簡易檢索 / 詳目顯示

研究生: THI KIM GIANG LUONG
THI KIM GIANG LUONG
論文名稱: 以二氧化鈦光觸媒程序在Fe(III)存在下同時氧化還原水溶液As(III)和Cr(VI)金屬離子
Simultaneous Photocatalytic Oxidation of As(III) and Reduction of Cr(VI) in Aqueous Phase by UV/TiO2/Fe(III) Process
指導教授: 顧洋
Young Ku
口試委員: 張添晉
Tien-Jin Chang
蔣本基
Pen-Chi Chiang
蔡伸隆
Shen-Long Tsai
曾堯宣
Yao-Hsuan Tseng
顧洋
Young Ku
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 139
中文關鍵詞: 光催化三價砷氧化六價鉻還原動力學分析鐵離子
外文關鍵詞: Photocatalysis, As(III) oxidation, Cr(VI) reduction, Kinetic analysis, Ferric ions
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,研究了Fe(III)存在下的UV/TiO2工藝對As(III)的光催化氧化和Cr(VI)的光還原反應,並考察了不同操作條件對反應的影響,如溶液pH值、UV光強度、Fe(III)、As(III)和Cr(VI)的初始濃度、無機鹽和活性自由基等。通過浸潤法製備了Ti薄膜載體上的TiO2光催化劑,並利用X射線衍射(XRD)、Brunauer-Emmett-Teller表面積測定(BET)、場發射掃描電子顯微鏡(FE-SEM)、zeta電位(pHpzc)、X射線光電子能譜(XPS)等方法對催化劑進行了表徵分析。
    研究探討了Fe(III)在單一和混合金屬離子系統中對As(III)氧化和Cr(VI)還原在UV/TiO2工藝中的作用。在UV/TiO2/Cr(VI)/Fe(III)系統中,Fe(III)的存在促進了酸性介質中Cr(VI)的光還原反應,通過Fe(III)/Fe(II)氧化還原循環使Cr(VI)的光還原反應提高了34%。首次提出了基於Langmuir-Hinshelwood機理的雙位點動力學模型,該模型對UV/TiO2/Fe(III)工藝中Cr(VI)的光還原反應與實驗數據非常吻合。在UV/TiO2/As(III)/Fe(III)系統中,添加Fe(III)顯著提高了As(III)的氧化效率,將其從48.53%提高到94.51%。實驗結果表明,在無Fe(III)存在的水溶液中,光產生的正電子是As(III)氧化的主要活性自由基。然而,在酸性介質中,As(III)的氧化主要發生在溶液中,由於Fe(III)在UV照射下光解產生∙OH自由基。在UV/TiO2/As(III)/Cr(VI)系統中觀察到As(III)和Cr(VI)之間的競爭吸附效應,產生了負面影響。在酸性溶液中,在90分鐘內,添加Fe(III)使As(III)和Cr(VI)的同時去除率分別提高了55%和24%。在無Fe(III)存在時,光產生的正電子和電子主要貢獻於As(III)的氧化和Cr(VI)的還原反應。在Fe(III)存在下,Fe(II)的生成和∙OH自由基參與了UV/TiO2/As(III)/Cr(VI)系統的反應機制。利用Langmuir-Hinshelwood(L-H)動力學模型分析,光催化表面反應被證明是As(III)光氧化和Cr(VI)光還原的速率控制步驟。


    In this study, the simultaneous photocatalytic oxidation of As(III) and reduction of Cr(VI) in the presence of Fe(III) was investigated by UV/TiO2 process under various operation conditions, such as solution pH, UV light intensity, initial concentrations of Fe(III), As(III), and Cr(VI), inorganic salts, and active radicals. The Ti film supported TiO2 was fabricated by the impregnation method, as photocatalysts for the redox system and the characterizations of catalyst were analyzed by X-ray diffraction (XRD), Brunauer- Emmett-Teller surface area measurement (BET), field emission scanning electron microscope (FE-SEM), zeta potential (pHpzc), X-ray photoelectron spectroscopy (XPS).
    The role of Fe(III) in the As(III) oxidation and Cr(VI) reduction under UV/TiO2 process in single and simultaneous metal ions system were studied. In UV/TiO2/Cr(VI)/Fe(III) system, the presence of Fe(III) promoted the photoreduction of Cr(VI) by 34% in acidic medium through the Fe(III)/Fe(II) redox cycle. A dual-site kinetic model based on the Langmuir-Hinshelwood mechanism for Cr(VI) photoreduction by UV/TiO2/Fe(III) process is first proposed and well fitted with the experiment data. In UV/TiO2/As(III)/Fe(III), the oxidation of As(III) was enhanced significantly by adding Fe(III) from 48.53% to 94.51%. Experimental results indicated that photogenerated holes were the main active radical for the oxidation of As(III) in the absence of Fe(III) in aqueous solution. However, the oxidation of As(III) primarily occurred in the bulk solution by ∙OH radicals, which were produced from Fe(III) photolysis under UV irradiation in acidic medium. In UV/TiO2/As(III)/Cr(VI) system, a negative effect between As(III) and Cr(VI) was observed due to their competitive adsorption on TiO2 surface. The simultaneous removal of As(III) and Cr(VI) enhanced by 55% and 24% by adding Fe(III) in acidic solution under UV irradiation within 90 min. In the absence of Fe(III), photogenerated holes and electrons primarily attributed to the As(III) oxidation and Cr(VI) reduction, respectively. In the presence of Fe(III), the production of Fe(II) and ∙OH radicals took part in the reaction mechanism of UV/TiO2/As(III)/Cr(VI) system. The photocatalytic surface reaction was demonstrated as the rate-determining step for As(III) photooxidation and Cr(VI) photoreduction which was analyzed by the Langmuir-Hinshelwood (L-H) kinetic model.

    List of Figure VIII List of Table XIII List of Symbol XIV Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives and Scope 3 Chapter 2 Literature Review 4 2.1 Photolysis and Photocatalysis 4 2.1.1 Basic Properties of TiO2 4 2.1.2 Photocatalysis Reaction Mechanisms and Kinetics 5 2.2 Simultaneous Photocatalytic Oxidation of As(III) and Reduction of Cr(VI) in Aqueous Solutions 8 2.2.1 Photocatalytic Oxidation of As(III) in Aqueous Solution by UV/TiO2 Process 8 2.2.2 Photocatalytic Reduction of Cr(VI) in Aqueous Solution by UV/TiO2 Process 11 2.2.3 Simultaneous Photocatalytic Oxidation of As(III) and Reduction of Cr(VI) in Aqueous Solutions 12 2.3 Operating Factors Affecting Photocatalytic Redox Reactions 15 2.3.1 Solution pH 15 2.3.2 Catalyst Loading 20 2.3.3 Light Intensity 20 2.3.4 Initial Concentration of As(III) and Cr(VI) 21 2.3.5 Dissolved Oxygen 22 2.3.6 Co-existing Ions 22 Chapter 3 Materials and Experiments 24 3.1 Materials 24 3.2 Experimental Instruments and Apparatus 25 3.2.1 Experimental Apparatus 25 3.2.2 Experimental Instruments 28 3.3 Experimental Procedures 29 3.3.1 Experimental Framework 29 3.3.2 Photocatalyst Synthesis 31 3.3.3 Background Experiments 31 Chapter 4 Results and Discussion 43 4.1 Characterization of Photocatalyst 43 4.2 Photocatalytic Reduction of Cr(VI) in Aqueous Solution in the Presence of Fe(III) by UV/TiO2 Process 46 4.2.1 Photocatalytic Reduction of Cr(VI) in Aqueous Solution under UV/TiO2 Process 46 4.2.2 Effect of Ferric Ion 48 4.2.3 Effect of Solution pH 50 4.2.4 Effect of Light Intensity 52 4.2.5 Effect of Co-existing Ions 54 4.2.6 Mechanism for the Photoreduction of Cr(VI) in Aqueous Solution by UV/TiO2/Fe(III) Process 55 4.2.7 Kinetic Modeling 59 4.3 Photocatalytic Oxidation of Arsenic As(III) in Aqueous Solution by UV/TiO2 Process 69 4.3.1 Effect of Solution pH 69 4.3.2 Effect of Light Intensity 69 4.3.3 Effect of Co-existing Ion 70 4.3.4 Effect of Fe(III) Ion 72 4.3.5 Mechanism for the Photooxidation of As(III) in Aqueous Solution by UV/TiO2 Process 74 4.3.6 Kinetic Mechanism for the Photooxidation of As(III) in Aqueous Solution by UV/TiO2 Process 76 4.4 Simultaneous Photooxidation of As(III) and Photoreduction of Cr(VI) in Aqueous Solution by UV/TiO2/Fe(III) Process 80 4.4.1 Simultaneous Photoxidation of As(III) and Photoreduction of Cr(VI) in Aqueous Solution by UV/TiO2 Process 80 4.4.2 Effect of Ferric Ion 83 4.4.3 Effect of Solution pH 85 4.4.4 Effect of Light Intensity 87 4.4.5 Effect of As(III)/Cr(VI) Concentration Ratio 89 4.4.6 Effect of Inorganic Anions 91 4.4.7 Reusability of TiO2 Photocatalyst 91 4.4.8 Mechanism for the Photooxidation of As(III) and Photoreduction of Cr(VI) in Aqueous Solution by UV/TiO2/Fe(III) Process 95 4.4.9 Kinetic Mechanism for Simultaneous Photocatalytic Oxidation of As(III) and Reduction of Cr(VI) by UV/TiO2/Fe(III) Process 101 Chapter 5 Conclusions and Recommendations 106 Reference 110

    Ananpattarachai, J., and Kajitvichyanukul, P., “Enhancement of Chromium Removal Efficiency on Adsorption and Photocatalytic Reduction Using a Bio-Catalyst, Titania-Impregnated Chitosan/Xylan Hybrid Film,” J. Clean. Prod., Vol. 130, pp. 126-136 (2016).
    Bissen, M., Vieillard-Baron, M.-M., Schindelin, A. J., and Frimmel, F. H., “TiO2-Catalyzed Photooxidation of Arsenite to Arsenate in Aqueous Samples,” Chemosphere., Vol. 44, pp. 751-757 (2001).
    Boyjoo, Y., Sun, H., Liu, J., Pareek, V. K., and Wang, S., “A Review on Photocatalysis for Air Treatment: From Catalyst Development to Reactor Design,” Chem. Eng. J., Vol. 310, pp. 537-559 (2017).
    Boyjoo, Y., Sun, H., Liu, J., Pareek, V. K., and Wang, S., “A Review on Photocatalysis for Air Treatment: From Catalyst Development to Reactor Design,” Chem. Eng. J., Vol. 310, pp. 537-559 (2017).
    Cai, J., and Li, H., “Electrospun Polymer Nanofibers Coated with TiO2 Hollow Spheres Catalyze for High Synergistic Photo-Conversion of Cr(VI) and As(III) using Visible Light,” Chem. Eng. J., Vol. 398, pp. 125644 (2020).
    Cerkez, E.B., Bhandari, N., Reeder, R.J. and Strongin, D.R., “Coupled Redox Transformation of Chromate and Arsenite on Ferrihydrite,” Environ. Sci. Technol., 49(5), pp.2858-2866 (2015).
    Chen, D., and Ray, A. K., “Removal of Toxic Metal Ions from Wastewater by Semiconductor Photocatalysis,” Chem. Eng. Sci., Vol. 56, pp. 1561-1570 (2001).
    Chen, D., Sivakumar, M., and Ray, A. K., “Heterogeneous Photocatalysis in Environmental Remediation,” Dev. Chem. Eng. Min. Process., Vol. 8, pp. 505-550 (2000).
    Chen, H. W., Ku, Y., and Irawan, A., “Photodecomposition of o-Cresol by UV-LED/ TiO2 Process with Controlled Periodic Illumination,” Chemosphere., Vol. 69, pp. 184-190 (2007).
    Chen, J., and Browne, W. R., “Photochemistry of Iron Complexes,” Coord. Chem. Rev., Vol. 374, pp. 15-35 (2018).
    Cheng, X., Wang, J., Yang, B., Wang, C., Chu, W. and Guo, H., “Reevaluation for UV Photolysis of Fe (III) Inducing Tetracycline Abatement: Overlooked Significance of Complexation-assistance in Environmental Fates of Antibiotics,” J. Hazard. Mater., pp.131909 (2023).
    Choi, W., Yeo, J., Ryu, J., Tachikawa, T., and Majima, T., “Photocatalytic Oxidation Mechanism of As(III) on TiO2: Unique Role of As(III) as a Charge Recombinant Species,” Environ. Sci., Vol. 44, pp. 9099-9104 (2010).
    Chou, Y. C., and Ku, Y., “NO Reduction and N2 Selectivity under Various Operating Conditions for Photo-SCR of NO,” Chem. Eng. J., Vol. 162, pp. 696-701 (2010).
    Chou, Y. C., and Ku, Y., “Preparation of High-Aspect-Ratio TiO2 Nanotube Arrays for the Photocatalytic Reduction of NO in Air Streams,” Chem. Eng. J., Vol. 225, pp. 734-743 (2013).
    Choudhary, B., Paul, D., Singh, A., and Gupta, T., “Removal of Hexavalent Chromium upon Interaction with Biochar under Acidic Conditions: Mechanistic Insights and Application,” Environ. Sci. Pollut. Res., Vol. 24, pp. 16786-16797 (2017).
    Clesceri, L. S., Eaton, A. D., Greenberg, A. E., Franson, M. A. H., American Public Health, A., American Water Works, A., and Water Environment, F., Standard Methods for the Examination of Water and Wastewater : 19th Edition Supplement, Washington, DC: American Public Health Association, (1996).
    Colmenares, J. C., and Xu, Y.-J., “Heterogeneous Photocatalysis,” Green Chemistry and Sustainable Technology (2016).
    Didari, J., and Sadeghzadeh-Attar, A., “Ni-N Codoped SnO2/ Fe2O3 Nanocomposite as Advanced Bifunctional Photocatalyst for Simultaneous Photocatalytic Redox Conversion of Cr(VI) and As(III),” J. Taiwan. Inst. Chem. Eng., Vol. 119, pp. 232-244 (2021).
    Ding, W., Wang, Y., Yu, Y., Zhang, X., Li, J., and Wu, F., “Photooxidation of Arsenic(III) to Arsenic(V) on the Surface of Kaolinite Clay,” Res. J. Environ. Sci., Vol. 36, pp. 29-37 (2015).
    Djellabi, R., Ghorab, M. F., and Sehili, T., “Simultaneous Removal of Methylene Blue and Hexavalent Chromium from Water Using TiO2/Fe(III)/H2O2/Sunlight,” CLEAN – Soil, Air, Water., Vol. 45, pp. 1500379 (2017).
    Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., and He, Y., “An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures,” Water Res., Vol. 79, pp. 128-146 (2015).
    Dozzi, M. V., Saccomanni, A., and Selli, E., “Cr(VI) Photocatalytic Reduction: Effects of Simultaneous Organics Oxidation and of Gold Nanoparticles Photodeposition on TiO2,” J. Hazard. Mater., Vol. 211-212, pp. 188-195 (2012).
    Dutta, P. K., Pehkonen, S. O., Sharma, V. K., and Ray, A. K., “Photocatalytic Oxidation of Arsenic(III):  Evidence of Hydroxyl Radicals,” Environ. Sci., Vol. 39, pp. 1827-1834 (2005).
    Fei, H., Leng, W., Li, X., Cheng, X., Xu, Y., Zhang, J., Cao, C., “Photocatalytic Oxidation of Arsenite Over TiO2: is Superoxide the Main Oxidant in Normal Air Saturated Aqueous Solutions?,” Environ. Sci. Technol., 45, pp. 4532-4539 (2011).
    Fox, M. A., and Dulay, M. T., “Heterogeneous Photocatalysis,” Chem. Rev., Vol. 93, pp. 341-357 (1993).
    Fujishima, A., and Honda, K., “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature. Vol. 238, pp. 37-38 (1972).
    Gutierrez, R., Flores, S. O., Rios, O., and Valenzuela, M., “Simultaneous Cr(VI) Reduction and Naphthalene Oxidation in Aqueous Solutions by UV/TiO2,” Mater Res Soc Symp Proc., 1045, 1-5 (2007).
    He, H., Cheng, Y., Yang, C., Zeng, G., Zhu, C., and Yan, Z., “Influences of Anion Concentration and Valence on Dispersion and Aggregation of Titanium Dioxide Nanoparticles in Aqueous Solutions,” J Environ Sci, Vol. 54, pp. 135-141 (2017).
    Hennig, H., and Billing, R., “Advantages and Disadvantages of Photocatalysis Induced by Light-Sensitive Coordination Compounds,” Coord. Chem. Rev., Vol. 125, pp. 89-100 (1993).
    Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol. 95, pp. 69-96 (1995).
    Hsu, C. L., Wang, S. L., and Tzou, Y. M., “Photocatalytic Reduction of Cr(VI) in the Presence of NO3- and Cl- Electrolytes as Influenced by Fe(III),” Environ. Sci., Vol. 41, pp. 7907-7914 (2007).
    Hu, X., Wang, W., Xie, G., Wang, H., Tan, X., Jin, Q., Zhou, D., and Zhao, Y., “Ternary Assembly of g-C3N4/Graphene Oxide Sheets /BiFeO3 Heterojunction with Enhanced Photoreduction of Cr(VI) under Visible-Light Irradiation,” Chemosphere., Vol. 216, pp. 733-741 (2019).
    Hu, X., Zhao, Y., Wang, H., Cai, X., Hu, X., Tang, C., Liu, Y., and Yang, Y., “Decontamination of Cr (VI) by Graphene Oxide@TiO2 in an Aerobic Atmosphere: Effects of pH, Ferric Ions, Inorganic Anions, and Formate,” J. Chem. Technol. Biotechnol., Vol. 93, pp. 2226-2233 (2018).
    Ibrahim, I., Kaltzoglou, A., Athanasekou, C., Katsaros, F., Devlin, E., Kontos, A. G., Ioannidis, N., Perraki, M., Tsakiridis, P., Sygellou, L., Antoniadou, M., and Falaras, P., “Magnetically Separable TiO2/CoFe2O4/Ag Nanocomposites for the Photocatalytic Reduction of Hexavalent Chromium Pollutant under UV and Artificial Solar Light,” Chem. Eng. J., Vol., 381, pp. 122730 (2020).
    Islam, J. B., Islam, M. R., Furukawa, M., Tateishi, I., Katsumata, H., and Kaneco, S., “Performance of EDTA Modified Magnetic ZnFe2O4 During Photocatalytic Reduction of Cr(VI) in Aqueous Solution under UV Irradiation,” J. Environ. Sci. Health A., Vol. 56, pp. 44-51 (2021).
    Jafarzadeh, M., “Recent progress in the development of MOF-based photocatalysts for the photoreduction of Cr (VI),” ACS Appl Mater Interfaces., 14(22), pp.24993-25024 (2022).
    Jiang, B., Guo, J., Wang, Z., Zheng, X., Zheng, J., Wu, W., Wu, M. and Xue, Q.,. A Green Approach Towards Simultaneous Remediations of Chromium (VI) and Arsenic (III) in Aqueous Solution,” J. Chem. Eng., 262, pp.1144-1151 (2015).
    Jiang, F., Zheng, Z., Xu, Z., Zheng, S., Guo, Z., and Chen, L., “Aqueous Cr(VI) Photo-Reduction Catalyzed by TiO2 and Sulfated TiO2,” J. Hazard. Mater., Vol. 134, pp. 94-103 (2006).
    Jiang, X. H., Xing, Q. J., Luo, X. B., Li, F., Zou, J. P., Liu, S. S., Li, X., and Wang, X. K., “Simultaneous Photoreduction of Uranium(VI) and Photooxidation of Arsenic(III) in Aqueous Solution over g-C3N4/ TiO2 Heterostructured Catalysts under Simulated Sunlight Irradiation,” Appl. Catal., Vol. 228, pp. 29-38 (2018).
    Kabra, K., Chaudhary, R., and Sawhney, R. L., “Solar Photocatalytic Removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation Modeling of Metal–Citric Acid Complexes,” J. Hazard. Mater., Vol. 155, pp. 424-432 (2008).
    Kajitvichyanukul, P., Ananpattarachai, J., and Pongpom, S., “Sol–Gel Preparation and Properties Study of TiO2 Thin Film for Photocatalytic Reduction of Chromium(VI) in Photocatalysis Process,” Sci Technol Adv Mate., Vol. 6, pp. 352 (2005).
    Karimi-Maleh, H., Orooji, Y., Ayati, A., Qanbari, S., Tanhaei, B., Karimi, F., Alizadeh, M., Rouhi, J., Fu, L., and Sillanpää, M., “Recent Advances in Removal Techniques of Cr (VI) Toxic Ion from Aqueous Solution: A Comprehensive Review,” J. Mol. Liq., pp. 115062 (2020).
    Kim, D. H., Lee, D., Monllor-Satoca, D., Kim, K., Lee, W., and Choi, W., “Homogeneous Photocatalytic Fe3+/Fe2+ Redox Cycle for Simultaneous Cr(VI) Reduction and Organic Pollutant Oxidation: Roles of Hydroxyl Radical and Degradation Intermediates,” J. Hazard. Mater., Vol. 372, pp. 121-128 (2019).
    Kim, D. H., Moon, G. H., Koo, M. S., Kim, H. I., and Choi, W., “Spontaneous Oxidation of Arsenite on Platinized TiO2 through Activating Molecular Oxygen under Ambient Aqueous Condition,” Appl. Catal., Vol. 260, pp. 118146 (2020).
    Kim, D.H., Bokare, A.D., Koo, M.S. and Choi, W., “Heterogeneous catalytic oxidation of As (III) on nonferrous metal oxides in the presence of H2O2,” Environ. Sci. Technol., 49(6), pp.3506-3513 (2015).
    Kim, K. and Choi, W., “Enhanced Redox Conversion of Chromate and Arsenite in Ice,” Environ. Sci. Technol., 45(6), pp.2202-2208 (2018).
    Kim, S. B., and Hong, S. C., “Kinetic Study for Photocatalytic Degradation of Volatile Organic Compounds in Air using Thin Film TiO2 Photocatalyst,” Appl. Catal., Vol. 35, pp. 305-315 (2002).
    Ku, Y. and Jung, I. L., “Photocatalytic Reduction of Cr(VI) in Aqueous Solutions by UV Irradiation with the Presence of Titanium Dioxide,” Water Res., Vol. 35, pp. 135--142 (2001).
    Ku, Y., Lee, P. C., and Luong, G. K. T., “Photocatalytic Reduction of Gaseous Carbon Dioxide over NiO/TiO2 under UV Light Illumination,” J. Taiwan. Inst. Chem. Eng., Vol. 125, pp. 291-296 (2021).
    Ku, Y., Yan, L. M., and Luong, G. K. T., “Reduction of Dissolved Carbon Dioxide in Aqueous Solution by UV-LED/ TiO2 Process under Periodic Illumination,” J. CO2. Util., Vol. 41, pp. 101283 (2020).
    Kumar, V., Wanchoo, R.K. and Toor, A.P., “Photocatalytic Reduction and Crystallization Hybrid System for Removal and Recovery of Lead (Pb),” Ind. Eng. Chem. Res., 60(24), pp.8901-8910 (2021).
    Lee, H., and Choi, W., “Photocatalytic Oxidation of Arsenite in TiO2 Suspension: Kinetics and Mechanisms,” Environ. Sci., Vol. 36, pp. 3872-3878 (2002).
    Lei, D., Xue, J., Peng, X., Li, S., Bi, Q., Tang, C., and Zhang, L., “Oxalate Enhanced Synergistic Removal of Chromium(VI) and Arsenic(III) over ZnFe2O4/g-C3N4: Z-Scheme Charge Transfer Pathway and Photo-Fenton Like Reaction,” Appl. Catal., Vol. 282, pp. 119578 (2021).
    Li, Q. H., Dong, M., Li, R., Cui, Y. Q., Xie, G. X., Wang, X. X., and Long, Y. Z., “Enhancement of Cr(Vi) Removal Efficiency Via Adsorption/Photocatalysis Synergy Using Electrospun Chitosan/g-C3N4/TiO2 Nanofibers,” Carbohydr. Polym., Vol. 253, pp. 117200 (2021).
    Li, T., Zhang, L., Gao, Y., Xing, X., Zhang, X., Li, F., and Hu, C., “Detoxification and Selective Separation of Cr(VI) and As(III) in Wastewater Based on Interfacial Coupling in BiOBr with {110} Facet under Visible-Light Irradiation,” Appl. Catal., Vol. 307, pp. 121192 (2022).
    Li, Y., Sun, S., Ma, M., Ouyang, Y., and Yan, W., “Kinetic Study and Model of the Photocatalytic Degradation of Rhodamine B (RhB) by a TiO2-Coated Activated Carbon Catalyst: Effects of Initial RhB Content, Light Intensity and TiO2 Content in the Catalyst,” Chem. Eng. J., Vol. 142, pp. 147-155 (2008).
    Liang, H. C., Li, X. Z., Yang, Y.H., and Sze, K.H., “Effects of Dissolved Oxygen, pH, and Anions on the 2,3-Dichlorophenol Degradation by Photocatalytic Reaction with Anodic TiO2 Nanotube Films,” Chemosphere., Vol. 73, pp. 805-812 (2008).
    Liu, F., Zhang, W., Tao, L., Hao, B., and Zhang, J., “Simultaneous Photocatalytic Redox Removal of Chromium(VI) and Arsenic(III) by Hydrothermal Carbon-Sphere@Nano-Fe3O4,” Environ. Sci. Nano., Vol. 6, pp. 937-947 (2019).
    Liu, W., Ni, J., and Yin, X., “Synergy of Photocatalysis and Adsorption for Simultaneous Removal of Cr(VI) and Cr(III) with TiO2 and Titanate Nanotubes,” Water Res., Vol. 53, pp. 12-25 (2014).
    Liu, Y. G., Hu, X. J., Wang, H., Chen, A. W., Liu, S. M., Guo, Y. M., He, Y., Hu, X., Li, J., Liu, S. H., Wang, Y. Q., and Zhou, L., “Photoreduction of Cr(VI) from Acidic Aqueous Solution using TiO2-Impregnated Glutaraldehyde-Crosslinked Alginate Beads and the Effects of Fe(III) Ions,” Chem. Eng. J., Vol. 226, pp. 131-138 (2013).
    Liu, Y., Deng, L., Chen, Y., Wu, F., and Deng, N., “Simultaneous Photocatalytic Reduction of Cr(VI) and Oxidation of Bisphenol a Induced by Fe(III)–OH Complexes in Water,” J. Hazard. Mater., Vol. 139, pp. 399-402 (2007).
    Long, Z., Zhang, G., Du, H., Zhu, J., and Li, J., “Preparation and Application of Biobr-Bi2S3 Heterojunctions for Efficient Photocatalytic Removal of Cr(VI),” J. Hazard. Mater., Vol. 407, pp. 124394 (2021).
    Luong, G. K. T., and Ku, Y., “Selective Oxidation of Benzyl Alcohol in the Aqueous Phase by TiO2-Based Photocatalysts: A Review,” Chem. Eng. Technol., Vol. 44, pp. 2178-2190 (2021).
    Luong, G.K.T., Ku, Y., “Enhanced Photocatalytic Reduction of Cr(VI) in Aqueous Solution by UV/TiO2 Process in the Presence of Fe (III): Performance, Kinetic, And Mechanisms,” Chem Eng Process: Process Intensif ., 181, pp. 109135 (2022).
    Mao, W., Zhang, L., Zhang, Y., Wang, Y., Wen, N. and Guan, Y., “Adsorption and Photocatalysis Removal of Arsenite, Arsenate, and Hexavalent Chromium in Water by the Carbonized Composite of Manganese-crosslinked Sodium Alginate,” Chemosphere., 292, pp.133391 (2022).
    Marinho, B. A., Cristóvão, R. O., Boaventura, R. A. R., and Vilar, V. J. P., “As(III) and Cr(VI) Oxyanion Removal from Water by Advanced Oxidation/Reduction Processes—a Review,” Environ. Sci. Pollut. Res., Vol. 26, pp. 2203-2227 (2019).
    Mills, A., and Le Hunte, S., “An Overview of Semiconductor Photocatalysis,” J. Photoch. Photobio. A., Vol. 108, pp. 1-35 (1997).
    Navarrete-Magaña, M., Estrella-González, A., May-Ix, L., Cipagauta-Díaz, S., Gómez, R., “Improved Photocatalytic Oxidation of Arsenic (III) with WO3/TiO2 Nanomaterials Synthesized by the Sol-gel Method,” J Environ Manage., 282, pp. 111602 (2021).
    Nogueira, A. E., Lopes, O. F., Neto, A. B. S., and Ribeiro, C., “Enhanced Cr(VI) Photoreduction in Aqueous Solution Using Nb2O5/Cuo Heterostructures under UV and Visible Irradiation,” Chem. Eng. J., Vol. 312, pp. 220-227 (2017).
    Ouyang, L., Zhang, Y., Wang, Y., Wang, X., and Yuan, S., “Insights into the Adsorption and Photocatalytic Oxidation Behaviors of Boron-Doped TiO2/g-C3N4 Nanocomposites toward As(III) in Aqueous Solution,” Ind. Eng. Chem., Vol. 60, pp. 7003-7013 (2021).
    Papadam, T., Xekoukoulotakis, N.P., Poulios, I. and Mantzavinos, D., “Photocatalytic Transformation of Acid Orange 20 and Cr(VI) in Aqueous TiO2 Suspensions,” J. Photochem. Photobio A., 186(2-3), pp.308-315 (2007).
    Park, D., Yun, Y. S., Lee, H. W., and Park, J. M., “Advanced Kinetic Model of the Cr(VI) Removal by Biomaterials at Various pHs and Temperatures,” Bioresour Technol., Vol. 99, pp. 1141-7 (2008).
    Pozdnyakov, I. P., Romanova, T. E., Cai, X., Salomatova, V. A., Plyusnin, V. F., Na, P., and Shuvaeva, O. V., “Near-UV Photooxidation of As(III) by Iron Species in the Presence of Fulvic Acid,” Chemosphere., Vol. 181, pp. 337-342 (2017).
    Raja, A., Rajasekaran, P., Selvakumar, K., Arivanandhan, M., Asath Bahadur, S., and Swaminathan, M., “Efficient Photoreduction of Hexavalent Chromium Using the Reduced Graphene Oxide–Sm2MoO6– TiO2 Catalyst under Visible Light Illumination,” ACS Omega., Vol. 5, pp. 6414-6422 (2020).
    Rengaraj, S., Venkataraj, S., Yeon, J. W., Kim, Y., Li, X. Z., and Pang, G. K. H., “Preparation, Characterization and Application of Nd– TiO2 Photocatalyst for the Reduction of Cr(VI) under UV Light Illumination,” Appl. Catal., Vol. 77, pp. 157-165 (2007).
    Ryu, S. R., Jeon, E. K., Yang, J. S., and Baek, K., “Adsorption of As (III) and As(V) in Groundwater by Fe–Mn Binary Oxide-Impregnated Granular Activated Carbon (Imigac),” J. Taiwan. Inst. Chem. Eng., Vol. 72, pp. 62-69 (2017).
    Samad, A., Furukawa, M., Katsumata, H., Suzuki, T., and Kaneco, S., “Photocatalytic Oxidation and Simultaneous Removal of Arsenite with CuO/ZnO Photocatalyst,” J. Photoch. Photobio. A., Vol. 325, pp. 97-103 (2016).
    Sane, P., Chaudhari, S., Nemade, P., and Sontakke, S., “Photocatalytic Reduction of Chromium (VI) Using Combustion Synthesized TiO2,” J. Environ. Chem. Eng., Vol. 6, pp. 68-73 (2018).
    Schrank, S., José, H., and Moreira, R., “Simultaneous Photocatalytic Cr (VI) Reduction and Dye Oxidation in a TiO2 Slurry Reactor,” J. Photoch. Photobio. A. Vol. 147, pp. 71-76 (2002).
    Shi, Q., Sterbinsky, G.E., Zhang, S., Christodoulatos, C., Korfiatis, G.P. and Meng, X., “Formation of Fe (III)–As (V) Complexes: Effect on the Solubility of Ferric Hydroxide Precipitates and Molecular Structural Identification.” Environ. Sci. Nano, 7(5), pp.1388-1398 (2020).
    Shiraishi, Y., and Hirai, T., “Selective Organic Transformations on Titanium Oxide-Based Photocatalysts,” J. Photochem. Photobiol. C., Vol. 9, pp. 157-170 (2008).
    Shirzad Siboni, M., Samadi, M. T., Yang, J. K., and Lee, S. M., “Photocatalytic Removal of Cr(VI) and Ni(II) by UV/ TiO2: Kinetic Study,” Desalin. Water Treat., Vol. 40, pp. 77-83 (2012).
    Spurr, R. A., and Myers, H., “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer,” Anal. Chem., Vol. 29 (5), pp. 760-762 (1957).
    Stefánsson, A., “Iron(III) Hydrolysis and Solubility at 25 °C,” Environ. Sci., Vol. 41, pp. 6117-6123 (2007).
    Therias, S., Rapp, G., Masson, C., and Gardette, J.-L., “Limits of UV-Light Acceleration on the Photooxidation of Low-Density Polyethylene,” Polym. Degrad. Stab., Vol. 183, pp. 109443 (2021).
    Tseng, C.H., Lei, C. and Chen, Y.C., “Evaluating the Health Costs of Oral Hexavalent Chromium Exposure from Water Pollution: A Case Study in Taiwan,” J. Clean. Pro., 172, pp.819-826 (2018).
    Vaiano, V., Iervolino, G., Sannino, D., Rizzo, L., Sarno, G., Farina, A., “Enhanced Photocatalytic Oxidation of Arsenite to Arsenate in Water Solutions by a New Catalyst Based on MoOx Supported on TiO2,” Appl Catal B., 160, pp. 247-253 (2014).
    Vieira, R. S., Oliveira, M. L. M., Guibal, E., Rodríguez-Castellón, E., and Beppu, M. M., “Copper, Mercury and Chromium Adsorption on Natural and Crosslinked Chitosan Films: An XPS Investigation of Mechanism,” Colloids Surf. A Physicochem. Eng. Asp., Vol. 374, pp. 108-114 (2011).
    Vignesh, K., Priyanka, R., Rajarajan, M., and Suganthi, A., “Photoreduction of Cr(VI) in Water Using Bi2O3–ZrO2 Nanocomposite under Visible Light Irradiation,” Mater. Sci. Eng. B., Vol. 178, pp. 149-157 (2013).
    Wahyuni, E. T., and Aprilita, N. H., “Photoreduction Processes over TiO2 Photocatalyst,” Photocatalysts-Applications and Attributes, 129-135 (2018)..
    Wang, C.C., Du, X.D., Li, J., Guo, X.X., Wang, P. and Zhang, J., “Photocatalytic Cr (VI) Reduction in Metal-organic Frameworks: A mini-review,” App. Catal. B: Environ., 193, pp.198-216 (2016).
    Wang, Q., Shi, X., Xu, J., Crittenden, J. C., Liu, E., Zhang, Y., and Cong, Y., “Highly Enhanced Photocatalytic Reduction of Cr(VI) on AgI/ TiO2 under Visible Light Irradiation: Influence of Calcination Temperature,” J. Hazard. Mater., Vol. 307, pp. 213-220 (2016).
    Wang, S. L., Chen, C. C., Tzou, Y. M., Hsu, C. L., Chen, J. H., and Lin, C. F., “A Mechanism Study of Light-Induced Cr (VI) Reduction in an Acidic Solution,” J. Hazard. Mater., Vol. 164, pp. 223-228 (2009).
    Wang, S. Q., Liu, W. B., Fu, P., and Cheng, W. L., “Enhanced Photoactivity of N-Doped TiO2 for Cr(VI) Removal: Influencing Factors and Mechanism,” Korean J Chem Eng., Vol. 34, pp. 1584-1590 (2017).
    Wang, Z., Murugananthan, M., and Zhang, Y., “Graphitic Carbon Nitride Based Photocatalysis for Redox Conversion of Arsenic (III) and Chromium (VI) in Acid Aqueous Solution,” Appl. Catal., Vol. 248, pp. 349-356 (2019).
    Wei, Z., Liang, K., Wu, Y., Zou, Y., Zuo, J., Arriagada, D. C., Pan, Z., and Hu, G., “The Effect of pH on the Adsorption of Arsenic(III) and Arsenic(V) at the TiO2 Anatase [101] Surface,” J. Colloid Interface Sci., Vol. 462, pp. 252-259 (2016).
    Wu, H. H., “Simultaneous Photocatalytic Oxidation and Reduction of As(III) and Cr(VI) Species in Aqueous Solution using TiO2 Photocatalysts,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2020).
    Wu, Q., Zhao, J., Qin, G., Wang, C., Tong, X., and Xue, S., “Photocatalytic Reduction of Cr (VI) with TiO2 Film under Visible Light,” Appl. Catal., Vol., 142, pp. 142-148 (2013).
    Xu, J., Li, J., Wu, F., and Zhang, Y., “Rapid Photooxidation of As (III) through Surface Complexation with Nascent Colloidal Ferric Hydroxide,” Environ. Sci., Vol. 48, pp. 272-278 (2014).
    Yan, Y., Peng, Y., Wang, J., Xiang, Z., Li, Y., Yang, J., Yin, J., Xiao, H., and Wang, W., “Simultaneous Oxidation of As(III) and Reduction of Cr(VI) by NiS-CdS@Biochar through Efficient Oxalate Activation: The Key Role of Enhanced Generation of Reactive Oxygen Species,” J. Hazard. Mater., Vol. 435, pp. 128993 (2022).
    Yang, H., Lin, W. Y., and Rajeshwar, K., “Homogeneous and Heterogeneous Photocatalytic Reactions Involving As(III) and As(V) Species in Aqueous Media,” J. Photoch. Photobio. A., Vol. 123, pp. 137-143 (1999).
    Yang, Y., Wang, G., Deng, Q., Ng, D. H. L., and Zhao, H., “Microwave-Assisted Fabrication of Nanoparticulate TiO2 Microspheres for Synergistic Photocatalytic Removal of Cr(VI) and Methyl Orange,” ACS App Mater Inter., Vol. 6, pp. 3008-3015 (2014).
    Yohai, L., H. Giraldo Mejía, R. Procaccini, S. Pellice, K. Laxman Kunjali, Joydeep Dutta, and Abdusalam Uheida., "Nanocomposite Functionalized Membranes Based on Silica Nanoparticles Cross-Linked to Electrospun Nanofibrous Support for Arsenic (V) Adsorption from Contaminated Underground Water." RSC Adv., No. 15, pp. 8280-8289 (2019).
    Yoon, S.H., Oh, S.E., Yang, J.E., Lee, J.H., Lee, M., Yu, S., and Pak, D., “TiO2 Photocatalytic Oxidation Mechanism of As(III),” Environ. Sci. Technol., Vol. 43, pp. 864-869 (2009).
    Yu, L., Peng, X., Ni, F., Li, J., Wang, D., and Luan, Z., “Arsenite Removal from Aqueous Solutions by γ-Fe2O3-TiO2 Magnetic Nanoparticles through Simultaneous Photocatalytic Oxidation and Adsorption,” J. Hazard. Mater., Vol. 246, pp. 10-17 (2013).
    Zhang, W., Liu, F., Sun, Y., Zhang, J., and Hao, Z., “Simultaneous Redox Conversion and Sequestration of Chromate(VI) and Arsenite(III) by Iron(III)-Alginate Based Photocatalysis,” Appl. Catal., Vol. 259, pp. 118046 (2019).
    Zhang, Y., Wang, Q., Lu, J., Wang, Q., and Cong, Y., “Synergistic Photoelectrochemical Reduction of Cr(VI) and Oxidation of Organic Pollutants by g-C3N4/TiO2-Nts Electrodes,” Chemosphere., Vol. 162, pp. 55-63 (2016).
    Zhao, G., Sun, Y., Zhao, Y., Wen, T., Wang, X., Chen, Z., Sheng, G., Chen, C., and Wang, X., “Enhanced Photocatalytic Simultaneous Removals of Cr(VI) and Bisphenol a over Co(II)-Modified TiO2,” Langmuir., Vol. 35, pp. 276-283 (2019).

    無法下載圖示 全文公開日期 2026/08/07 (校內網路)
    全文公開日期 2028/08/07 (校外網路)
    全文公開日期 2028/08/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE