簡易檢索 / 詳目顯示

研究生: 葉俊毅
Jun-Yi Yeh
論文名稱: 複合高級氧化程序礦化水中低濃度異丙醇之研究
Study on Mineralization of Low-concentration Aqueous Isopropanol via Composite Advanced Oxidation Process
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
李豪業
Hao-Yeh Lee
陳世勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 109
中文關鍵詞: 金屬改質二氧化鈦異丙醇光催化降解高級氧化程序
外文關鍵詞: Metal-modified titania, Isopropanol, Photodegradation, Advanced Oxidation Processes
相關次數: 點閱:300下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在光電半導體產業的快速發展下,有機溶劑的需求量日益增加,有機汙染物排放量增多造成環境的污染,在水資源逐漸缺少情況下,目前發展低成本高效率的水回用處理系統是循環經濟的重要課題。
    本研究利用錳改質之二氧化鈦溶膠,以含浸法將二氧化鈦鍍於陶瓷基材上,並結合UV/H2O2/O3氧化程序來降解水中低濃度異丙醇,並探討反應參數(過氧化氫濃度、氣體流量、觸媒含量、金屬元素改質)對去除效率的影響。進一步以X光繞射儀、掃描式電子顯微鏡、紫外-可見光光譜儀與螢光光譜儀對觸媒材料進行分析,以確認改質後物化特性與反應活性之關聯性。
    實驗結果顯示,應用Mn-TiO2/H2O2/O3的批次反應器中,可將30ppm異丙醇在60分鐘內達成99.9%之礦化率,並進一步應用填充床反應器來模擬實場處理情況,在滯留時間30與60分鐘下,可穩定達到99.9%之異丙醇降解率及70.6%、64.0%之礦化率。因此,本系統可以做為實際反應器設計的參考,應用於高科技產業之水回用系統。


    The demand of organic solvents is increasing gradually due to the ever-expanding optoelectronic and semiconductor industries, resulting in the increase in discharge of organic pollutants. The lack of water resources promotes the development of low-cost and high-efficiency water-recovery system, which is an important issue in the circular economy.
    In this work, the photocatalytic ceramic filter was prepared by using the Mn-containing titania sol via impregnation process. It was applied in the degradation of low-concentration isopropanol (IPA) in water with combining UV/H2O2/O3 oxidation processes. The effect of operating parameters, such as concentration of hydrogen peroxide, gas flow rate, catalyst content, manganese- modification, on reaction rate was discussed, respectively. The manganese species on the TiO2 surface, evidenced from X-ray diffractometry (XRD), scanning electron microscope (SEM), UV-VIS spectroscopy, and fluorescence spectrometer (PL), was inferred as an important factor for the increase in mineralization rate of IPA.
    Finally, the 99.9% of mineralization for 30ppm IPA was achieved after 60 min in a batch reactor, equipped with Mn-TiO2/H2O2/O3 system. A packed bed was further designed for degradation of IPA-containing water, which was applied to simulate the field condition. The conversion of IPA was higher than 99.9% both in the retention time of 30 and 60 min. The mineralization ratios were 70.6% and 64.0%, respectively. The system can be used as a reference for the filed design, which can be applied to recycle water in high tech industries.

    致謝 I 摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XIII 一、 前言 1 1.1 異丙醇簡介 2 1.2 過氧化氫簡介 2 1.3 臭氧簡介 3 1.4 二氧化鈦簡介 4 1.5 光催化反應 6 1.6 研究動機 9 二、 文獻回顧 11 2.1 異丙醇降解之方法 11 2.2 光化學高級氧化程序之應用 16 2.3 二氧化鈦改質方法 32 三、 研究方法 39 3.1 實驗設計 39 3.2 實驗藥品與儀器 39 3.3 實驗步驟 47 四、 結果與討論 52 4.1 異丙醇及丙酮訊號分析 52 4.2 光觸媒塗佈於濾材之應用 53 4.3 模擬實廠應用之測試 59 4.4 改質及未改質觸媒材料分析 79 4.5 反應參數探討 86 4.6 反應機制與動力學之探討 91 4.7 連續式光降解測試 94 五、 結論與未來展望 97 5.1 結論 97 5.2 未來展望 99 六、 參考文獻 102

    [1] 經濟部工業局,“高科技產業揮發性廢氣處理技術及操作處理成本”,(2002)。檢自https://proj.ftis.org.tw/eta/tech/Tair005.pdf
    [2] S. Woodley, & C. Catlow,“Structure prediction of titania phases: Implementation of Darwinian versus Lamarckian concepts in an Evolutionary Algorithm,”Comput. Mater. Sci., Vol. 45, pp. 84-95 (2009).
    [3] F. M. Hossain, L. Sheppard, J. Nowotny, & G. E. Murch,“Optical properties of anatase and rutile titanium dioxide: Ab initio calculations for pure and anion-doped material,”J. Phys. Chem. Solids,Vol. 69, pp. 1820-1828, (2008).
    [4] S. D. Mo, & W. Ching,“Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,”Phys. Rev. B, Vol. 51, pp. 13023-13032, (1995).
    [5] 薛明軒,鉑改質光觸媒二氧化鈦之紫外光與可見光應答光催化活性,國立臺灣科技大學化學工程系碩士論文,(2011)。
    [6] 高嘉妤,TiO2共摻雜B/V光觸媒於管柱流反應器光降解異丙醇有機溶劑蒸氣之研究,長庚大學化工與材料工程學系碩士論文,(2017)。
    [7] 洪楨琳,溫度與濕度對光催化分解苯蒸氣之影響研究,國立中山大學環境工程研究所碩士論文,(2001)。
    [8] R. S. Horng, & I. C. Tseng,“Regeneration of granular activated carbon saturated with acetone and isopropyl alcohol via a recirculation process under H2O2/UV oxidation,”J. Hazard. Mater, Vol. 154, pp. 366-372, (2008).
    [9] J. Medina-Valtierra, C. Frausto-Reyes, G. Camarillo-Martínez, & J. A. Ramírez-Ortiz,“Complete oxidation of isopropanol over Cu4O3 (paramelaconite) coating deposited on fiberglass by CVD,”Appl. Catal., A, Vol. 356, pp. 36-42, (2009).
    [10] S. Chavadej, P. Phuaphromyod, E. Gulari, P. Rangsunvigit, & T. Sreethawong,“Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique,”Chem. Eng. J., Vol. 137, pp. 489-495, (2008).
    [11] J. Wu, J. Yang, M. Muruganandham, & C. Wu,“The oxidation study of 2-propanol using ozone-based advanced oxidation processes,”Sep. Purif. Technol., Vol. 62, pp. 39-46, (2008).
    [12] A. Fujishima, T. N. Rao, & D. A. Tryk, “Titanium dioxide photocatalysis,”J. Photochem. Photobiol., C, Vol. 1, pp. 1-21, (2000).
    [13] E. Neyens, & J. Baeyens,“A review of classic Fenton’s peroxidation as an advanced oxidation technique,”J. Hazard. Mater., Vol. 98, pp. 33-50, (2003).
    [14] K. L. Kelley, M. C. Marley, & K. L. Sperry (2003). In SituChemical Oxidation. In E. E. Moyer & P. T. Kostecki (Eds.), MTBE Remediation Handbook (pp. 223-241). Boston, MA: Springer US.
    [15] 巫玉娟,活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之可行性研究,國立中山大學環境工程研究所碩士論文,(2005)。
    [16] S. Guittonneau, J. De Laat, J. Duguet, C. Bonnel, & M. Dore,“Oxidation of parachloronitrobenzene in dilute aqueous solution by O3+ UV and H2O2+ UV: a comparative study,”Ozone: Sci. Eng., Vol,12, pp,73-94, (1990).
    [17] A. Hong, M. E. Zappi, C. H. Kuo, & D. Hill,“Modeling kinetics of illuminated and dark advanced oxidation processes,”J. Environ. Eng., Vol. 122, pp. 58-62, (1996).
    [18] F. Banat, S. Al-Asheh, & M. Nusair,“Photodegradation of methylene blue dye by the UV/H2O2 and UV/acetone oxidation processes,”Desalination, Vol. 181, pp. 225-232, (2005).
    [19] Y. Lee, C. Lee, & J. Yoon,“Kinetics and mechanisms of DMSO (dimethylsulfoxide) degradation by UV/H2O2 process,”Water Res., Vol. 38, pp. 2579-2588, (2004).
    [20] M. I. Stefan, A. R. Hoy, & J. R. Bolton,“Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide,”Environ. Sci. Technol., Vol. 30, pp. 2382-2390, (1996).
    [21] M. I. Stefan, & J. R. Bolton,“Reinvestigation of the acetone degradation mechanism in dilute aqueous solution by the UV/H2O2 process,”Environ. Sci. Technol., Vol. 33, pp. 870-873, (1999).
    [22] J. Gong, Y. Liu, & X. Sun,“O3 and UV/O3 oxidation of organic constituents of biotreated municipal wastewater,”Water Res, vol. 42, pp. 1238-1244, (2008).
    [23] E. Illés, E. Szabó, E. Takács, L. Wojnárovits, A. Dombi, & K. Gajda-Schrantz,“Ketoprofen removal by O3 and O3/UV processes: Kinetics, transformation products and ecotoxicity,”Sci. Total Environ., Vol. 472, pp. 178-184, (2014).
    [24] D. Šojić V. Despotovic, D. Orcˇic, E. Szabó, E. Arany, S. Armakovic, E. Illés, K. Gajda-Schrantz, A. Dombi, T. Alapi, E. Sajben-Nagy, A. Palágyi, Cs. Vágvölgyi, L. Manczinger, L. Bjelica, & B. Abramovi,“Degradation of thiamethoxam and metoprolol by UV, O3 and UV/O3 hybrid processes: Kinetics, degradation intermediates and toxicity,”J. Hydrol., Vol. 472, pp. 314-327, (2012).
    [25] C. Bai, X. Xiong, W. Gong, D. Feng, X. Mo, Z. Ge, & R. Xu,“Removal of rhodamine B by ozone-based advanced oxidation process,”Desalination, Vol. 278, pp. 84-90, (2011).
    [26] H. Zhan, & H. Tian,“Photocatalytic degradation of acid azo dyes in aqueous TiO2 suspension I. The effect of substituents,”Dyes Pigm., Vol. 37, pp. 231-239, (1998).
    [27] B. Szczepanik,“Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review,”Appl. Clay Sci., Vol. 141, pp. 227-239, (2017).
    [28] L. G. Devi, & R. Kavitha,“A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity,”Appl. Catal., B, Vol. 140, pp. 559-587, (2013).
    [29] S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, & H. Wang,“TiO2 based photocatalytic membranes: a review,”J. Membr. Sci., Vol. 472, pp. 167-184, (2014).
    [30] M. R. Sohrabi, & M. Ghavami,“Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters,”J. Hazard. Mater., Vol. 153, pp. 1235-1239, (2008).
    [31] H. T. T. Tran, H. Kosslick,M. F. Ibad, C. Fischer, U. Bentrup, T. H. Vuong, L. Q. Nguyen, & A. Schulz,“Photocatalytic performance of highly active brookite in the degradation of hazardous organic compounds compared to anatase and rutile,”Appl. Catal., B, Vol. 200, pp. 647-658, (2017).
    [32] R. Chauhan, A. Kumar, & R. P. Chaudhary, “Structural and photocatalytic studies of Mn doped TiO2 nanoparticles,”Spectrochim. Acta, Part A, Vol. 98, pp. 256-264, (2012).
    [33] H. Feng, M.-H. Zhang, & E. Y. Liya,“Hydrothermal synthesis and photocatalytic performance of metal-ions doped TiO2,”Appl. Catal., A, Vol. 413, pp. 238-244, (2012).
    [34] L. Gnanasekaran, R. Hemamalini, R. Saravanan, K. Ravichandran, F. Gracia, & V. K. Gupta,“Intermediate state created by dopant ions (Mn, Co and Zr) into TiO2 nanoparticles for degradation of dyes under visible light,” J. Mol. Liq. Vol. 223, pp. 652-659, (2016).
    [35] T. El-Morsi, & M. Nanny. (2004)“Photocatalytic Degradation of Isopropanol and Acetone in Aqueous Solutions as a Function of pH and TiO2 Photocatalyst,”Proceedings of the Ninth Biennial ASCE Aerospace Division International Conference on Engineering, Construction, and Operations in Challenging Environments, pp. 407-412.
    [36] D. Brinkley, & T. Engel,“Photocatalytic dehydrogenation of 2-propanol on TiO2 (110),”J. Phys. Chem. B,Vol. 102, pp. 7596-7605, (1998).
    [37] 蔡沛珺,錳改質二氧化鈦於真空紫外光下降解甲苯之研究,國立臺灣科技大學化學工程系碩士論文,(2013)。
    [38] 紀尚宏,鉑改質二氧化鈦於光催化程序去除液相低濃度氨氮之研究,國立臺灣科技大學化學工程系碩士論文,(2016)。
    [39] G. A. Mekhemer,“Surface acid–base properties of holmium oxide catalyst: in situ infrared spectroscopy,”Appl. Catal., A, Vol. 275, pp. 1-7, (2004).
    [40] H. Yao, P. Sun, D. Minakata, J. C. Crittenden, & C. H. Huang, “Kinetics and modeling of degradation of ionophore antibiotics by UV and UV/H2O2,”Environ. Sci. Technol.,Vol. 47 pp. 4581-4589, (2013).
    [41] S. Esplugas, J. Gimenez, S. Contreras, E. Pascual, & M. Rodrı́guez,“Comparison of different advanced oxidation processes for phenol degradation,”Water Res, Vol. 36, pp. 1034-1042,( 2002).
    [42] J. H. Suh, & M. Mohseni,“A study on the relationship between biodegradability enhancement and oxidation of 1, 4-dioxane using ozone and hydrogen peroxide,”Water Res, Vol. 38, pp. 2596-2604, (2004).
    [43] J. Suave, H. J. José, & R. d. F. P. M. Moreira,“Photocatalytic degradation of polyvinylpyrrolidone in aqueous solution using TiO2/H2O2/UV system,”Environ. Technol., Vol. 39, pp. 1404-1412, (2018).
    [44] Q. Hong, D. Z. Sun, & G. Q. Chi, “Formaldehyde degradation by UV/TiO2/O3 process using continuous flow mode,”J. Environ. Sci., Vol. 19, pp. 1136-1140, (2007).
    [45] H. Huang, H. huang, Q. Feng, G. Liu, Y. Zhan, M. Wu, H. Lu, Y. Shu, & D. Y.C. Leung“Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation,”Appl. Catal., B, Vol. 203, pp. 870-878, (2017).
    [46] H. T. Li, Q. Gao, B. Han, Z. H. Ren, K. S. Xia, & C. G. Zhou,“Partial-Redox-Promoted Mn Cycling of Mn (II)-Doped Heterogeneous Catalyst for Efficient H2O2-Mediated Oxidation,”ACS Appl. Mater. Interfaces, Vol. 9, pp. 371-380, (2016).
    [47] H. Wang, L. Zhang, Z. Chen, J, Hu, S. Li, Z. Wang, J. Liu, & X. Wang,“Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,”Chem. Soc. Rev., Vol. 43, pp. 5234-5244, (2014).
    [48] J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, & C. Li,“Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture,”J. Phys. Chem. C, Vol. 111, pp. 693-699, (2007).
    [49] H. Huang, H. Huang, L. Zhang, P. Hu, X. Ye, & D. Y. Leung,“Enhanced degradation of gaseous benzene under vacuum ultraviolet (VUV) irradiation over TiO2 modified by transition metals,”Chem. Eng. J, Vol. 259, pp. 534-541, (2015).
    [50] A. Gervasini, J. Fenyvesi, & A. Auroux, “Study of the acidic character of modified metal oxide surfaces using the test of isopropanol decomposition,”Catal. Lett., Vol. 43, pp. 219-228, (1997).
    [51] K. T. Lu, V. H. Nguyen, Y. H. Yu, C. C. Yu, C. S. Wu, L. M. Chang, & Y. C. Lin, “An internal-illuminated monolith photoreactor towards efficient photocatalytic degradation of ppb-level isopropyl alcohol,”Chem. Eng. J, Vol. 296, pp. 11-18, (2016).
    [52] M. S. Lucas, J. A. Peres, & G. L. Puma,“Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics,”Sep. Purif. Technol., Vol. 72, pp. 235-241, (2010).

    無法下載圖示 全文公開日期 2025/01/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE