簡易檢索 / 詳目顯示

研究生: 蔡明村
Ming-Cun Cai
論文名稱: 玄武岩纖維與氧化石墨烯影響河砂工程膠結複合材工程性質之研究
Study on effect of basalt fiber and graphene oxide on the engineering properties of Engineered Cementitious Composite with river sand
指導教授: 張大鵬
Ta-Peng Chang
陳君弢
Chun-Tao Chen
口試委員: 施正元
Jeng-Ywan Shih
吳崇豪
Chong-Hao Wu
王韡蒨
Wei-Chien Wang
張大鵬
Ta-Peng Chang
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 160
中文關鍵詞: 工程膠結複合材 (ECC)河砂玄武岩纖維氧化石墨烯新拌性質硬固性質
外文關鍵詞: Engineered Cementitious Composites, river sand, basalt fiber, graphene oxide, fresh properties, hardened properties
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用玄武岩纖維、河砂與氧化石墨烯對於工程膠結複合材中成本過高與造成汙染較高之材料(矽砂、聚乙烯醇纖維、水泥)進行替代,探討各變數對於新拌性質與不同齡期(3、7、28、56、91天)之硬固與微觀性質影響與變化。主要變數為:氧化石墨烯固體取代水泥重量比率 (0%、0.01%、0.03%、0.05%、0.07%),玄武岩纖維總體積替代(0%、1%、2%、3%),河砂體積替代矽砂(0%、25%、50%、75%、100%)
    研究結果顯,(1)當氧化石墨烯取代水泥量增加至(0.05%)對於水泥漿體或工程膠結複合材之流度值有下降之趨勢,分別下降23%與37.5%。(2)氧化石墨烯取代水泥量增加對於早期(3天、7天)與中期(28天)之抗壓強度皆下降約 11.2%至21.17%,於晚期(91天)時適當(0.03%)之氧化石墨烯取代水泥量能有效增加抗壓強度約24.79%。(3)河砂體積替代矽砂量增加對於抗壓強度與抗彎強度都有增加之趨勢,推測為河砂擁有較高之表面摩擦力能有效提升工程膠結複合材之機械性能。(4)玄武岩纖維添加量增加時於對於早期與中期之機械強度皆有下降之影響於晚期時有增加之趨勢,最佳纖維含量為2%。(5) 微觀試驗中可發現氧化石墨烯具有填補硬固水泥漿體與工程膠結複合材漿體微觀結構之微裂縫之功能。(6)使用玄武岩纖維替代工程膠結複合材之纖維會有較低之抗壓強度較高之抗拉強度表現。


    This study explores the effect of replacement of expensive and polluting material (silica sand, polyvinyl alcohol fiber and cement) in Engineered Cementitious Composites (ECC) with river sand, basalt fiber and graphene oxide. The effects of each variable on the fresh properties and different ages (3, 7, 28, 56, 91 days) of hardened properties were discussed.
    Experimental variables included the weight ratio of graphene oxide solids to replace cement (0%, 0.01%, 0.03%, 0.05%, 0.07%), the total volume of basalt fibers to replace (0%, 1%, 2%, 3%), river sand Volume replacement for silica sand (0%, 25%, 50%, 75%, 100%).
    The research results show that (1) When the amount of graphene oxide substituted cement increases to (0.05%), the fluidity value of cement paste or Engineering Cementitious Composite tends to decrease, decreasing by 23% and 37.5%, respectively. (2) The compressive strength of the early (3 days, 7 days) and mid-term (28 days) decreased by about 11.2% to 21.17% when the amount of graphene oxide substituted cement increased, and it was appropriate (0.03%) in the late (91 days) The amount of graphene oxide replacing cement can effectively increase the compressive strength by about 24.79%. (3) The compressive strength and flexural strength tend to increase with the increase of the volume of river sand instead of silica sand. It is speculated that the higher surface friction of river sand can effectively improve the mechanical properties of Engineering Cemented Composites (4) When the amount of basalt fiber added increases, the mechanical strength in the early and middle stages decreases, and it tends to increase in the late stage. The optimum fiber content is 2%. (5) In the microscopic test, it can be found that graphene oxide has the function of filling the micro-cracks in the microstructure of the cement paste and the Engineering Cementitious Composite paste. (6) The use of basalt fiber to replace the fiber of the Engineering Cementitious Composite material will have lower compressive strength and higher tensile strength performance.

    摘要 i Abstract iii 致謝 v 目錄 vi 表目錄 x 圖目錄 xii 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究流程 2 第二章 文獻回顧 5 2.1前言 5 2.2工程膠結複合材之介紹 5 2.2.1 何謂工程膠結複合材(Engineering Cementitious Composites,ECC) 5 2.2.2工程膠結複合材(ECC)之設計理念(ISMD) 6 2.2.3工程膠結複合材(ECC)之微觀結構 7 2.2.4工程膠結複合材(ECC)之機械性質 7 2.2.5工程膠結複合材(ECC)之施工性 9 2.2.6工程膠結複合材(ECC)之應用 9 2.2.7工程膠結複合材(ECC)之缺點 10 2.3玄武岩纖維(basalt fiber)之介紹 11 2.3.1 何謂玄武岩纖維(basalt fiber) 11 2.3.2 玄武岩與玄武岩纖維 11 2.3.3 玄武岩纖維之製程 12 2.3.4 玄武岩纖維之機械、化學與加工性質 13 2.3.5 玄武岩纖維用於工程膠結複合材 14 2.4氧化石墨烯(graphene oxide)之介紹 15 2.4.1 何謂石墨烯(graphene) 15 2.4.2石墨烯與氧化石墨烯之基本性質 15 2.4.3石墨製備為石墨烯之方式 16 2.4.4氧化石墨烯用於水泥材料中 17 第三章 試驗計畫 35 3.1試驗內容與流程 35 3.2試驗材料 36 3.2.1 水泥 36 3.2.2 F級飛灰 36 3.2.3 矽砂(細粒料) 36 3.2.4 河砂(細粒料) 36 3.2.5 玄武岩纖維 37 3.2.6 高性能減水劑 37 3.2.7 氧化石墨烯 37 3.3試驗儀器與設備 37 3.4試驗變數與項目 41 3.4.1試驗內容說明 41 3.4.2配比之編號、設計目的、養護環境及試驗項目說明 42 3.5工程膠結複合材之試體拌合步驟與製作方式 44 3.6試驗項目之方式 45 3.6.1材料之基本物化性分析試驗 46 3.6.2新拌性質試驗 48 3.6.3硬固性質試驗 49 3.6.4微觀性質試驗 52 第四章 結果與討論 69 4.1前導階段試驗結果 69 4.1.1新拌性質 69 4.1.2硬固性質 69 4.1.2.1抗壓強度 70 4.1.2.2熱傳導係數 70 4.1.3微觀性質 71 4.1.3.1 X光繞射分析試驗(XRD) 71 4.1.3.2 高解析度場發射掃描式電子顯微鏡(SEM) 72 4.2第一階段試驗結果 72 4.2.1新拌性質 72 4.2.2硬固性質 73 4.2.2.1抗壓強度 74 4.2.2.2抗彎強度 76 4.2.2.3抗拉強度 77 4.2.2.4單位重 77 4.2.2.5超音波波速試驗 78 4.2.2.6熱傳導係數試驗 80 4.2.3微觀性質 81 4.2.3.1 X光繞射分析試驗(XRD) 81 4.2.3.2高解析度場發射掃描式電子顯微鏡(SEM) 81 4.3第二階段試驗結果 82 4.3.1新拌性質 82 4.3.2硬固性質 82 4.3.2.1抗壓強度 83 4.3.2.2抗彎強度 84 4.3.2.3抗拉強度 84 4.3.2.4單位重 85 4.3.2.5超音波波速試驗 85 4.3.2.6熱傳導係數試驗 86 4.3.3微觀性質 86 1.3.3.1 X光繞射分析試驗(XRD) 87 4.3.3.2高解析度場發射掃描式電子顯微鏡(SEM) 87 第五章 結論與建議 125 5.1 結論 125 5.2建議 127 參考文獻 128

    Acebes, M., M. Molero, I. Segura, A. Moragues and M. Hernández (2011). "Study of the influence of microstructural parameters on the ultrasonic velocity in steel–fiber-reinforced cementitious materials." Construction and Building Materials 25(7): 3066-3072.
    [2] Adesina, A. (2021). "Performance of cementitious composites reinforced with chopped basalt fibres – An overview." Construction and Building Materials 266: 120970.
    [3] Ahammad, A. S., T. Islam and M. M. Hasan (2019). Graphene-based electrochemical sensors for biomedical applications. Biomedical applications of graphene and 2D nanomaterials, Elsevier: 249-282.
    [4] Ajala, O. J., J. O. Tijani, M. T. Bankole and A. S. Abdulkareem (2022). "A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization and application in water and wastewater treatment." Environmental Nanotechnology, Monitoring & Management 18: 100673.
    [5] Al-Majidi, M. H., A. Lampropoulos and A. B. Cundy (2017). "Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics." Composite Structures 168: 402-427.
    [6] Algin, Z. and M. Ozen (2018). "The properties of chopped basalt fibre reinforced self-compacting concrete." Construction and Building Materials 186: 678-685.
    [7] Allen, M. J., V. C. Tung and R. B. Kaner (2010). "Honeycomb Carbon: A Review of Graphene." Chemical Reviews 110(1): 132-145.
    [8] Alshamkhani, M. T., L. K. Teong, L. K. Putri, A. R. Mohamed, P. Lahijani and M. Mohammadi (2021). "Effect of graphite exfoliation routes on the properties of exfoliated graphene and its photocatalytic applications." Journal of Environmental Chemical Engineering 9(6): 106506.
    [9] Amiri, A., M. Naraghi, G. Ahmadi, M. Soleymaniha and M. Shanbedi (2018). "A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges." FlatChem 8: 40-71.
    [10] Arce, G., H. Noorvand, M. Hassan, T. Rupnow and R. Hungria (2019). Cost-effective ECC with low fiber content for pavement application. MATEC Web of Conferences, EDP Sciences.
    [11] Arce, G. A., H. Noorvand, M. M. Hassan, T. Rupnow and N. Dhakal (2021). "Feasibility of low fiber content PVA-ECC for jointless pavement application." Construction and Building Materials 268: 121131.
    [12] Aslanova, L. G. (2002). Method and apparatus for producing basaltic fibers, Google Patents.
    [13] Banibayat, P., A. J. M. Patnaik and Design (2014). "Variability of mechanical properties of basalt fiber reinforced polymer bars manufactured by wet-layup method." 56: 898-906.
    [14] Basquiroto de Souza, F., E. Shamsaei, K. Sagoe-Crentsil and W. Duan (2022). "Proposed mechanism for the enhanced microstructure of graphene oxide–Portland cement composites." Journal of Building Engineering 54: 104604.
    [15] Bautista-Gutierrez, K. P., A. L. Herrera-May, J. M. Santamaría-López, A. Honorato-Moreno and S. A. Zamora-Castro (2019). "Recent progress in nanomaterials for modern concrete infrastructure: Advantages and challenges." Materials 12(21): 3548.
    [16] Borhan, T. M. (2012). "Properties of glass concrete reinforced with short basalt fibre." Materials & Design 42: 265-271.
    [17] Choi, J.-I. and B. Y. Lee (2015). "Bonding properties of basalt fiber and strength reduction according to fiber orientation." Materials 8(10): 6719-6727.
    [18] Chuah, S., Z. Pan, J. G. Sanjayan, C. M. Wang and W. H. Duan (2014). "Nano reinforced cement and concrete composites and new perspective from graphene oxide." Construction and Building materials 73: 113-124.
    [19] Claesson, J. and B. Bohloli (2002). "Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution." International Journal of Rock Mechanics and Mining Sciences 39(8): 991-1004.
    [20] Czigány, T., J. Vad and K. Pölöskei (2005). "Basalt fiber as a reinforcement of polymer composites." Periodica Polytechnica Mechanical Engineering 49(1): 3-14.
    [21] Dhand, V., G. Mittal, K. Y. Rhee, S.-J. Park and D. Hui (2015). "A short review on basalt fiber reinforced polymer composites." Composites Part B: Engineering 73: 166-180.
    [22] Dias, D. P. and C. Thaumaturgo (2005). "Fracture toughness of geopolymeric concretes reinforced with basalt fibers." Cement & Concrete Composites 27(1): 49-54.
    [23] Ding, Y., K. Yu and M. Li (2022). "A review on high-strength engineered cementitious composites (HS-ECC): Design, mechanical property and structural application." Structures 35: 903-921.
    [24] Fei, W., Y. Yutong and Y. Shiping (2021). "Thermal and moisture performance parameters of high toughness engineered cementitious Composite(ECC) with PVA fibers." Journal of Building Engineering 43: 102905.
    [25] Felekoglu, B., K. Tosun-Felekoglu, R. Ranade, Q. Zhang and V. C. Li (2014). "Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC." Composites Part B: Engineering 60: 359-370.
    [26] Felekoglu, B., K. Tosun-Felekoglu, R. Ranade, Q. Zhang and V. C. J. C. P. B. E. Li (2014). "Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC." 60: 359-370.
    [27] Feng, H., S. Nie, A. Guo, L. Lv and J. Yu (2022). "Evaluation on the performance of magnesium phosphate cement-based engineered cementitious composites (MPC-ECC) with blended fly ash/silica fume." Construction and Building Materials 341: 127861.
    [28] Fischer, G. and V. C. Li (2002). "Effect of matrix ductility on deformation behavior of steel-reinforced ECC flexural members under reversed cyclic loading conditions." Structural Journal 99(6): 781-790.
    [29] Geim, A. K. (2009). "Graphene: status and prospects." science 324(5934): 1530-1534.
    [30] Guex, L. G., B. Sacchi, K. F. Peuvot, R. L. Andersson, A. M. Pourrahimi, V. Ström, S. Farris and R. T. Olsson (2017). "Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry." Nanoscale 9(27): 9562-9571.
    [31] Guo, Y., X. Hu and J. Lv (2019). "Experimental study on the resistance of basalt fibre-reinforced concrete to chloride penetration." Construction and Building Materials 223: 142-155.
    [32] He, S., J. Qiu, J. Li and E.-H. Yang (2017). "Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers." Cement and Concrete Research 98: 50-60.
    [33] Huang, B.-T., K.-F. Weng, J.-X. Zhu, Y. Xiang, J.-G. Dai and V. C. Li (2021). "Engineered/strain-hardening cementitious composites (ECC/SHCC) with an ultra-high compressive strength over 210 MPa." Composites Communications 26: 100775.
    [34] Huang, X., R. Ranade, W. Ni and V. C. Li (2013). "Development of green engineered cementitious composites using iron ore tailings as aggregates." Construction and Building Materials 44: 757-764.
    [35] Huang, Z.-y. and B. Tan (2007). "Research on stress-strain curves of Reactive Powder Concrete with steel-fiber under uniaxial compression." J of China Three Gorges Univ 29: 415-420.
    [36] Hummers, W. S. and R. E. Offeman (1958). "Preparation of Graphitic Oxide." Journal of the American Chemical Society 80(6): 1339-1339.
    [37] International, A. (2016). Standard Test Method for Pulse Velocity Through Concrete. PA, West Conshohocken ASTM C597-16.
    [38] International, A. (2020). Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending. PA, West Conshohocken ASTM D6272-17e1.
    [39] International, A. (2021). Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes. PA, West Conshohocken ASTM C511.
    [40] International, A. (2022). Standard Specification for Portland Cement. PA, West Conshohocken. ASTM C150.
    [41] International, A. (2022). Standard Test Method for Determination of Thermal Conductivity of Soil and Rock by Thermal Needle Probe Procedure. PA, West Conshohocken ASTM D5334-22.
    [42] Jamshaid, H. and R. Mishra (2016). "A green material from rock: basalt fiber–a review." The Journal of The Textile Institute 107(7): 923-937.
    [43] Jiang, C. H., T. J. McCarthy, D. Chen and Q. Dong (2010). Influence of basalt fiber on performance of cement mortar. Key Engineering Materials, Trans Tech Publ.
    [44] Jin, S. J., Z. L. Li, J. Zhang and Y. L. Wang (2014). Experimental study on the performance of the basalt fiber concrete resistance to freezing and thawing. Applied Mechanics and Materials, Trans Tech Publ.
    [45] Kasinikota, P. and D. D. Tripura (2022). "Prediction of physical-mechanical properties of hollow interlocking compressed unstabilized and stabilized earth blocks at different moisture conditions using ultrasonic pulse velocity." Journal of Building Engineering 48: 103961.
    [46] Katkhuda, H. and N. Shatarat (2017). "Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment." Construction and Building Materials 140: 328-335.
    [47] Katkhuda, H., N. J. C. Shatarat and B. Materials (2017). "Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment." 140: 328-335.
    [48] Khushefati, W. H., R. Demirboğa and K. Z. Farhan (2022). "Assessment of factors impacting thermal conductivity of cementitious composites—A review." Cleaner Materials 5: 100127.
    [49] Kolahalam, L. A., I. K. Viswanath, B. S. Diwakar, B. Govindh, V. Reddy and Y. Murthy (2019). "Review on nanomaterials: Synthesis and applications." Materials Today: Proceedings 18: 2182-2190.
    [50] Lepech, M. and V. Li (2011). "Large Scale Processing of Engineered Cementitious Composites." ACI Materials Journal 105.
    [51] Leung, C. K. (1996). "Design criteria for pseudoductile fiber-reinforced composites." Journal of engineering mechanics 122(1): 10-18.
    [52] Li, H. F., Z. Li, Y. Liu, X.-Y. Wang, K. Zhang and G.-Z. Zhang (2022). "Effect of basalt fibers on the mechanical and self-healing properties of expanded perlite solid-loaded microbial mortars." Journal of Building Engineering: 105201.
    [53] Li, M. and V. C. Li (2013). "Rheology, fiber dispersion, and robust properties of engineered cementitious composites." Materials and structures 46(3): 405-420.
    [54] Li, V. C. (2012). "Tailoring ECC for special attributes: A review." International Journal of Concrete Structures and Materials 6(3): 135-144.
    [55] Li, V. C. (2019). Engineered cementitious composites (ECC): bendable concrete for sustainable and resilient infrastructure, Springer.
    [56] Li, V. C. (2019). Introduction to engineered cementitious composites (ECC). Engineered Cementitious Composites (ECC), Springer: 1-10.
    [57] Li, V. C. (2019). Introduction to Engineered Cementitious Composites (ECC). Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure. V. C. Li. Berlin, Heidelberg, Springer Berlin Heidelberg: 1-10.
    [58] Li, V. C. and C. K. Leung (1992). "Steady-state and multiple cracking of short random fiber composites." Journal of engineering mechanics 118(11): 2246-2264.
    [59] Li, V. C., D. K. Mishra and H.-C. Wu (1995). "Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites." Materials and structures 28(10): 586-595.
    [60] Li, V. C., D. K. Mishra, H.-C. J. M. Wu and structures (1995). "Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites." 28(10): 586-595.
    [61] Li, V. C., C. Wu, S. Wang, A. Ogawa and T. Saito (2002). "Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC)." Materials Journal 99(5): 463-472.
    [62] Li, V. C., C. Wu, S. Wang, A. Ogawa and T. J. M. J. Saito (2002). "Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC)." 99(5): 463-472.
    [63] Li, X., R. Shen, S. Ma, X. Chen and J. Xie (2018). "Graphene-based heterojunction photocatalysts." Applied Surface Science 430: 53-107.
    [64] Lin, C., W. Wei and Y. H. Hu (2016). "Catalytic behavior of graphene oxide for cement hydration process." Journal of Physics and Chemistry of Solids 89: 128-133.
    [65] Loh, Z. P., K. H. Mo, C. G. Tan and S. H. Yeo (2019). "Mechanical characteristics and flexural behaviour of fibre-reinforced cementitious composite containing PVA and basalt fibres." Sādhanā 44(4): 1-9.
    [66] Long, W.-J., Y.-c. Gu, B.-X. Xiao, Q.-m. Zhang and F. Xing (2018). "Micro-mechanical properties and multi-scaled pore structure of graphene oxide cement paste: Synergistic application of nanoindentation, X-ray computed tomography, and SEM-EDS analysis." Construction and Building Materials 179: 661-674.
    [67] Lv, S., L. Deng, W. Yang, Q. Zhou and Y. Cui (2016). "Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites." Cement and Concrete Composites 66: 1-9.
    [68] Lv, S., J. Liu, T. Sun, Y. Ma and Q. Zhou (2014). "Effect of GO nanosheets on shapes of cement hydration crystals and their formation process." Construction and Building Materials 64: 231-239.
    [69] Lv, S., Y. Ma, C. Qiu, T. Sun, J. Liu and Q. Zhou (2013). "Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites." Construction and building materials 49: 121-127.
    [70] Ma, J., X. Qiu, L. Cheng and Y. Wang (2011). Experimental research on the fundamental mechanical properties of presoaked basalt fiber concrete. Advances in FRP Composites in Civil Engineering, Springer: 85-88.
    [71] Masi, G., W. D. A. Rickard, M. C. Bignozzi and A. van Riessen (2015). "The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers." Composites Part B-Engineering 76: 218-228.
    [72] Mazaheripour, H., S. Ghanbarpour, S. Mirmoradi and I. Hosseinpour (2011). "The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete." Construction and Building Materials 25(1): 351-358.
    [73] Mowlaei, R., J. Lin, F. Basquiroto de Souza, A. Fouladi, A. Habibnejad Korayem, E. Shamsaei and W. Duan (2021). "The effects of graphene oxide-silica nanohybrids on the workability, hydration, and mechanical properties of Portland cement paste." Construction and Building Materials 266: 121016.
    [74] Nguyen, H. D., Q. Zhang, K. Sagoe-Crentsil and W. Duan (2021). "Graphene oxide-coated sand for improving performance of cement composites." Cement and Concrete Composites 124: 104279.
    [75] Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov (2004). "Electric Field Effect in Atomically Thin Carbon Films." Science 306(5696): 666-669.
    [76] Palmieri, V., G. Perini, M. De Spirito and M. Papi (2019). "Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials." Nanoscale Horizons 4(2): 273-290.
    [77] Pan, Z., L. He, L. Qiu, A. H. Korayem, G. Li, J. W. Zhu, F. Collins, D. Li, W. H. Duan and M. C. Wang (2015). "Mechanical properties and microstructure of a graphene oxide–cement composite." Cement and Concrete Composites 58: 140-147.
    [78] Parihar, H. S., R. Shanker and V. Singh (2022). "Effect of variation of steel reinforcement on ultrasonic pulse velocity prediction in concrete beam." Materials Today: Proceedings 65: 1486-1490.
    [79] Parra-Montesinos, G. J., S. W. Peterfreund and C. Shih-Ho (2005). "Highly damage-tolerant beam-column joints through use of high-performance fiber-reinforced cement composites." ACI Structural Journal 102(3): 487.
    [80] Paul, D. (1922). Filament composed of basalt, Google Patents.
    [81] Porto, L. S., D. N. Silva, A. E. F. de Oliveira, A. C. Pereira and K. B. Borges (2019). "Carbon nanomaterials: Synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest." Reviews in analytical chemistry 38(3).
    [82] Qudah, S. and M. Maalej (2014). "Application of Engineered Cementitious Composites (ECC) in interior beam–column connections for enhanced seismic resistance." Engineering Structures 69: 235-245.
    [83] Rabinovich, F., V. Zueva and L. Makeeva (2001). "Stability of basalt fibers in a medium of hydrating cement." Glass and ceramics 58(11): 431-434.
    [84] Ranade, R., V. C. Li and W. F. Heard (2015). "Tensile rate effects in high strength-high ductility concrete." Cement and Concrete Research 68: 94-104.
    [85] Ranade, R., V. C. Li, M. D. Stults, T. S. Rushing, J. Roth and W. F. Heard (2013). "Micromechanics of high-strength, high-ductility concrete." ACI Materials Journal 110(4): 375.
    [86] Ranade, R., V. C. Li, M. D. Stults, T. S. Rushing, J. Roth and W. F. J. A. M. J. Heard (2013). "Micromechanics of high-strength, high-ductility concrete." 110(4): 375.
    [87] Redon, C., V. C. Li, C. Wu, H. Hoshiro, T. Saito and A. Ogawa (2001). "Measuring and modifying interface properties of PVA fibers in ECC matrix."
    [88] Regar, M. L. and A. I. Amjad (2016). "Basalt Fibre-Ancient Mineral Fibre for Green and Sustainable Development." Tekstilec 59(4).
    [89] Rokugo, K. (2008). Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC), Japan Society of Civil Engineers, Concrete Committee.
    [90] Sadrmomtazi, A., B. Tahmouresi and A. Saradar (2018). "Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC)." Construction and Building Materials 162: 321-333.
    [91] Sakulich, A. and V. Li (2011). Microscopic characterization of autogenous healing products in engineered cementitious composites. 33rd International Conference on Cement Microscopy, San Francisco.
    [92] Saloni, Parveen and T. M. Pham (2020). "Enhanced properties of high-silica rice husk ash-based geopolymer paste by incorporating basalt fibers." Construction and Building Materials 245: 118422.
    [93] Sarkar, A. and M. Hajihosseini (2020). "The effect of basalt fibre on the mechanical performance of concrete pavement." Road Materials and Pavement Design 21(6): 1726-1737.
    [94] Sengupta, I., S. Chakraborty, M. Talukdar, S. K. Pal and S. Chakraborty (2018). "Thermal reduction of graphene oxide: How temperature influences purity." Journal of Materials Research 33(23): 4113-4122.
    [95] Shafigh, P., I. Asadi, A. Akhiani, N. Mahyuddin and M. Hashemi (2020). "Thermal properties of cement mortar with different mix proportions." Materiales de Construcción 70(339): e224-e224.
    [96] Shamsaei, E., F. B. de Souza, X. Yao, E. Benhelal, A. Akbari and W. Duan (2018). "Graphene-based nanosheets for stronger and more durable concrete: A review." Construction and Building Materials 183: 642-660.
    [97] Shang, Y., D. Zhang, C. Yang, Y. Liu and Y. Liu (2015). "Effect of graphene oxide on the rheological properties of cement pastes." Construction and Building Materials 96: 20-28.
    [98] Singh, N. B., M. Kalra and S. K. Saxena (2017). "Nanoscience of Cement and Concrete." Materials Today: Proceedings 4(4, Part E): 5478-5487.
    [99] Singh, S., M. R. Hasan, P. Sharma and J. Narang (2022). "Graphene nanomaterials: The wondering material from synthesis to applications." Sensors International: 100190.
    [100] Sreeja, K. and T. N. Kumar (2021). "Effect of graphene oxide on fresh, hardened and mechanical properties of cement mortar." Materials Today: Proceedings 46: 2235-2239.
    [101] Suk, J. W., R. D. Piner, J. An and R. S. Ruoff (2010). "Mechanical properties of monolayer graphene oxide." ACS nano 4(11): 6557-6564.
    [102] Suo, Y., R. Guo, H. Xia, Y. Yang, F. Yan and Q. Ma (2020). "Study on modification mechanism of workability and mechanical properties for graphene oxide-reinforced cement composite." Nanomaterials and Nanotechnology 10: 1847980420912601.
    [103] Suo, Y., R. Guo, H. Xia, Y. Yang, B. Zhou and Z. Zhao (2022). "A review of graphene oxide/cement composites: Performance, functionality, mechanisms, and prospects." Journal of Building Engineering 53: 104502.
    [104] Vas, L., K. Pölöskei, D. Felhõs, T. Deák and T. Czigány (2007). "Theoretical and experimental study of the effect of fiber heads on the mechanical properties of non-continuous basalt fiber reinforced composites." Express Polymer Letters 1(2): 109-121.
    [105] Wang, M., R. Wang, H. Yao, Z. Wang and S. Zheng (2016). "Adsorption characteristics of graphene oxide nanosheets on cement." RSC advances 6(68): 63365-63372.
    [106] Wang, Q., X. Cui, J. Wang, S. Li, C. Lv and Y. Dong (2017). "Effect of fly ash on rheological properties of graphene oxide cement paste." Construction and Building Materials 138: 35-44.
    [107] Wang, Q., J. Wang, C.-x. Lv, X.-y. Cui, S.-y. Li and X. Wang (2016). "Rheological behavior of fresh cement pastes with a graphene oxide additive." New Carbon Materials 31(6): 574-584.
    [108] Wang, S. and V. C. Li (2005). Polyvinyl alcohol fiber reinforced engineered cementitious composites: material design and performances. Proc., Int’l Workshop on HPFRCC Structural Applications, Hawaii, Citeseer.
    [109] Wang, T., T. Ishida and R. Gu (2020). "A study of the influence of crystal component on the reactivity of low-calcium fly ash in alkaline conditions based on SEM-EDS." Construction and Building Materials 243: 118227.
    [110] Wei, Y. and Z. Sun (2015). "Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene." Current opinion in colloid & interface science 20(5-6): 311-321.
    [111] Xin, H., A. Mosallam, J. A. F. O. Correia, Y. Liu, J. He and Y. Sun (2020). "Material-structure integrated design optimization of GFRP bridge deck on steel girder." Structures 27: 1222-1230.
    [112] Xu, L.-Y., B.-T. Huang and J.-G. Dai (2021). "Development of engineered cementitious composites (ECC) using artificial fine aggregates." Construction and Building Materials 305: 124742.
    [113] Xu, M., S. Song, L. Feng, J. Zhou, H. Li and V. C. Li (2021). "Development of basalt fiber engineered cementitious composites and its mechanical properties." Construction and Building Materials 266: 121173.
    [114] Xu, Z., Z. Liu, H. Sun and C. Gao (2013). "Highly electrically conductive Ag‐doped graphene fibers as stretchable conductors." Advanced Materials 25(23): 3249-3253.
    [115] Yahong, D., G. Shuqi, X. ZHANG, X. Ping, W. Jun and M. J. 复. ZHANG (2022). "Influence of basalt fiber on the anti-carbonation performance of recycled aggregate concrete." 39(3): 1228-1238.
    [116] Yang, E.-H. (2008). Designing Added Functions in Engineered Cementitious Composites.
    [117] Yang, E.-H., Y. Yang and V. C. Li (2007). "Use of high volumes of fly ash to improve ECC mechanical properties and material greenness." ACI materials journal 104(6): 620.
    [118] Yi, M. and Z. Shen (2015). "A review on mechanical exfoliation for the scalable production of graphene." Journal of Materials Chemistry A 3(22): 11700-11715.
    [119] Zhang, R., K. Matsumoto, T. Hirata, Y. Ishizeki and J. Niwa (2015). "Application of PP-ECC in beam–column joint connections of rigid-framed railway bridges to reduce transverse reinforcements." Engineering Structures 86: 146-156.
    [120] Zhao, L., X. Guo, Y. Liu, C. Ge, L. Guo, X. Shu and J. Liu (2017). "Synergistic effects of silica nanoparticles/polycarboxylate superplasticizer modified graphene oxide on mechanical behavior and hydration process of cement composites." RSC advances 7(27): 16688-16702.
    [121] Zhou, J., J. Pan and C. K. Leung (2015). "Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression." Journal of materials in civil engineering 27(1): 04014111.
    [122] Zhou, J., S. Qian, G. Ye, O. Copuroglu, K. van Breugel and V. C. Li (2012). "Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence." Cement and Concrete Composites 34(3): 342-348.
    [123] Zhu, Y., S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff (2010). "Graphene and graphene oxide: synthesis, properties, and applications." Advanced materials 22(35): 3906-3924.
    [124] 中華民國國家標準 (1984). 混凝土抗彎強度試驗法(三分點載重法), 經濟部標準檢驗局. CNS 1233.
    [125] 中華民國國家標準 (1985). 水硬性水泥密度試驗法, 經濟部標準檢驗局. CNS 11272.
    [126] 中華民國國家標準 (2011). 硬固水泥砂漿及混凝土長度變化試驗法, 經濟部標準檢驗局. CNS14603.
    [127] 中華民國國家標準 (2012). 水硬性水泥試驗用之流動性台, 經濟部標準檢驗局. CNS1012.
    [128] 中華民國國家標準 (2013). 細粒料密度、相對密度(比重)及吸水率試驗法, 經濟部標準檢驗局. CNS 487.
    [129] 中華民國國家標準 (2017). 流動化混凝土用化學摻料, 經濟部標準檢驗局. CNS 12833.
    [130] 中華民國國家標準 (2019). 水硬性水泥墁料抗壓強度檢驗法(用50 mm或2 in.立方體試體), 經濟部標準檢驗局. CNS 1010.
    [131] 中華民國國家標準 (2021). 混凝土用燃煤飛灰及未煆燒或煆燒天然卜作嵐材料, 經濟部標準檢驗局. CNS 3036.
    [132] 陳慶源 (2011). 澎湖南海玄武岩自然保留區環境空缺分析. 碩士, 明道大學.

    無法下載圖示 全文公開日期 2025/09/21 (校內網路)
    全文公開日期 2025/09/21 (校外網路)
    全文公開日期 2025/09/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE