簡易檢索 / 詳目顯示

研究生: 楊為勛
Wei-hsun Yang
論文名稱: 以不同應力影響之磊晶石墨烯奈米牆作為電極對於葡萄糖感測上之研究
Study the Strain-effect of Epitaxial Graphene Nanowalls on the Performance of Glucose Sensing
指導教授: 戴龑
Yian Tai
口試委員: 陳貴賢
Kuei-hsien Chen
林麗瓊
Li-chyong Chen
蔡伸隆
Shen-long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 128
中文關鍵詞: 石墨烯碳化矽葡萄糖感測葡萄糖氧化酶應力
外文關鍵詞: graphene, silicon carbide, glucose, sensing, glucose oxidase, strain
相關次數: 點閱:315下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,吾人以帶有不同應力影響之磊晶石墨烯奈米牆(epitaxial grapheme nanowalls, EGNWs)作為電極,並將葡萄糖氧化酶酵素(glucose oxidase)固定於其表面後應用於葡萄糖生物感測;吾人利用石墨烯奈米牆之三維高表面積結構、高活性特性之特點增加了酵素與電極間之電荷轉移速率(5.43 ± 0.31s-1)以及反應活性,並於葡萄糖感測中除了增加對葡萄糖之敏感度(41.09 ± 0.23μA/mM/cm2)以及降低了濃度感測極限至~2pM之外,更增加了酵素對於葡萄糖之親和性(0.291 ± 0.018 mM);同時經由實驗發現應力變化可影響酵素與石墨烯之間的電子傳導特性,進而改變葡萄糖感測之行為,其中又以具有張應力(tensile strain)之石墨烯奈米牆電極對於葡萄糖感測效果為最佳。


    In this work, few-layer epitaxial graphene nanowall (EGNW) arrays, a 3D wall-like edge-oriented hetero-architecture consisting of few-layer graphene grown on silicon carbide, by microwave plasma-enhanced chemical vapor deposition (MPECVD), with different strain effect by tuning different H2/CH4 ratio during process, were demonstrated by Raman spectroscopy. This material was employed for glucose sensing due to its larger surface area, controllable layer number and highly graphitic nature of epitaxially grown graphene, and enhanced edges of nanowall-architecture. The work showed that the enzyme-modified EGNW electrode could provide a remarkably improved contact (ks= 5.43 ± 0.31s-1) with the glucose oxidase (GOD). In the glucose analysis, the GOD/EGNWs has a sensitivity of 41.09 ± 0.23μA/mM/cm2, a largest detection range from 2 pM to 5mM, and a glucose affinity of 0.291 ± 0.018 mM. Furthermore, the strain effect of EGNWs for glucose sensing could be observed by not only in charge transfer between GOD and EGNWs but also in glucose sensing. The tensile strain EGNWs shows much better electronic transport, sensitivity, and glucose affinity than the other materials.

    中文摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XI 名詞縮寫表 XII 名詞代號表 XIII 第一章 緒論 1 1-1 前言 1 1-2、糖尿病簡介 2 1-3、石墨烯(graphene)簡介 5 1-4、石墨烯合成方法 6 1-5、外延石墨烯奈米牆(EGNW)簡介 7 1-6、研究動機與目的 8 第二章 文獻探討與相關理論 9 2-1石墨烯 9 2-1-1石墨烯之結構與特性 9 2-1-2石墨烯的製備方法 12 2-1-3碳化矽熱裂解法的機制 14 2-1-4磊晶石墨烯奈米牆之成長機制 19 2-1-5石墨結構的拉曼光譜 22 2-1-6石墨烯層數的檢測方法 25 2-1-7應力對於石墨烯之影響 27 2-2生物感測器 30 2-2-1、生物感測器定義 30 2-2-2、生物感測器之基本結構與原理 30 2-2-3、生物感測器種類 31 2-3、酵素的特性與固定化方法 40 2-3-1、酵素簡介[45][46][47] 40 2-3-2、酵素固定化的方法 43 2-4、葡萄糖感測器之應答機制 46 2-4-1、第一代葡萄糖生物感測器 46 2-4-2、第二代葡萄糖生物感測器 49 2-4-3、第三代葡萄糖生物感測器 52 第三章 實驗方法與步驟 53 3-1實驗流程 53 3-2 實驗藥品及材料 54 3-3 實驗儀器 55 3-3-1 微波電漿化學氣相沈積系統(MW-PECVD) 55 3-3 實驗方法 57 3-3-1微波電漿化學氣相沉積法(MPECVD)成長石墨烯奈米牆 57 3-3-2以EGNWs為酵素承載進行葡萄糖氧化酶固定方法 60 3-4 分析鑑定儀器 62 3-4-1 場發射掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 62 3-4-2拉曼振動光譜儀 (Raman spectrum) 64 3-4-3穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 65 3-4-4 X射線電子能譜儀( X-ray photoelectron spectroscopy, XPS) 67 3-4-5 接觸角測量儀 (Contact angle, CA) 68 3-4-6 恆電位分析儀(Potential stat) 69 第四章 實驗結果與討論 75 4-1、應力影響之EGNWs檢測 76 4-2、EGNWs表面型態影響 80 4-3、EGNWs表面之GOD固定 86 4-4、GOD/EGNWs之葡萄糖感測 98 第五章 結論與未來展望 105 參考文獻 107

    [1] “財團法人糖尿病關懷基金會.” [Online]. Available: http://www.dmcare.org.tw/.
    [2] 謝振傑, “光纖生物感測器,” 物理雙月刊, vol. 廿八, no. 四, 2006.
    [3] 許清曉, 常用臨床檢驗手冊, 3rd ed. 藝軒圖書, 2001.
    [4] 梅約醫學中心, 梅約醫學中心:糖尿病. 天下雜誌, 2002.
    [5] 糖尿病關懷基金會, 糖尿病迷思解惑 Q & A. 健康文化, 2007.
    [6] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: Past, present and future,” Prog. Mater. Sci., vol. 56, no. 8, pp. 1178–1271, Oct. 2011.
    [7] H. Wang, T. Maiyalagan, and X. Wang, “Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications,” Acs Catal., vol. 2, no. 5, pp. 781–794, May 2012.
    [8] C.-K. Chang, S. Kataria, C.-C. Kuo, A. Ganguly, B.-Y. Wang, J.-Y. Hwang, K.-J. Huang, W.-H. Yang, S.-B. Wang, C.-H. Chuang, M. Chen, C.-I. Huang, W.-F. Pong, K.-J. Song, S.-J. Chang, J.-H. Guo, Y. Tai, M. Tsujimoto, S. Isoda, C.-W. Chen, L.-C. Chen, and K.-H. Chen, “Band Gap Engineering of Chemical Vapor Deposited Graphene by in Situ BN Doping,” Acs Nano, vol. 7, no. 2, pp. 1333–1341, Feb. 2013.
    [9] D. A. Schmidt, T. Ohta, and T. E. Beechem, “Strain and charge carrier coupling in epitaxial graphene,” Phys. Rev. B, vol. 84, no. 23, Dec. 2011.
    [10] T. Mohiuddin, A. Lombardo, R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. Basko, C. Galiotis, N. Marzari, K. Novoselov, A. Geim, and A. Ferrari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B, vol. 79, no. 20, May 2009.
    [11] J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” J. Phys. Condens. Matter, vol. 20, no. 32, p. 323202, Aug. 2008.
    [12] M.-S. Hu, C.-C. Kuo, C.-T. Wu, C.-W. Chen, P. K. Ang, K. P. Loh, K.-H. Chen, and L.-C. Chen, “The production of SiC nanowalls sheathed with a few layers of strained graphene and their use in heterogeneous catalysis and sensing applications,” Carbon, vol. 49, no. 14, pp. 4911–4919, Nov. 2011.
    [13] M. Coros, F. Pogacean, A. R. Biris, A. S. Biris, and S. Pruneanu, “Application in Electrochemistry of Graphene-Modified Electrodes,” Micro Nanosyst., vol. 5, no. 2, pp. 127–137, May 2013.
    [14] 呂俊頡, “以化學氣相沉積法控制單層與雙層石墨於圖文化矽基板之成長,” 碩士論文, 國立清華大學, Taiwan, 2009.
    [15] S. Latil and L. Henrard, “Charge Carriers in Few-Layer Graphene Films,” Phys. Rev. Lett., vol. 97, no. 3, p. 036803, Jul. 2006.
    [16] B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the K point,” Phys. Rev. B, vol. 74, no. 7, p. 075404, Aug. 2006.
    [17] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol., vol. 5, no. 8, pp. 574–578, Aug. 2010.
    [18] T. Li, “Characteristics of Graphite Films on Silicon- and Car-bon-Terminated Faces of Silicon Carbide,” Dissertation, Georgia Institute of Technology, 2006.
    [19] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, “Epitaxial graphene,” Solid State Commun., vol. 143, no. 1–2, pp. 92–100, Jul. 2007.
    [20] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science, vol. 312, no. 5777, pp. 1191–1196, May 2006.
    [21] M. Hupalo, E. H. Conrad, and M. C. Tringides, “Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study,” Phys. Rev. B, vol. 80, no. 4, p. 041401, Jul. 2009.
    [22] W. Norimatsu and M. Kusunoki, “Formation process of graphene on SiC (0 0 0 1),” Phys. E Low-Dimens. Syst. Nanostructures, vol. 42, no. 4, pp. 691–694, Feb. 2010.
    [23] W. Norimatsu and M. Kusunoki, “Transitional structures of the interface between graphene and 6H–SiC (0 0 0 1),” Chem. Phys. Lett., vol. 468, no. 1–3, pp. 52–56, Jan. 2009.
    [24] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater., vol. 8, no. 3, pp. 203–207, Mar. 2009.
    [25] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Reports, vol. 473, no. 5–6, pp. 51–87, Apr. 2009.
    [26] Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, A. T. S. Wee, and Z. X. Shen, “Raman spectroscopy of epitaxial graphene on a SiC substrate,” Phys. Rev. B, vol. 77, no. 11, p. 115416, Mar. 2008.
    [27] Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Res., vol. 1, no. 4, pp. 273–291, Oct. 2008.
    [28] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett., vol. 97, no. 18, p. 187401, Oct. 2006.
    [29] Y. ying Wang, Z. hua Ni, T. Yu, Z. X. Shen, H. min Wang, Y. hong Wu, W. Chen, and A. T. Shen Wee, “Raman Studies of Monolayer Graphene: The Substrate Effect,” J. Phys. Chem. C, vol. 112, no. 29, pp. 10637–10640, Jul. 2008.
    [30] S. Reich and C. Thomsen, “Raman spectroscopy of graphite,” Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci., vol. 362, no. 1824, pp. 2271–2288, Nov. 2004.
    [31] J. Rohrl, M. Hundhausen, K. V. Emtsev, T. Seyller, R. Graupner, and L. Ley, “Raman spectra of epitaxial graphene on SiC(0001),” Appl. Phys. Lett., vol. 92, no. 20, pp. 201918–201918–3, May 2008.
    [32] N. Ferralis, R. Maboudian, and C. Carraro, “Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001),” arXiv e-print 0808.3605, Aug. 2008.
    [33] “Dr. hu’s unpoblish data.” .
    [34] D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, “Electro-chemical biosensors: recommended definitions and classification,” Biosens. Bioelectron., vol. 16, no. 1–2, pp. 121–131, Jan. 2001.
    [35] D. Diamond, Chemical Analysis, vol. 150. New York, 1998.
    [36] 林正立, “溶膠-凝膠修飾電極和電流式乳酸生物感測器,” 博士論文, 國立中正大學化學研究所, 2005.
    [37] A. Chaubey and B. D. Malhotra, “Mediated biosensors,” Biosens. Bioelectron., vol. 17, no. 6–7, pp. 441–456, Jun. 2002.
    [38] S. P. Mohanty and E. Kougianos, “Biosensors: a tutorial review,” Ieee Potentials, vol. 25, no. 2, pp. 35–40, 2006.
    [39] J. Castillo, S. Gaspar, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, V. Soukharev, S. A. Dorneanu, A. D. Ryabov, and E. Csoregi, “Biosensors for life quality: Design, development and applications,” Sensors Actuators B Chem., vol. 102, no. 2, pp. 179–194, Sep. 2004.
    [40] 田蔚城, 生物技術發展與應用. 九州圖書文物, 1997.
    [41] 陳春吉, “自主性單層薄膜電極之阻抗分析與其在內毒素檢測上之應用,” 碩士論文, 國立成功大學醫學工程研究所, 2002.
    [42] 許峰碩, “奈米碳黑在免疫層析檢測上的應用,” 碩士論文, 國立中興大學化學工程研究所, 2002.
    [43] U. E. Spichiger-Keller, Chemical sensors and biosensors for medical and biological applications. Weinheim; New York: Wiley-VCH, 1998.
    [44] A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications. New York: Wiley, 2001.
    [45] 劉英俊, 酵素工程. 中央圖書出版社, 1995.
    [46] 洪爭坊, 郭肇凱, and 張正英, “淺談酵素,” 台中區農情月刊, no. 84, 2007.
    [47] 呂鋒洲 and 林仁混, 基礎酵素學. 聯經出版社, 1991.
    [48] 文詩婷, “電流式尿酸生物感測器之開發及應用,” 碩士論文, 中國文化大 學生物科技研究所, 2000.
    [49] 呂慧菁, “電化學葡萄糖感測試片之研發,” 碩士論文, 國立中興大學化學 研究所, 2003.
    [50] A. P. F. Turner, B. Chen, and S. A. Piletsky, “In Vitro Diagnostics in Diabetes: Meeting the Challenge,” Clin. Chem., vol. 45, no. 9, pp. 1596–1601, Sep. 1999.
    [51] 呂博文, “Fe3O4 奈米微粒修飾性網印碳電極於葡萄糖生物感測 器之研究,” 碩士論文, 國立雲林科技大學化學工程系, 2006.
    [52] B. Gosali, “Behavior of chitosan oligosaccharides addition on amperometric glucose biosensor performance,” 碩士論文, 國立台灣科技 大學化學工程研究所, 2008.
    [53] J. Shen, L. Dudik, and C.-C. Liu, “An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor,” Sensors Actuators B Chem., vol. 125, no. 1, pp. 106–113, Jul. 2007.
    [54] Xu J.-J., Yu Z.-H., and Chen H.-Y., “Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion,” Anal. Chim. Acta, vol. 463, no. 2, pp. 239–247, 2002.
    [55] Y. Miao, J. Chen, and Y. Hu, “Electrodeposited nonconducting polytyramine for the development of glucose biosensors,” Anal. Biochem., vol. 339, no. 1, pp. 41–45, Apr. 2005.
    [56] M. L. Chunyan Deng, “New glucose biosensor based on a poly(o-phenylendiamine)/glucose oxidase-glutaraldehyde/Prussian blue/Au electrode with QCM monitoring of various electrode-surface modifications,” Anal. Chim. Acta, pp. 85–94.
    [57] C.-J. Yuan, C.-L. Hsu, S.-C. Wang, and K.-S. Chang, “Eliminating the Interference of Ascorbic Acid and Uric Acid to the Amperometric Glucose Biosensor by Cation Exchangers Membrane and Size Exclusion Membrane,” Electroanalysis, vol. 17, no. 24, pp. 2239–2245, 2005.
    [58] M. Yang, Y. Yang, Y. Yang, G. Shen, and R. Yu, “Microbiosensor for acetylcholine and choline based on electropolymerization/sol–gel derived composite membrane,” Anal. Chim. Acta, vol. 530, no. 2, pp. 205–211, Feb. 2005.
    [59] W. J. Sung, K. Na, and Y. H. Bae, “Biocompatibility and interference eliminating property of pullulan acetate/polyethylene glycol/heparin membrane for the outer layer of an amperometric glucose sensor,” Sensors Actuators B Chem., vol. 99, no. 2–3, pp. 393–398, May 2004.
    [60] S. Dong, B. Wang, and B. Liu, “Amperometric glucose sensor with ferrocene as an electron transfer mediator,” Biosens. Bioelectron., vol. 7, no. 3, pp. 215–222, 1992.
    [61] M. E. Ghica and C. M. A. Brett, “Development of a Carbon Film Electrode Ferrocene‐Mediated Glucose Biosensor,” Anal. Lett., vol. 38, no. 6, pp. 907–920, 2005.
    [62] P.-C. Nien, T.-S. Tung, and K.-C. Ho, “Amperometric Glucose Bio-sensor Based on Entrapment of Glucose Oxidase in a Poly(3,4-ethylenedioxythiophene) Film,” Electroanalysis, vol. 18, no. 13–14, pp. 1408–1415, 2006.
    [63] J. Wang, L. Fang, D. Lopez, and H. Tobias, “Highly Selective and Sensitive Amperometric Biosensing of Glucose at Rutheni-um-Dispersed Carbon Paste Enzyme Electrodes,” Anal. Lett., vol. 26, no. 9, pp. 1819–1830, 1993.
    [64] G. A. Rivas and B. Maestroni, “Iridium-Dispersed Carbon Paste Amino Acid Oxidase Electrodes.,” Anal. Lett., vol. 30, no. 3, pp. 489–501, 1997.
    [65] J. Wang, J. Liu, L. Chen, and F. Lu, “Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor,” Anal. Chem., vol. 66, no. 21, pp. 3600–3603, Nov. 1994.
    [66] Z. Zhang, H. Liu, and J. Deng, “A Glucose Biosensor Based on Im-mobilization of Glucose Oxidase in Electropolymerized o-Aminophenol Film on Platinized Glassy Carbon Electrode,” Anal. Chem., vol. 68, no. 9, pp. 1632–1638, May 1996.
    [67] L. Ming, X. Xi, and J. Liu, “Electrochemically platinized carbon paste enzyme electrodes: a new design of amperometric glucose biosensors,” Biotechnol. Lett., vol. 28, no. 17, pp. 1341–1345, Sep. 2006.
    [68] K. Derwinska, K. Miecznikowski, R. Koncki, P. J. Kulesza, S. Glab, and M. A. Malik, “Application of Prussian Blue Based Composite Film with Functionalized Organic Polymer to Construction of Enzymatic Glucose Biosensor,” Electroanalysis, vol. 15, no. 23–24, pp. 1843–1849, 2003.
    [69] T. Li, Z. Yao, and L. Ding, “Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol–gel film onto Prussian Blue modified electrode,” Sensors Actuators B Chem., vol. 101, no. 1–2, pp. 155–160, Jun. 2004.
    [70] W. Zhao, J.-J. Xu, C.-G. Shi, and H.-Y. Chen, “Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing,” Langmuir Acs J. Surfaces Colloids, vol. 21, no. 21, pp. 9630–9634, Oct. 2005.
    [71] M. Ferreira, P. A. Fiorito, O. N. Oliveira Jr., and S. I. Cordoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron., vol. 19, no. 12, pp. 1611–1615, Jul. 2004.
    [72] 李坤易, “高感度葡萄糖生物感測器之研究,” 碩士論文, 國立雲林科技大 學化學工程系, 2006.
    [73] Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, “Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing,” Acs Nano, vol. 4, no. 4, pp. 1790–1798, Apr. 2010.
    [74] S. Deng, G. Jian, J. Lei, Z. Hu, and H. Ju, “A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes,” Biosens. Bioelectron., vol. 25, no. 2, pp. 373–377, Oct. 2009.
    [75] C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene,” Anal. Chem., vol. 81, no. 6, pp. 2378–2382, Mar. 2009.
    [76] A. Guiseppi-Elie, C. Lei, and R. H. Baughman, “Direct electron transfer of glucose oxidase on carbon nanotubes,” Nanotechnology, vol. 13, no. 5, p. 559, 2002.
    [77] K. Besteman, J.-O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker, “Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors,” Nano Lett., vol. 3, no. 6, pp. 727–730, Jun. 2003.
    [78] P. T. Kissinger, Laboratory techniques in electroanalytical chemistry [...] [...]. New York, NY [u.a.: Dekker, 1996.
    [79] P. W. May, “Diamond thin films: a 21st-century material,” Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci., vol. 358, no. 1766, pp. 473–495, Jan. 2000.
    [80] “Flavin adenine dinucleotide,” Wikipedia, the free encyclopedia. 02-Jul-2013.
    [81] D. Zhan, J. Yan, L. Lai, Z. Ni, L. Liu, and Z. Shen, “Engineering the Electronic Structure of Graphene,” Adv. Mater., vol. 24, no. 30, pp. 4055–4069, Aug. 2012.
    [82] J.-Z. Xu, J.-J. Zhu, Q. Wu, Z. Hu, and H.-Y. Chen, “An Amperometric Biosensor Based on the Coimmobilization of Horseradish Peroxidase and Methylene Blue on a Carbon Nanotubes Modified Electrode,” Electroanalysis, vol. 15, no. 3, pp. 219–224, 2003.
    [83] V. Mani, B. Devadas, and S.-M. Chen, “Direct electrochemistry of glucose oxidase at electrochemically reduced graphene ox-ide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor,” Biosens. Bioelectron., vol. 41, pp. 309–315, Mar. 2013.
    [84] Y.-L. Yao and K.-K. Shiu, “Direct Electrochemistry of Glucose Oxidase at Carbon Nanotube-gold Colloid Modified Electrode with Poly(diallyldimethylammonium chloride) Coating,” Electroanalysis, vol. 20, no. 14, pp. 1542–1548, 2008.
    [85] A. P. Periasamy, Y.-J. Chang, and S.-M. Chen, “Amperometric glu-cose sensor based on glucose oxidase immobilized on gela-tin-multiwalled carbon nanotube modified glassy carbon electrode,” Bioelectrochemistry, vol. 80, no. 2, pp. 114–120, Feb. 2011.
    [86] Q. Liu, X. Lu, J. Li, X. Yao, and J. Li, “Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes,” Biosens. Bioelectron., vol. 22, no. 12, pp. 3203–3209, Jun. 2007.
    [87] P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang, and C. Cai, “Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection,” Electrochimica Acta, vol. 55, no. 28, pp. 8606–8614, Dec. 2010.
    [88] B. Unnikrishnan, S. Palanisamy, and S.-M. Chen, “A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite,” Biosens. Bioelectron., vol. 39, no. 1, pp. 70–75, Jan. 2013.

    QR CODE