簡易檢索 / 詳目顯示

研究生: 陰巧涵
Chiao-Han Yin
論文名稱: 光催化降解三氟化氮之研究
The Photolytic Degradation of Nitrogen Trifluoride
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 郭俞麟
Yu-Lin Kuo
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 101
中文關鍵詞: 三氟化氮光催化光降解
外文關鍵詞: nitrogen triflouride, photolytic, photodegradation
相關次數: 點閱:201下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究為在常溫常壓下,使用二氧化鈦對低濃度之三氟化氮氣體進行真空紫外光光催化降解之反應,改變不同反應參數,真空紫外光燈源對三氟化氮氣體之反應、對三氟化氮氣體之反應初始濃度、觸媒量、觸媒照光面積、觸媒表面形態、粒徑及表面積、氧氣分率與溼度等變因,以power law模式,對反應進行動力式之推導及驗證。
    在真空紫外光光源部分,可直接將三氟化氮氣體光解。藉由且二氧化鈦觸媒在不同塗佈量、不同照光面積與不同溫度下產生之二氧化鈦觸媒表面形態、粒徑及表面積等參數,得知二氧化鈦觸媒對三氟化氮氣體不具有吸附性。並得知此反應程序為一級反應。以此反應程序來發展分析氣相中三氟化氮氣體,利用不同光降解反應結果,以傅立葉紅外線光譜儀與離子層析儀分別分析三氟化氮氣體濃度之變化與生成物。


    In this work, the photolytic degradation of gaseous nitrogen triflouride under VUV (vacuum ultraviolet) illumination in a batch reator was investigation in detail, including reaction kinetics and quantification of gaseous nitrogen triflouride.
    In first part, the effect of VUV illumination without TiO2, concentration of nitrogen triflouride, amount of TiO2, area illumination of VUV, morphology and crystallite size of TiO2, oxygen concentration and relative humidity on photolytic reaction rate were studied for derivation of kinetic model. A rational reaction mechanism was satisfactorily developed by using power law model and batch design equation. According to the experimental results, the reaction behavior obeys first-order reaction.
    The energy of VUV light was strong enough for the degration of gaseous nitrogen triflouride. However, nitrogen triflouride would not be adsorbed on the TiO2 surface, resulting in the low photocatalytic reaction rate. The products of photolytic degradation of gaseous nitrogen triflouride was respectively determined by fourier transform infrared spectroscopy and ionic chromatography.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 前言 1 1.1 研究源起 1 1.1.1 溫室氣體 7 1.1.2 全氟化合物 10 1.2 研究目的 12 第二章 文獻回顧 13 2.1 三氟化氮之背景概述 13 2.1.1 三氟化氮之基本性質 14 2.1.2 三氟化氮之合成 15 2.1.3 三氟化氮之應用 17 2.1.4 三氟化氮降解之文獻探討 22 2.1.5 法規規範 22 2.2 光催化反應基本原理 26 2.2.1 二氧化鈦光觸媒及基本原理 28 2.2.2 二氧化鈦光觸媒反應機制 32 2.2.3 光催化含氟溫室氣體文獻探討 33 第三章 研究方法 39 3.1 實驗規劃 39 3.2 藥品 40 3.3 儀器設備 41 3.4 反應器設計 44 3.5 實驗步驟 44 3.5.1 製備樣品 44 3.5.2 三氟化氮之光降解反應步驟 45 3.5.3 尾氣吸收樣品製備 47 第四章 結果與討論 48 4.1 空氣中三氟化氮於FTIR之訊號判別 48 4.2 光降解影響參數 50 4.2.1 三氟化氮之光解 50 4.2.2 觸媒量之影響 53 4.2.3 觸媒照光面積之影響 55 4.2.4 鍛燒溫度對二氧化鈦粒徑、比表面積之影響 57 4.2.4.1 觸媒之表面形態分析 58 4.2.4.2 觸媒之結晶型態分析 60 4.2.2.3 觸媒之比表面積分析 63 4.2.5 觸媒吸附性測試 65 4.2.6 氧氣濃度之影響 67 4.2.7 水氣之影響 73 4.2.8 三氟化氮濃度之影響 78 4.3 動力學推導 80 4.4 氣相產物分析 83 4.5 三氟化氮降解之反應式 86 第五章 結論與未來展望 89 5.1 結論 85 5.2 未來展望 86 第六章 參考文獻 91 附件一 101

    [1] S. Hasibuan,"印尼沉沒的村落",科技部-臺灣氣候變遷推估與資訊平台,朱吟晨(編譯),7月14日,2017;
    https://tccip.ncdr.nat.gov.tw/v2/knowledge_cc_news_view.aspx?kid=20170714142620
    [2] S.-M. Lauren," Massive iceberg breaks away from Antarctica," CNN, July 12, 2017;
    http://edition.cnn.com/2017/07/12/world/larsen-c-antarctica/index.html
    [3] M.-J. Viñas," Massive Iceberg Breaks Off from Antarctica," NASA’s Earth Science News Team, Rob G.(Ed.), July 13, 2017.
    [4] Intergovernmental Panel on Climate Change(IPCC), Climate Change 2014: Synthesis Report Summary for Policymakers, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, [Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)], Geneva, Switzerland, 2014.
    [5] M.-J. Viñas," Sea Ice Extent Sinks to Record Lows at Both Poles," NASA's Earth Science News Team, Rob G.(Ed.), March 24, 2017;
    https://www.nasa.gov/feature/goddard/2017/sea-ice-extent-sinks-to-record-lows-at-both-poles
    [6] D. V. Pio, R. Engler, H. Peter-Linder, A. Monadjem, F. P. D. Cotterill, P. J. Taylor, M. Corrie-Schoeman, B. W. Price, M. H. Villet, G. Eick, N. Salamin, A. Guisan, “Climate change effects on animal and plant phylogenetic diversity in southern Africa,” Global Change Biology, vol. 20, pp. 1538-1549, 2014.
    [7] 趙蓮菊,邱春火,王怡婷,謝宗震,馬光輝, “仰觀宇宙之大,俯察品類之盛:如何量化生物多樣性”,Journal of the Chinese Statistical Association,第51期,頁8-53,2013。
    [8] Millennium Ecosystem Assessment(MA), Ecosystems and Human Well-being: Synthesis, Washington, D. C., 2005.

    [9] World Wide Fund for Nature(WWF) and Zoological Society of London(ZSL), Living Planet Report 2014: species and spaces, people and places, [R. McLellan, L. Iyengar, B. Jeffries, and N. Oerlemans(Eds.)], Gland, Switzerland, 2014.
    [10] World Wide Fund for Nature(WWF) and Zoological Society of London(ZSL), Living Planet Report 2016. Risk and resilience in a new era, Gland, Switzerland, 2016.
    [11] C. Bellard, C. Bertelsmeier, P. Leadley, W. Thuiller, and F. Courchamp, “Impacts of climate change on the future of biodiversity,” Ecology Letters, vol. 15, no. 4, pp. 365-377, 2012.
    [12] A. D. Barnosky, N. Matzke, S. Tomiya, G. O. Wogan, B. Swartz, T. B. Quental, C. Marshall, J. L. McGuire, E. L. Lindsey, K. C. Maguire, B. Mersey, and E. A. Ferrer, “Has the Earth's sixth mass extinction already arrived,” Nature, vol. 471, no. 7336, pp. 51-57, 2011.
    [13] T. Thornes, “Animals and Climate Change,” Journal of Animal Ethics, vol. 6, no. 1, pp. 81-88, 2016.
    [14] H. Steinfeld, T. Wassenaar, V. Castel, M. Rosales and C. Haan, Livestock's long shadow – Environmental issues and options, Rome: Food and Agriculture Organisation of the United Nations(FAO), 2006.
    [15] C. N. Jardine, B. Boardman, A. A. Osman, J. J. Vowles and J. Palmer, Methane UK, pp. 32-76, England: Oxford University Environmental Change Institute, 2006.
    [16] Y. Cai, S. X. Chang, and Y. Cheng, “Greenhouse gas emissions from excreta patches of grazing animals and their mitigation strategies,” Earth-Science Reviews, vol. 171, pp. 44-57, 2017.
    [17] Intergovernmental Panel on Climate Change(IPCC), Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)]. IPCC, Geneva, Switzerland, 2014.
    [18] Intergovernmental Panel on Climate Change(IPCC), Climate Change 2014: Synthesis Report, 2014.
    [19] G. Myhre, D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, “Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” [T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Eds.)]. Cambridge University Press, Cambridge, pp. 659-740, United Kingdom and New York, NY, USA, 2013.
    [20] S. C. Bartos and C. Shepherd-Burton, "PFC, HFC, NF3 and SF6 emissions from semiconductor manufacturing, in:" Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, [J. Penman, D.Kruger, I. Galbally, T. Hiraish, B. Nyenzi. S. Emmanuel, L. Buendia, R. Hoppaus, T. Martinsen, J. Meijer, K. Miwa and K. Tanabe(Eds.)], pp. 243-255, Institute of Global Enviromnental Strategies(IGES), Hayama, Japan, 2000.
    [21] 呂慶慧,羅慧瑋,鄭如琇,“含氟溫室氣體減量管理策略”,永續產業發展,頁68-77,2009。
    [22] W. T. Tsai, H. P. Chen, W. Y. Hsien, “A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons (PFCs) emissions from the semiconductor manufacturing processes,” Journal of Loss Prevention in the Process Industries, vol. 15, pp. 65-75, 2002.
    [23] 行政院環境保護署,2016年中華民國國家溫室氣體排放清冊報告,臺北市,2016。
    [24] United Nations Framework Convention on Climate Change (UNFCCC) Report of the Conference of the Parties Serving as the Meeting of the Parties to the Kyoto Protocol, Seventh Session. Addendum: Part 2: Action Taken by the Conference of the Parties Serving as the Meeting of the Parties to the Kyoto Protocol, Seventh Session, United Nations, Geneva, 2012.
    [25] T. Arnold, C. M. Harth, J. Muhle, A. J. Manning, P. K. Salameh, J. Kim, D. J. Ivy, L. P. Steele, V. V. Petrenko, J. P. Severinghaus, D. Baggenstos, and R. F. Weiss, “Nitrogen trifluoride global emissions estimated from updated atmospheric measurements,” Proceedings of the National Academy of Sciences, vol. 110, no. 6, pp. 2029-2034, 2013.
    [26] X. Liu, J. Zhang, R. Zhang, H. Hou, S. Chen, and Y. Zhang, “Photoreduction of nitrogen trifluoride with controlled release of radicals,” Journal of Chemical Technology & Biotechnology, vol. 89, no. 3, pp. 436-447, 2014.
    [27] R. F. Weiss, J. Mühle, P. K. Salameh, and C. M. Harth, “Nitrogen trifluoride in the global atmosphere,” Geophysical Research Letters, vol. 35, no. 20, 2008.
    [28] I. Sawchyn, "Integrated circuits, in:" Kirk-othmer encyclopedia of chemical technology, [J.I. Kroschwitz, M. Howe-Grant (Eds.)], pp. 677-709, John Wiley&Sons, New York, 1995.
    [29] A. J. Woytek, J. T. Lileck, J. A. Barkanic, “Nitrogen trifluoride—a new dry etchant gas,” Solid State Technol, vol. 32, pp. 172-175, 1984.
    [30] W. T. Tsai, “Environmental and health risk analysis of nitrogen trifluoride (NF3), a toxic and potent greenhouse gas,” Journal of Hazardous Materials, vol. 159, no. 2-3, pp. 257-263, 2008.
    [31] F. N. Dost, D. J. Reed, and C. H. Wang, “Toxicology of Nitrogen Trifluoride,” Toxicology and Applied Pharmacology, vol. 17, pp. 585-596, 1970.
    [32] A. Tasaka, “Electrochemical synthesis and application of NF3,” Journal of Fluorine Chemistry, vol. 128, no. 4, pp. 296-310, 2007.
    [33] S. I. Morrow, Method Of Making Nitrogen Fluorides, US 3214237 A, September 6, 1960.
    [34] A. J. Woytek and J. T. Lileck, Preparation of Nitrogen Trifluoride, US 4091081A, April 19, 1977.
    [35] N. Tokunaga, S. Moroi and K. Kojima Method for Producing Nitrogen Trifluoride by Gas-solid Reaction, US 6183713 B1, May 20, 1999.
    [36] 彭立培,王少波,李绍波,付嫚,“三氟化氮纯化方法综述”,艦船防化,第1期,頁38-43,2007。.
    [37] 菊地正典,圖解半導體(初版)(王政有譯),新北市,世茂出版有限公司,2004。.
    [38] 田民波,TFT LCD面板設計與構裝技術(初版),臺北市,五南圖書出版書出版有限公司,2008。.
    [39] X. Chen, W. Holber, P. Loomis, E. Sevillano, and S. Q. Shao, “Advances in Remote Plasma Sources For Cleaning 300 mm and Flat Panel CVD Systems,” Semiconductor Magazine, vol. 4, 2003.
    [40] 楊子明,鍾昌貴,沈志彥,李美儀,吳鴻佑,詹家瑋,半導體製程設備技術(初版),台北市,五南圖書出版股份有限公司,2011。.
    [41] B. Golja, J. A. Barkanic and A. Hoff, “A review of Nitrogen Trifluorde for Dry Etching in Microelectronics Procesing,” Microelectronics Journal, vol. 16, pp. 5-21, 1985.
    [42] “Anisotropic etching of SiO2 in low‐frequency CF4/O2 and NF3/Ar plasmas,” Journal of Applied Physics, vol. 55, no. 1, pp. 242-252, 1984.
    [43] B. E. E. Kastenmeier, P. J. Matsuo, J. J. Beulens, and G. S. Oehrlein, J. Vac., “Remote plasma etching of silicon nitride and silicon dioxide using NF3/O2 gas mixtures,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 14, pp. 2802, 1996.
    [44] R. D. Scheele, B. K. McNamara, B. M. Rapko, M. K. Edwards, A. E. Kozelisky, R. C. Daniel, T. I. McSweeney, R .B. Kefgen, S. J. Maharas, P. J. Weaver, and K. J. Iwamasa. “Development of NF3 Deposit Remoal Technology for the Portsmouth Gaseous Diffusion Plant,” in Waste Management 06, Tucson, A. Z., 2006.
    [45] B. K. McNamara, A. M. Casella, R. D. Scheele, and A. E. Kozelisky, Nitrogen Trifluoride-Based Fluoride-Volatility Separations Process: Initial Studies, WA, USA: Pacific Northwest National Laboratory(PNNL), 2011.
    [46] B. K. McNamara, E. C. Buck, C. Z. Soderquist, F. N. Smith, E. J. Mausolf, and R. D. Scheele, “Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride,” Journal of Fluorine Chemistry, vol. 162, pp. 1-8, 2014.
    [47] E. Vileno, M. K. LeClair, S. L. Suib, M. B. Cutlip, F. S. Galasso, and S. J. Hardwick, “Thermal Decomposition of NF3 by Ti, Si, and Sn Powders,” Chemistry of Materials, vol. 7, pp. 683-687, 1994.
    [48] T. Takubo, Y. Hirose, D. Kashiwagi, T. Inoue, H. Yamada, K. Nagaoka, and Y. Takita, “Metal phosphate and fluoride catalysts active for hydrolysis of NF3,” Catalysis Communications, vol. 11, no. 3, pp. 147-150, 2009.
    [49] M. K. L. Elizabeth Vileno, Steven L. Suib, Michael B. Cutlip, Francis S. Galasso, and Steven J. Hardwick, “Thermal Decomposition of NF3 with Various Oxides,” Chemistry of Materials, vol. 8, pp. 1217-1221, 1996.
    [50] V. Lisovskiy, J. P. Booth, K. Landry, D. Douai, V. Cassagne, and V. Yegorenkov, “Applying RF current harmonics for end-point detection during etching multi-layered substrates and cleaning discharge chambers with NF3 discharge,” Vacuum, vol. 82, no. 3, pp. 321-327, 2007.

    [51] H. L. Chen, H. M. Lee, and M. B. Chang, “Kinetic Modeling of the NF3 Decomposition via Dielectric Barrier Discharges in N2/NF3 Mixtures,” Plasma Processes and Polymers, vol. 3, no. 9, pp. 682-691, 2006.
    [52] Y.-F. Wang, L.-C. Wang, M. Shih, and C.-H. Tsai, “Effects of experimental parameters on NF3 decomposition fraction in an oxygen-based RF plasma environment,” Chemosphere, vol. 57, no. 9, pp. 1157-1163, 2004.
    [53] Y. C. Hong, H. S. Uhm, B. J. Chun, S. K. Lee, S. K. HwangandD. S. Kim, “Microwave plasma torch abatement of NF3 and SF6,” Physics of Plasmas, vol. 13, pp. 033508-033507, 2006.
    [54] N. N. Kudriavtsev, A. M. Sukhov and D. P. Shamshev, “NF3 decomposition behind shock waves in the intermediate pressure range,” Chemical Physics Letters, vol. 200, no. 6, pp. 640-642, 1992.
    [55] W. D. Breshears, and P. F. Bird, “Dissociation of NF3 in shock waves,” The Journal of Chemical Physics, vol. 68, no. 6, pp. 2996, 1978.
    [56] X. Niu, L. Sun, Y. Wang, H. Wu, and X. Xu, “NF3 decomposition over some metal oxides in the absence of water,” Journal of Natural Gas Chemistry, vol. 19, no. 5, pp. 463-467, 2010.
    [57] Occupational Safety and Health Administration (OSHA)," Chemical Sampling Information " January 5, 2018;
    https://www.osha.gov/dts/chemicalsampling/toc/toc_chemsamp.html
    [58] 勞工作業環境空氣中有害物容許濃度標準,2010.
    [59] Occupational Safety and Health Administration (OSHA)," OSHA Occupational Chemical Database," January 5, 2018;
    https://www.osha.gov/chemicaldata/
    [60] German Research Foundation (DFG), The MAK Collection for Occupational Health and Safety: John Wiley & Sons, August, 2017.
    [61] Instituto Nacional de Seguridad e Higiene en el Trabajo (INSHT), Límites de exposición profesional para agentes químicos en España. 2017, Madrid, febrero, 2017.
    [62] 劉守新,劉鴻,光催化及光電催化基礎及應用(一刷),北京,化學工業出版社,2008。.
    [63] M. Anpo, H. Yamashita, K. Ikeue, Y. Fujishima, S. G. Zhang, Y. Ichihashi, D. R. Park, Y. Suzuki, K. Koyano and T. Tatsumi, “Photocatalytic Reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolite Catalysts,” Catalysis Today, vol. 44, pp. 327-332, 1998.
    [64] O. Ola and M. M. Maroto-Valer, “Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 24, pp.16–42, 2015.
    [65] A. Beltrn, L. Gracia, and J. Andre´s, “Density Functional Theory Study of the Brookite Surfaces and Phase Transitions between Natural Titania Polymorphs,” The journal of physical chemistry. B, vol. 110, pp. 23417-23423, 2006.
    [66] D. A. H. Hanaor, and C. C. Sorrell, “Review of the anatase to rutile phase transformation,” Journal of Materials Science, vol. 46, no. 4, pp. 855-874, 2010.
    [67] T. Mitsuhashi and O. J. Kleppa, “Transformation Enthalpies of the TiO2 polymorphs,” Journal of the American Ceramic Society, vol. 62, pp. 356-357, 1979.
    [68] University of Colorado, Mineral Structure and Property Data-TiO2 Group;
    http://ruby.colorado.edu/~smyth/min/tio2.html
    [69] 郭建宏,“碳改質二氧化鈦及其可見光應答催化活性研究”,臺灣科技大學化工碩士論文,2010。
    [70] M. A. Fox and M. T. Dulay, “Hetergeneous Photocatalysis,” Chemical Reviews, vol. 93, pp. 341-357, 1993..”
    [71] G. L. Nord, "Imaging transformation-induced microstructure, in:" Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy, [Buseck, P.R.], pp. 455-508, Mineral. Soc. Am., Washington D. C., USA, 1992.
    [72] 吳炳佑,陳湘林,蔣孝澈,“二氧化鈦光觸媒膜之製作與應用”,觸媒與製程,第6卷,頁52-68,1997.

    [73] A. Fujishima, T. N. Rao, D. A. Tryk, “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C : Photochemistry Reviews, vol. 1, pp. 1-21, 2000.
    [74] S. Kutsuna, K. Takeuchi and T. Ibusuki, “Adsorption and Reaction of Trichlorofluoromethane on Various Particles,” Journal of Atmospheric Chemistry, vol. 14, pp. 1-10, 1992.
    [75] R. L. Calhoun, K. Winkelmann, and G. Mills, “Chain Photoreduction of CCl3F Induced by TiO2 Particles,” The Journal of Physical Chemistry, vol. 105, pp. 9739-9746, 2001.
    [76] K. Tennakone, and K. G. U. Wijayantha, “Photocatalysis of CFC degradation by titanium dioxide,” Applied Catalysis B: Environmental, vol. 57, no. 1, pp. 9-12, 2005.
    [77] D. J. Wylie, R. P. Cooney, J. M. Seakins and G. J. Millar, “Spectroscopic studies of the adsorption and reactions of chlorofluorocarbons (CFC-11 and CFC-12)and hydrochlorofiuorocarbon (HCFC-22)on oxide surfaces,” Vibrational Spectroscopy, vol. 9, pp. 245-256, 1995.
    [78] S. Weaver and G. Mills, “Photoreduction of 1,1,2-Trichlorotrifluoroethane Initiated by TiO2 Particles,” The Journal of Physical Chemistry, vol. 101, pp. 3769-3775, 1997.
    [79] L. Huang, W. Dong, R. Zhang, and H. Hou, “Investigation of a new approach to decompose two potent greenhouse gases: photoreduction of SF(6) and SF(5)CF(3) in the presence of acetone,” Chemosphere, vol. 66, no. 5, pp. 833-840, 2007.
    [80] L. Huang, Y. Shen, W. Dong, R. Zhang, J. Zhang, and H. Hou, “A novel method to decompose two potent greenhouse gases: photoreduction of SF6 and SF5CF3 in the presence of propene,” Journal of Hazardous Materials, vol. 151, no. 2-3, pp. 323-330, 2008.
    [81] H. Najib, “Rovibrational interaction and vibrational constants of the symmetric top molecule 14NF3,” The Scientific World Journal, vol. 2013, pp. 813249, 2013.
    [82] J. I. Robson, L. K. Gohar, M. D. Hurley, K. P. Shine, and T. J. Wallington, “Revised IR spectrum, radiative efficiency and global warming potential of nitrogen trifluoride,” Geophysical Research Letters, vol. 33, no. 10, pp.L10817, 2006.
    [83] J. R. Ferraro, “Low-Frequency Vibrations of Inorganic and Coordination Compounds,” Springer Science & Business Media, pp. 135. 
    [84] J. F. da Silveira Petruci, P. R. Fortes, V. Kokoric, A. Wilk, I. M. Raimundo, A. A. Cardoso, and B. Mizaikoff, “Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors,” Scientific Reports, vol. 3, pp. 3174, 2013.
    [85] J. J. Comeford and D. E. Mann “Formation of NF from NF2 by photolysis,” Spectrochim Acta, vol. 21, pp. 197-198, 1965.
    [86] K. Thamaphat, K. Thamaphat, P. Limsuwan and B. Ngotawornchai, “Phase Characterization of TiO2 Powder by XRD and TEM,” Kasetsart Journal - Natural Science, vol. 42, no. 5, pp. 357-361, 2008.
    [87] G. Leofantia, M. Padovan, G. Tozzola, B. Venturelli, “Surface area and pore texture of catalysts,” Catalysis Today, vol. 41, pp. 207-219, 1998.
    [88] W. Choi, J. Y. Ko, H. Park and J. S. Chung, “Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone,” Applied Catalysis B: Environmental, vol. 31, pp. 209-220, 2001.
    [89] K. Yu, and G. Lee, “Decomposition of gas-phase toluene by the combination of ozone and photocatalytic oxidation process (TiO2/UV, TiO2/UV/O3, and UV/O3),” Applied Catalysis B: Environmental, vol. 75, no. 1-2, pp. 29-38, 2007.
    [90] 楊文斌,周江甯,李斌成,邢廷文,“激光誘導氮氣等離子體時間分辨光譜研究及溫度和電子密度測量”,物理學報,第66卷,第9期,頁1-8,2017。
    [91] 翟曉東,丁艷軍,彭志敏,羅銳,“N2第二正帶系發射光譜的理論計算及實驗研究”,物理學報,第61卷,第12期,頁1-8,2012。
    [92] H. Huang, H. Huang, Y. Zhan, G. Liu, X. Wang, H. Lu, L. Xiao, Q. Feng, and D. Y. C. Leung, “Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation: Performance and mechanism,” Applied Catalysis B: Environmental, vol. 186, pp. 62-68, 2016.
    [93] T. Ratpukdi, S. Siripattanakul, and E. Khan, “Mineralization and biodegradability enhancement of natural organic matter by ozone-VUV in comparison with ozone, VUV, ozone-UV, and UV: effects of pH and ozone dose,” Water Research, vol. 44, no. 11, pp. 3531-3543, 2010.
    [94] Y. Ku, C. M. Ma and Y. S. Shen, “Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile,” Applied Catalysis B: Environmental, vol. 34, pp. 181-190, 2001.

    [95] R. Y. N. Ho, J. F. Liebman and J. S. Valentine "Overview of energetics and reactivity of oxygen, in:" Oxygen in chemistry, Foote, C.(ed.), Chapman and Hal, Glasgow, UK, 1995.
    [96] H. Taube, “Photochemical reactions of ozone in solution,” Transactions of the Faraday Society, vol. 53, pp. 656-665, 1957.
    [97] 唐玉朝,胡春,王怡中,張海平,黃顯懷,“TiO2光催化劑失活機理研究進展”,化學進展,第17卷,第2期,頁225-232,2005。
    [98] P. A. Deveau, F. Arsac, P. X. Thivel, C. Ferronato, F. Delpech, J. M. Chovelon, P. Kaluzny, and C. Monnet, “Different methods in TiO2 photodegradation mechanism studies: gaseous and TiO2-adsorbed phases,” Journal of Hazardous Materials, vol. 144, no. 3, pp. 692-697, 2007.
    [99] J. Shang, Y. Du and Z. Xu, “Photocatalytic oxidation of heptane in the gas-phase over TiO2,” Chemosphere, vol. 46, no. 1, pp. 93-99, 2002.
    [100] J. M. Smith, H. C. Van Ness, M. M. Abbot, Introduction to Chemical Engineering Thermodynamic(7th),McGraw-Hill College, 2005.

    QR CODE