移效果,另一種為濺鍍ITO奈米顆粒於表面,適當分布的奈米顆粒不只可以提高氣體分子吸附,由顆粒表面解吸的氧離子,亦可增加光照時的光電流。兩種改質方法以拉曼進行分析,可以發現ID/IG會變大,而I2D/IG變小,皆會對石墨烯造成缺陷。除此之外,會透過UV-visible、AFM、XPS進行改質石墨烯之分析,了解改質方法對石墨烯產生之其他影響。
    本實驗的氨氣感測結果,在UVO處理改質方面,經過15分鐘處理時間之元件於50 ppm的氨氣濃度下有14.8 %的響應度,高於原石墨烯的2.6 %,而響應時間為58.3 s,回復時間為106.2 s,皆快於原石墨烯所花費的時間,因為增加的含氧基團數量能夠有效吸附氨氣氣體分子,提高其響應度。在ITO顆粒沉積方面,以30 W濺鍍30 s的樣品,於50 ppm的氨氣濃度下有8 %的響應度,高於原石墨烯,其響應時間為40.0 s,回復時間為124.7 s,亦較原石墨烯所花費的時間短,這是因為ITO奈米顆粒存在,不只可以提高氨氣吸附能力,P-type的ITO與N-type石墨烯接觸,可以產生p-n界面,加快電子傳輸效果。
    實驗進一步量測光感測性能,發現元件具有 self power 特性,且開關比在UVO處理之元件可以高達106,濺鍍ITO的元件可以達到105。另外,比較其響應度及外部量子效應得知,改質之石墨烯皆有較大的數值。UVO處理後更為寬廣的能隙,可以增加吸收光子的能力;在光照射下ITO顆粒內電子會被激發而躍遷,產生自由電子生成強電流,增加石墨烯對光的響應。基於上述結果,UVO處理及濺鍍ITO 奈米顆粒皆可有效提升石墨烯作為光與氨氣感測器之響應。


    In this study, bi-layer graphene was grown by chemical vapor deposition, and two modification methods were used to modify graphene. One is UV/ozone treatment. This way can increase the active oxygen functional groups on the graphene surface, which can efficiently act as adsorption sites for detected gas molecules. The other one is depositing ITO nanoparticles on the surface. It can not only increase the adsorption of gas molecules, but the oxygen ions desorbed from the surface of the particles can also increase the current during light exposure. We can find that ID/IG become larger and I2D/IG become smaller from Raman spectroscopy by modifying. As to show that more defects have been created in graphene. In addition, UV-visible, AFM, and XPS were conducted to understand other effects of modification methods on graphene.
    The result of ammonia gas sensing in this experiment, the response is about 14.8 % for UVO treated 15 min Schottky device, It is higher than PG of about 2.6 % to 50 ppm NH3. UVO 15’s response time is 58.3 s and the recovery time is 106.2s, which is faster than the pure graphene one. In terms of ITO nanoparticles deposition, the 30W-30s-ITO based ammonia sensor at 50 ppm exhibit response of 8%. The response time is 40.0 s and the recovery time is 124.7 s, which are also better one. Because the p-n interface between the n-type ITO and the p-type graphene produces a stepwise energy barrier, electrons can pass through the stepped energy barrier more quickly.
    For the photodetector, the device show the self-powered characteristic. The ON/OFF ratio of UVO-treated’s responsivity can achieve up to 106. The ON/OFF ratio of ITO deposition’s responsivity can achieve up to 105. In addition, graphene modified by UV/Ozone treatment and ITO nanoparticles have a larger value on responsivity and external quantum efficiency. The wider energy gap after UVO treatment can increase the ability to absorb photons. The ITO particles’s electrons become excited state under the light. It generates strong current and increas the response of graphene. Based on the above results, we know that both UVO treatment and ITO nanopartical can effectively improve the response of graphene as a photodetector and ammonia sensor.

    摘要 i Abstract ii 致謝 iv 目錄 vi 表目錄 xi 圖目錄 xiv 第一章 前言 1 1.1. 生活隨處可見之光感測裝置 1 1.2. 大氣中的空氣汙染與毒性氣體 2 1.3. 研究動機 2 第二章 文獻回顧 3 2.1 晶體結構與特性 3 2.1.1. 石墨烯晶體結構與特性 3 2.1.2. 氧化石墨烯的晶體結構與特性 4 2.2 製備方法 5 2.2.1. 石墨烯的製備方法 5 2.2.1.1 磊晶成長法(Epitaxial growth) 6 2.2.1.2 氧化石墨烯還原法(Graphene oxide reduction) 6 2.2.1.3 機械剝離法(mechanical exfoliation) 6 2.2.1.4 化學氣相沉積法(Chemical vapor deposition, CVD) 7 2.2.2. 石墨烯之氧化改質 8 2.2.2.1 焊馬方法(Hummers’method) 9 2.2.2.2 氧電漿處理(oxygen plasma treatment) 9 2.2.2.3 紫外光臭氧處理(UV/Ozone treatment) 10 2.3 石墨烯及氧化石墨烯的拉曼光譜分析 12 2.3.1. 石墨烯拉曼光譜 12 2.3.2. 氧化石墨烯拉曼光譜圖 13 2.4 石墨烯之蕭特基元件探討 15 2.5 結合ITO奈米顆粒與石墨烯 17 2.6 石墨烯製備之氣體感測器 18 2.6.1. 純石墨烯氣體感測器之特性 18 2.6.2. 改質之氧化石墨烯的氣體感測器特性 21 2.6.3. 氧化金屬奈米顆粒/石墨烯之氣體感測器特性 24 2.7 石墨烯製備之光感測器 30 2.7.1 純石墨烯光感測器之特性 31 2.7.2 改質之氧化石墨烯的光感測器特性 32 2.7.3 氧化金屬奈米顆粒/石墨烯之光感測器特性 33 第三章 實驗方法與實驗儀器 36 3.1. 實驗材料與藥品規格 36 3.2. 實驗設備與儀器 38 3.3. 實驗步驟 38 3.3.1. 基材清洗 38 3.3.2. 化學氣相沉積法生長石墨烯 39 3.3.3. 轉移石墨烯至特定基板 41 3.3.4. 製備蕭特基(Schottky)元件 42 3.3.5. 製備氧化石墨烯 44 3.3.6. 磁控式濺鍍ITO製程 44 3.4. 實驗裝置與分析儀器 45 3.4.1. 實驗裝置與分析儀器 45 3.4.2. 化學氣相沉積系統(Chemical Vapor Deposition system) 47 3.4.3. 磁控式濺鍍系統(Magnetron Sputtering) 47 3.4.4. 紫外光臭氧清洗機 (UV/Ozone cleaner) 47 3.4.5. 顯微拉曼光譜儀(Microscopes Raman Spectrometer) 48 3.4.6. 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 49 3.4.7. X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 50 3.4.8. 原子力顯微鏡(Atomic force microscope, AFM) 51 3.4.9. 紫外光可見光光譜儀(Ultraviolet-visible spectrometer, UV-vis) 52 3.4.10. 光感測器量測系統(Photodetector system) 53 3.4.11. 氣體感測器量測系統(Gas Sensing System) 54 第四章 結果與討論 55 4.1. 紫外光臭氧處理石墨烯之結果分析 55 4.1.1. 拉曼光譜結果分析 55 4.1.2. XPS結果分析 57 4.1.3. 紫外可見光光譜圖分析 67 4.1.4. AFM結果分析 69 4.1.5. 蕭特基元件暗室電性分析 72 4.1.6. 氨氣感測分析 74 4.1.6.1 氧化石墨烯之靜態分析 74 4.1.6.2 氨氣感測效應與探討 78 4.1.7. 光感測分析 83 4.2. ITO處理之結果分析 93 4.2.1. 拉曼結果分析 93 4.2.2. XPS結果分析 94 4.2.3. 紫外可見光光譜圖分析 106 4.2.4. AFM結果分析 107 4.2.5. 蕭特基元件暗室電性分析 109 4.2.6. 氨氣感測分析 114 4.2.6.1 ITO/石墨烯之靜態分析 114 4.2.6.2 氨氣感測效應與探討 116 4.2.7. 光感測分析 119 第五章 結論 128 第六章 未來展望 132 參考文獻 133 附錄 140 附錄一、 蕭特基元件於乾燥空氣暗室之電性分析,PG 及經過 UVO 處理石墨烯之(a) I-V 曲線與(b) ln(J)-V 關係圖。 140 附錄二、 各組UVO處理元件暴露於不同氨氣濃度下的I-V曲線圖及在+3 V偏壓時的各濃度電流變化。 142 附錄三、 各組UVO處理元件暴露於不同氨氣濃度下的semilog I-V曲線圖及局部放大圖。 145 附錄四、 UVO處理元件於乾燥空氣環境對氨氣感測之分析。 148 附錄五、 PG及UVO處理後樣品之R值、EQE值趨勢圖。 156 附錄六、 經過UVO處理元件以強度0.3 mW/cm2 、501 nm 波長的LED照射下,利用示波器量測之V-t 圖。 157 附錄七、 PG及各組ITO元件之[C][O]原子比例。 160 附錄八、 各組ITO元件暴露於不同氨氣濃度下的I-V曲線圖及在+3 V偏壓時的各濃度電流變化。 161 附錄九、 各組ITO元件暴露於不同氨氣濃度下的semilog I-V曲線圖及局部放大圖。 163 附錄十、 各組ITO之元件於乾燥空氣環境對氨氣感測之分析。 165 附錄十一、 濺鍍ITO元件以強度0.3 mW/cm2 、501 nm 波長的LED照射下,利用示波器量測之V-t 圖。 171 附錄十二、 UVO 15 min於395、632、850 nm光源照射下進行動態氣體感測。 173 附錄十三、 ITO 30W-30s於395、632、850 nm光源照射下進行動態氣體感測。 177 附錄十四、 UVO處理的蕭特基元件之dV/dlnJ v.s J及H(J) v.s J圖。 181 附錄十五、 ITO處理的蕭特基元件之dV/dlnJ v.s J及H(J) v.s J圖。 183

    [1] T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio and D. Golberg, ''A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors'', Sensors, 9, 6504-6529 (2009).
    [2] E. Bourgeat-Lami, J. Faucheu and A. Noel, ''Latex routes to graphene-based nanocomposites'', Polymer Chemistry, 6, 5323-5357 (2015).
    [3] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov and A. K. Geim, ''The electronic properties of graphene'', Reviews of Modern Physics, 81, 109 (2009).
    [4] C. Lee, X. Wei, J. W. Kysar and J. Hone, ''Measurement of the elastic properties and intrinsic strength of monolayer graphene'', Science, 321, 385-388 (2008).
    [5] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. E. Hone, P. Kim and H. Stormer, ''Ultrahigh electron mobility in suspended graphene'', Solid State Communications, 146, 351-355 (2008).
    [6] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres and A. K. Geim, ''Fine structure constant defines visual transparency of graphene'', Science, 320, 1308-1308 (2008).
    [7] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, ''Large-scale pattern growth of graphene films for stretchable transparent electrodes'', Nature, 457, 706-710 (2009).
    [8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, ''Superior thermal conductivity of single-layer graphene'', Nano Letters, 8, 902-907 (2008).
    [9] A. Mehmood, N. Mubarak, M. Khalid, R. Walvekar, E. Abdullah, M. Siddiqui, H. A. Baloch, S. Nizamuddin and S. Mazari, ''Graphene based nanomaterials for strain sensor application—A review'', Journal of Environmental Chemical Engineering, 8, 103743 (2020).
    [10] D. Chen, H. Feng and J. Li, ''Graphene oxide: preparation, functionalization, and electrochemical applications'', Chemical Reviews, 112, 6027-6053 (2012).
    [11] L. Cao, S. Sahu, P. Anilkumar, C. Y. Kong and Y. P. Sun, ''Linear and nonlinear optical properties of modified graphene-based materials'', MRS Bulletin, 37, 1283-1289 (2012).
    [12] W. Gao, ''The chemistry of graphene oxide'', Graphene oxide, 61-95 (2015).
    [13] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, ''Graphene based materials: past, present and future'', Progress in Materials Science, 56, 1178-1271 (2011).
    [14] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu and L.-M. Peng, ''Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum'', Nature Communications, 3, 1-7 (2012).
    [15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, ''Electric field effect in atomically thin carbon films'', Science, 306, 666-669 (2004).
    [16] M. Gao, Y. Pan, L. Huang, H. Hu, L. Zhang, H. Guo, S. Du and H.-J. Gao, ''Epitaxial growth and structural property of graphene on Pt (111)'', Applied Physics Letters, 98, 033101 (2011).
    [17] M. Wang, E.-H. Yang, R. Vajtai, J. Kono and P. Ajayan, ''Effects of etchants in the transfer of chemical vapor deposited graphene'', Journal of Applied Physics, 123, 195103 (2018).
    [18] P. R. Somani, S. P. Somani and M. Umeno, ''Planer nano-graphenes from camphor by CVD'', Chemical Physics Letters, 430, 56-59 (2006).
    [19] X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni and Y. Zhu, ''Graphene films with large domain size by a two-step chemical vapor deposition process'', Nano Letters, 10, 4328-4334 (2010).
    [20] Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu and H. Yang, ''Controllable growth of 1–7 layers of graphene by chemical vapour deposition'', Carbon, 73, 252-258 (2014).
    [21] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung and E. Tutuc, ''Large-area synthesis of high-quality and uniform graphene films on copper foils'', Science, 324, 1312-1314 (2009).
    [22] S. Bhaviripudi, X. Jia, M. S. Dresselhaus and J. Kong, ''Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst'', Nano Letters, 10, 4128-4133 (2010).
    [23] W. Choi, Y.-S. Seo, J.-Y. Park, K. Kim, J. Jung, N. Lee, Y. Seo and S. Hong, ''Effect of annealing in Ar/H2 environment on chemical vapor deposition-grown graphene transferred with poly (methyl methacrylate)'', IEEE Transactions on Nanotechnology, 14, 70-74 (2014).
    [24] W. S. Hummers Jr and R. E. Offeman, ''Preparation of graphitic oxide'', Journal of the American Chemical Society, 80, 1339-1339 (1958).
    [25] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, ''Improved synthesis of graphene oxide'', ACS Nano, 4, 4806-4814 (2010).
    [26] L. S. Hui, E. Whiteway, M. Hilke and A. Turak, ''Synergistic oxidation of CVD graphene on Cu by oxygen plasma etching'', Carbon, 125, 500-508 (2017).
    [27] M. G. Chung, H. M. Lee, T. Kim, J. H. Choi, D. kyun Seo, J.-B. Yoo, S.-H. Hong, T. J. Kang and Y. H. Kim, ''Highly sensitive NO2 gas sensor based on ozone treated graphene'', Sensors and Actuators B: Chemical, 166, 172-176 (2012).
    [28] G. Lee, B. Lee, J. Kim and K. Cho, ''Ozone adsorption on graphene: ab initio study and experimental validation'', The Journal of Physical Chemistry C, 113, 14225-14229 (2009).
    [29] J. Simmons, B. Nichols, S. Baker, M. S. Marcus, O. Castellini, C.-S. Lee, R. Hamers and M. Eriksson, ''Effect of ozone oxidation on single-walled carbon nanotubes'', The Journal of Physical Chemistry B, 110, 7113-7118 (2006).
    [30] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu and J. M. Tour, ''Growth of graphene from solid carbon sources'', Nature, 468, 549-552 (2010).
    [31] W. Wu, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen and S.-S. Pei, ''Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing'', Sensors and Actuators B: Chemical, 150, 296-300 (2010).
    [32] P. Di Pietro, G. Forte, L. D’Urso and C. Satriano, ''The hybrid nanobiointerface between nitrogen-doped graphene oxide and lipid membranes: a theoretical and experimental study'', Biological Membranes, 12, 13 (2017).
    [33] M.-L. Wu, J. Li, L.-J. Wan and D. Wang, ''Monolayer graphene-supported free-standing PS-b-PMMA thin film with perpendicularly orientated microdomains'', RSC Advances, 4, 63941-63945 (2014).
    [34] Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan, H. Chen, Q. Yan and H. Zhang, ''Graphene‐based materials for solar cell applications'', Advanced Energy Materials, 4, 1300574 (2014).
    [35] K. Ihm, J. T. Lim, K.-J. Lee, J. W. Kwon, T.-H. Kang, S. Chung, S. Bae, J. H. Kim, B. H. Hong and G. Y. Yeom, ''Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell'', Applied Physics Letters, 97, 032113 (2010).
    [36] X. Wang, D. Li, Q. Zhang, L. Zou, F. Wang, J. Zhou and Z. Zhang, ''Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon'', Thin Solid Films, 592, 281-286 (2015).
    [37] S. Cheung and N. Cheung, ''Extraction of Schottky diode parameters from forward current‐voltage characteristics'', Applied Physics Letters, 49, 85-87 (1986).
    [38] R. A. Gilstrap Jr, C. J. Capozzi, C. G. Carson, R. A. Gerhardt and C. J. Summers, ''Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion'', Advanced Materials, 20, 4163-4166 (2008).
    [39] S. Basu and P. Bhattacharyya, ''Recent developments on graphene and graphene oxide based solid state gas sensors'', Sensors and Actuators B: Chemical, 173, 1-21 (2012).
    [40] S. S. Varghese, S. H. Varghese, S. Swaminathan, K. K. Singh and V. Mittal, ''Two-dimensional materials for sensing: graphene and beyond'', Electronics, 4, 651-687 (2015).
    [41] H. Song, X. Li, P. Cui, S. Guo, W. Liu and X. Wang, ''Sensitivity investigation for the dependence of monolayer and stacking graphene NH3 gas sensor'', Diamond and Related Materials, 73, 56-61 (2017).
    [42] T. Liang, R. Liu, C. Lei, K. Wang, Z. Li and Y. Li, ''Preparation and Test of NH3 Gas Sensor Based on Single-Layer Graphene Film'', Micromachines, 11, 965 (2020).
    [43] H. He, T. Riedl, A. Lerf and J. Klinowski, ''Solid-state NMR studies of the structure of graphite oxide'', The Journal of Physical Chemistry, 100, 19954-19958 (1996).
    [44] A. Lerf, H. He, M. Forster and J. Klinowski, ''Structure of graphite oxide revisited'', The Journal of Physical Chemistry B, 102, 4477-4482 (1998).
    [45] K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett and A. Zettl, ''Determination of the local chemical structure of graphene oxide and reduced graphene oxide'', Advanced Materials, 22, 4467-4472 (2010).
    [46] W. Yu, L. Sisi, Y. Haiyan and L. Jie, ''Progress in the functional modification of graphene/graphene oxide: a review'', RSC Advances, 10, 15328-15345 (2020).
    [47] I. Maity, K. Ghosh, H. Rahaman and P. Bhattacharyya, ''Selectivity tuning of graphene oxide based reliable gas sensor devices by tailoring the oxygen functional groups: A DFT study based approach'', IEEE Transactions on Device and Materials Reliability, 17, 738-745 (2017).
    [48] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont and S. Phanichphant, ''Semiconducting metal oxides as sensors for environmentally hazardous gases'', Sensors and Actuators B: Chemical, 160, 580-591 (2011).
    [49] S. G. Chatterjee, S. Chatterjee, A. K. Ray and A. K. Chakraborty, ''Graphene–metal oxide nanohybrids for toxic gas sensor: A review'', Sensors and Actuators B: Chemical, 221, 1170-1181 (2015).
    [50] Z. Zhang, X. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X. Xiao, C. Jiang and J. Li, ''Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor'', Nanoscale, 7, 10078-10084 (2015).
    [51] M. Rodner, A. Icardi, M. Kodu, R. Jaaniso, A. Schütze and J. Eriksson, ''Metal oxide nanolayer-decorated epitaxial graphene: A gas sensor study'', Nanomaterials, 10, 2168 (2020).
    [52] X. Wang and X. Gan, ''Graphene integrated photodetectors and opto-electronic devices—a review'', Chinese Physics B, 26, 034203 (2017).
    [53] X. An, F. Liu, Y. J. Jung and S. Kar, ''Tunable graphene–silicon heterojunctions for ultrasensitive photodetection'', Nano Letters, 13, 909-916 (2013).
    [54] H. Jeong, M. Jin, K. So, S. Lim and Y. Lee, ''Tailoring the characteristics of graphite oxides by different oxidation times'', Journal of Physics D: Applied Physics, 42, 065418 (2009).
    [55] C.-K. Shih, Y.-T. Ciou, C.-W. Chiu, Y.-R. Li, J.-S. Jheng, Y.-C. Chen and C.-H. Lin, ''Effects of Different Oxidation Degrees of Graphene Oxide on P-Type and N-Type Si Heterojunction Photodetectors'', Nanomaterials, 8, 491 (2018).
    [56] K. Zheng, F. Meng, L. Jiang, Q. Yan, H. H. Hng and X. Chen, ''Visible Photoresponse of Single‐Layer Graphene Decorated with TiO2 Nanoparticles'', Small, 9, 2076-2080 (2013).
    [57] S. Lohumi, M. S. Kim, J. Qin and B.-K. Cho, ''Raman imaging from microscopy to macroscopy: quality and safety control of biological materials'', TrAC Trends in Analytical Chemistry, 93, 183-198 (2017).
    [58] R. F. Egerton, Physical principles of electron microscopy, (Springer, 2005).
    [59] D. J. O'Connor, B. A. Sexton and R. S. Smart, Surface analysis methods in materials science, (Springer Science & Business Media, 2013).
    [60] 李政雄, ''合成摻硼鑽石膜做為葡萄糖感測器之應用'', 臺北科技大學製造科技研究所學位論文, 1-89 (2014).
    [61] D. López-Díaz, M. López Holgado, J. L. García-Fierro and M. M. Velázquez, ''Evolution of the Raman spectrum with the chemical composition of graphene oxide'', The Journal of Physical Chemistry C, 121, 20489-20497 (2017).
    [62] I. Childres, L. A. Jauregui, W. Park, H. Cao and Y. P. Chen, ''Raman spectroscopy of graphene and related materials'', New Developments in Photon Materials Research, 1, 1-20 (2013).
    [63] S. Jandhyala, G. Mordi, B. Lee, G. Lee, C. Floresca, P.-R. Cha, J. Ahn, R. M. Wallace, Y. J. Chabal and M. J. Kim, ''Atomic layer deposition of dielectrics on graphene using reversibly physisorbed ozone'', ACS Nano, 6, 2722-2730 (2012).
    [64] N. Díez, A. Śliwak, S. Gryglewicz, B. Grzyb and G. Gryglewicz, ''Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment'', Rsc Advances, 5, 81831-81837 (2015).
    [65] D. Jung, Y.-H. Ko, J. Cho, P. D. Adhikari, S. I. Lee, Y. Kim, W. Song, M. W. Jung, S. W. Jang and S. Y. Lee, ''Transparent and flexible conducting hybrid film combined with 3-Aminopropyltriethoxysilane-coated polymer and graphene'', Applied Surface Science, 357, 287-292 (2015).
    [66] S. M. Bauer, M. Gehringer and S. A. Laufer, ''A direct enzyme-linked immunosorbent assay (ELISA) for the quantitative evaluation of Janus Kinase 3 (JAK3) inhibitors'', Analytical Methods, 6, 8817-8822 (2014).
    [67] B. W. N. H. Hemasiri, J.-K. Kim and J.-M. Lee, ''Synthesis and characterization of graphene/ITO nanoparticle hybrid transparent conducting electrode'', Nano-Micro Letters, 10, 1-12 (2018).
    [68] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhulsel and C. Van Haesendonck, ''Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition'', Nanotechnology, 19, 305604 (2008).
    [69] W. Xie, L.-T. Weng, K. M. Ng, C. K. Chan and C.-M. Chan, ''Clean graphene surface through high temperature annealing'', Carbon, 94, 740-748 (2015).
    [70] R. Hippler, H. Steffen, M. Quaas, T. Röwf, T. Tun and H. Wulff, Plasma-assisted deposition and crystal growth of thin indium-tin-oxide (ITO) films, (Springer, 2004).
    [71] H. Li, K. Karahashi, M. Fukasawa, K. Nagahata, T. Tatsumi and S. Hamaguchi, ''Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching'', Journal of Vacuum Science Technology A: Vacuum, Surfaces, Films, 33, 060606 (2015).
    [72] B. V. Crist, ''A review of XPS data-banks'', XPS reports, 1 (2007).
    [73] M. Gautam and A. H. Jayatissa, ''Gas sensing properties of graphene synthesized by chemical vapor deposition'', Materials Science Engineering: C, 31, 1405-1411 (2011).
    [74] H. Wu, X. Bu, M. Deng, G. Chen, G. Zhang, X. Li, X. Wang and W. Liu, ''A gas sensing channel composited with pristine and oxygen plasma-treated graphene'', Sensors, 19, 625 (2019).
    [75] Y. Wang, L. Zhang, N. Hu, Y. Wang, Y. Zhang, Z. Zhou, Y. Liu, S. Shen and C. Peng, ''Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes'', Nanoscale Research Letters, 9, 1-12 (2014).
    [76] H. Mbarek, M. Saadoun and B. Bessais, ''Screen-printed Tin-doped indium oxide (ITO) films for NH3 gas sensing'', Materials Science Engineering: C, 26, 500-504 (2006).
    [77] V. Haridas, A. Sukhananazerin, J. M. Sneha, B. Pullithadathil and B. Narayanan, ''α-Fe2O3 loaded less-defective graphene sheets as chemiresistive gas sensor for selective sensing of NH3'', Applied Surface Science, 517, 146158 (2020).
    [78] D. Zhang, J. Liu, C. Jiang, A. Liu and B. Xia, ''Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model'', Sensors Actuators B: Chemical, 240, 55-65 (2017).
    [79] Z. Ye, H. Tai, R. Guo, Z. Yuan, C. Liu, Y. Su, Z. Chen and Y. Jiang, ''Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology'', Applied Surface Science, 419, 84-90 (2017).
    [80] S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai and S. I. Khondaker, ''Position dependent photodetector from large area reduced graphene oxide thin films'', Applied Physics Letters, 96, 163109 (2010).
    [81] X. An, F. Liu, Y. J. Jung and S. J. N. l. Kar, ''Tunable graphene–silicon heterojunctions for ultrasensitive photodetection'', Nano Letters, 13, 909-916 (2013).
    [82] D. Shao, M. Yu, H. Sun, T. Hu and S. Sawyer, ''High responsivity, fast ultraviolet photodetector fabricated from ZnO nanoparticle–graphene core–shell structures'', Nanoscale, 5, 3664-3667 (2013).
    [83] J. An, T. S. D. Le, C. H. J. Lim, V. T. Tran, Z. Zhan, Y. Gao, L. Zheng, G. Sun and Y. J. Kim, ''Single‐step selective laser writing of flexible photodetectors for wearable optoelectronics'', Advanced Science, 5, 1800496 (2018).
    [84] G. Li, L. Liu, G. Wu, W. Chen, S. Qin, Y. Wang and T. Zhang, ''Self‐Powered UV–Near Infrared Photodetector Based on Reduced Graphene Oxide/n‐Si Vertical Heterojunction'', Small, 12, 5019-5026 (2016).

    無法下載圖示 全文公開日期 2024/09/23 (校內網路)
    全文公開日期 2027/09/23 (校外網路)
    全文公開日期 2027/09/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE