簡易檢索 / 詳目顯示

研究生: 邱炳嶔
Ping-Chin Chiu
論文名稱: Fe2O3/Al2O3載氧體應用於化學迴圈程序移動床燃料反應器之評估研究
Performance Evaluation of Fe2O3/Al2O3 Oxygen Carrier for Chemical Looping Process by Moving Bed Fuel Reactor
指導教授: 顧洋
Young Ku
口試委員: 談駿嵩
Chung-Sung Tan
蔣本基
Pen-Chi Chiang
曾堯宣
Yao-Hsuan Tseng
郭俞麟
Yu-Lin Kuo
徐恆文
Hen-Wen Hsu
邱耀平
Yau-Pin Chyou
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 177
中文關鍵詞: 化學迴圈載氧體移動床反應器甲烷異丙醇溶液聚氨酯聚丙烯產氫
外文關鍵詞: chemical looping, methane, isopropanol solution, polyurethane, polypropylene, hydrogen generation, oxygen carrier, moving bed
相關次數: 點閱:210下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化學迴圈程序(Chemical Looping Process)為一項具有二氧化碳捕獲能力的能源技術,可產出熱能作為發電使用,同時不需使用額外的氣體分離單元即可產生純度95%以上之二氧化碳。化學迴圈程序係透過載氧體(常為金屬氧化物)在燃料反應器與燃料燃燒進行還原反應,同時可產出高純度二氧化碳;還原後之載氧體藉由輸送裝置進入空氣反應器,由空氣將載氧體氧化至最氧化態,同時產生熱能。載氧體在燃料反應器與空氣反應器之間不斷循環,因此被稱為化學迴圈程序。本研究所製備之含有60 wt% Fe2O3之Fe2O3/Al2O3載氧體在1300 °C下燒結後具有良好的反應性。還原後之載氧體經過XRD鑑定主要晶相為FeAl2O4,可同時具備載體與載氧體之功能。還原後的Fe2O3/Al2O3載氧體置於固定床反應器測試,可透過水氣分解(water splitting)反應產出氫氣。 Fe2O3/Al2O3載氧體壓製為3 mm大小之錠材經過破碎強度測試與熱重分析測試,具有良好的機械強度與反應性,適合應用於移動床反應器之操作。甲烷、異丙醇(IPA)溶液、聚氨酯(PU)及聚丙烯(PP)為本研究所使用之燃料,並與Fe2O3/Al2O3載氧體於移動床燃料反應器進行燃燒反應。當載氧體/燃料進料比達1.14以上反應溫度達900 °C時,可將進料之甲烷完全燃燒。反應後之載氧體經過XRD鑑定後主要晶相為FeO與FeAl2O4,表示透過移動床反應器的操作可增加鐵系載氧體內氧的使用量。CO與H2為異丙醇溶液燃燒時主要的燃料氣體,當載氧體/燃料進料比達7.94以上反應溫度達900 °C時,異丙醇轉化率與CO2產率可達100%。藉由程序熱值之計算,70%的熱輸出功率可提供給其他設備使用,而剩餘熱能則需補充系統內用於氣化液體之熱損。透過程序熱效率之分析,使用水溶液作為液體燃料時,水的蒸發熱將是主要的系統熱損來源,尤其是含碳量較低的溶液。PU與PP之燃燒本研究採用雙套管式移動床反應器(ADMBR),使固體燃料可在反應器內同時發生氣化與燃燒反應。CO與H2為PU與PP之燃燒時主要的燃料氣體,當PU與PP顆粒之氧體/燃料進料比分別達3.10 與10.94以上反應溫度達900 °C時,PU與PP顆粒之燃料轉化率與CO2產率可達100%。氣化PU與PP顆粒所需之熱能經過熱值計算分別佔21%與52%的系統輸出功率。本研究從製備Fe2O3/Al2O3載氧體、移動床反應器的操作到各種燃料的燃燒,完整評估化學迴圈程序各項重要參數。利用Fe2O3/Al2O3載氧體在移動床反應器除可充分燃燒各種燃料,還原後的載氧體亦具備後續用於產氫之性質。因此本研究所製備之載氧體經各項評估之後,可符合化學迴圈程序應用之需求。


    Chemical looping process is a potential energy technology with inherent CO2 capture to provide superior energy efficiency than existing CO2 capture technologies. Oxygen carriers are applied for chemical looping process in place of air to offer oxygen for fuel combustion; therefore, to enhance CO2 purity in the effluent stream. Alumina supported Fe2O3 were prepared and demonstrated reasonable reactivity for Fe2O3/Al2O3 particles containing 60 wt% Fe2O3 and sintered at 1300 °C. FeAl2O4 was characterized by XRD after reduction and served as supporting material as well as oxygen carrier in practical operation. Hydrogen generation was demonstrated to be feasible by steam oxidation with reduced Fe2O3/Al2O3 oxygen carriers in a fixed bed reactor. Fe2O3/Al2O3 pellets were examined by crush strength and TGA demonstrated proper crush strength and reasonable reactivity as oxygen carrier for chemical looping process. Methane, isopropanol (IPA), polyurethane (PU) and polypropylene (PP) combustions are conducted by a moving bed fuel reactor using the prepared Fe2O3/Al2O3 oxygen carriers. Complete combustion of methane was achieved with oxygen carrier-to-fuel ratio higher than 1.14 at 900 °C. The oxygen carriers that moving out of the moving bed reactor were composed of mainly FeO and FeAl2O4, characterized by X-ray diffraction (XRD) analysis, indicating further utilization of oxygen in Fe-based oxygen carriers can be achieved by moving bed operation. For IPA combustion, CO and H2 were the fuel gases generated by IPA solution in the moving bed reactor prior to combustion with oxygen carriers. The IPA conversion and CO2 yield in the outlet stream from moving bed reactor reached 100% as oxygen carrier-to-fuel ratio was higher than 7.94 at 900 °C. By analysis of system processing capacity, 70% of output processing capacity is available for energy use of external facility. By analysis of processing efficiency, aqueous solution as liquid fuel would cause considerable heat consumption for water evaporation, especially for dilute solution. For PU and PP combustion, an annular duel-tube moving bed reactor (ADMBR) was used as fuel reactor for gasification and combustion of PU and PP particles. CO and H2 were the major components of fuel gas generated by gasification of PU and PP particles in ADMBR. Complete conversion of plastic particles and 100% CO2 yield of fuel gas were achieved as oxygen carrier-to-fuel ratio for PU and PP particles reached 3.10 and 10.94, respectively. The heat demands for ADMBR were calculated to be 21% and 52% of output processing capacity by heat consumptions of fuel gasification in the fuel reactor of CLC system, respectively. This study evaluated essential parameters on preparation of Fe2O3/Al2O3 oxygen carrier, operation of moving bed reactor and fuel combustion. Fe2O3/Al2O3 oxygen carrier was completely combusted fuels in the moving bed reactor; furthermore, the reduced Fe2O3/Al2O3 oxygen carrier was capable for hydrogen generation by steam oxidation. Hence, the prepared Fe2O3/Al2O3 composite was validated as oxygen carrier for chemical looping process.

    Chinese Abstract………………………………………………………………………. I English Abstract……………………………………………………………………. III Acknowledgement………………………………………………………………….. V Contents……………………………….…………………………………………. VII Figures………………………………………………………………………….…. XI Tables….…………………………..………………………………………….…. XV Nomenclatures….………………………………………………………….……. XVII Chapter 1 Introduction……………………………………………..…………………. 1 1.1 Background..……………………………………………..………..……. 1 1.2 Objective and Scope……………………………………...……………. 4 Chapter 2 Review of Literature………………………………………………………. 7 2.1 Introduction of Chemical Looping Processes..……………….……...…. 8 2.1.1 Chemical Looping Combustion………...……………………...…. 8 2.1.2 Chemical Looping Gasification and Reforming….......……...…. 13 2.1.3 Chemical Looping Hydrogen Generation………..…...……...…. 15 2.1.4 Chemical Looping with Oxygen Uncoupling………………..…. 19 2.2 Oxygen Carrier.………………………………………………………. 21 2.3 Reactor System……………………………………...………..………. 28 2.3.1 Fluidized Bed Reactor………………………...………..………. 28 2.3.2 Moving Bed Reactor………………………...………..………. 31 2.4 Fuel Combustion……………………………………..………..………. 34 2.4.1 Methane Combustion……………...…………...……….………. 36 2.4.2 Syngas Combustion……...………………..…...………..………. 38 2.4.3 Solid Fuel Combustion……...………...…..…...………..………. 40 2.4.4 Waste Treatment……...………...…..……….....………..………. 44 Chapter 3 Materials and Experiments.………………………...…...……..………. 47 3.1 Chemicals and Apparatus…………..…...…...………....…...………… 47 3.2 Experimental Framework…………...…...………..…....…...………… 50 3.3 Preparation and Characterization of Fe2O3/Al2O3 Oxygen Carrier……. 52 3.3.1 Preparation of Fe2O3/Al2O3 Oxygen Carrier…………..………. 54 3.3.2 Texture Analyzer……………………………...………..………. 57 3.3.3 Thermogravimetric Analyzer (TGA)………....………..………. 57 3.3.4 Fixed Bed Reactor……………………….…...………..………. 60 3.3.5 Nondispersive Infrared (NDIR) Analyzer……………....………. 62 3.3.6 Gas Chromatograph (GC)……………………..………..………. 62 3.3.7 Field Emission Scanning Electron Microscopy (FESEM) .…... 62 3.3.8 X-ray Diffraction (XRD)…………..……..………..…..………. 63 3.4 Moving Bed Fuel Reactor…….……………………...………..………. 64 3.4.1 Methane Combustion…..……………………...………..………. 64 3.4.2 IPA Combustion…………………..…………...………..………. 67 3.4.3 PU and PP Combustion…………………………….…..………. 70 3.5 Analysis of Fuels…………………………………...………..………. 73 3.5.1 Decomposition of Methane…….……………...………..………. 73 3.5.2 Evaporation of IPA…………………….……...………..………. 73 3.5.3 Gasification of PU and PP………………………..……..………. 74 Chapter 4 Results and Discussion……………………………….....……….………. 75 4.1 Performance of Fe2O3/Al2O3 Oxygen Carrier…………………….....… 76 4.1.1 Thermogravimetric Analysis………………...………..………. 76 4.1.2 Reduction Mechanism of Fe2O3/Al2O3 Oxygen Carrier………. 80 4.1.3 Gas yields in Fixed Bed Reactor…………………..…..………. 84 4.1.4 Hydrogen Generation in Fixed Bed Reactor……………………. 86 4.1.5 Crush Strength of Fe2O3/Al2O3 Oxygen Carriers…………….…. 88 4.1.6 Redox Cycling of Fe2O3/Al2O3 Pellets………………..…….…. 89 4.2 Methane Combustion in Moving Bed Reactor……....………..………. 94 4.2.1 Effect of Retention Time……………………....………..………. 94 4.2.2 Effect of Oxygen Carrier-to-fuel Ratio..……...………..………. 98 4.2.3 X-ray Diffraction Analysis…………………….………..……. 101 4.3 IPA Combustion in Moving Bed Reactor………….....………………. 103 4.3.1 IPA Evaporation in Empty Bed Reactor……………..………. 104 4.3.2 IPA Combustion in Moving Bed Reactor………………..……. 109 4.3.3 Heat Analysis for Chemical Looping System………....………. 111 4.4 PU and PP Combustion in Moving Bed Reactor…………….……. 117 4.4.1 PU and PP Gasification in Empty Bed Reactor……………..…. 117 4.4.2 PU and PP Combustion in Moving Bed Reactor……..…..……. 122 4.4.3 Heat Analysis for Chemical Looping System………....………. 129 Chapter 5 Conclusions and Recommendations……………….....………..………. 133 References…………………………………………………..….....……..………. 139 Appendix……………………………………………………..…..………..………. 151 Curriculum Vitae……………………………………………….....……..………. 169

    Abad, A., T. Mattisson, A. Lyngfelt and M. Johansson, “The Use of Iron Oxide as Oxygen Carrier in a Chemical-looping Reactor,” Fuel, 86, 1021-1035 (2007a).
    Abad, A., J. Adanez, F. Garcia-Libiano, L.F. de Diego, P. Gayan and J. Celaya, “Mapping of the Range of Operational Conditions for Cu-, Fe-, and Ni-based Oxygen Carriers in Chemical-looping Combustion,” Chem. Eng. Sci., 62, 533-549 (2007b).
    Adanez-Rubio, I., P. Gayan, F. Garcia-Labiano, L.F. de Diego, J. Adanez and A. Abad, “Development of CuO-based Oxygen-carrier Materials Suitable for Chemical-looping with Oxygen Uncoupling (CLOU) Process,” Energy Procedia, 4, 417-424 (2011).
    Adanez, J., L.F. de Diego, F. Garcia-Libiano, P. Gayan and A. Abad, “Selection of Oxygen Carriers for Chemical-looping Combustion,” Energy Fuels, 18, 371-377 (2004).
    Adanez, J., P. Gayan, J. Celaya, L.F. de Diego, F. Garcia-Libiano and A. Abad,. “Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Methane Combustion,” Ind. Eng. Chem. Res., 45, 6075-6080 (2006).
    Adanez, J., C. Dueso, L.F. de Diego, F. Garcia-Libiano, P. Gayan and A. Abad, “Methane Combustion in a 500 Wth Chemical-looping Combustion System Using an Impregnated Ni-based Oxygen Carrier,” Energy Fuels, 23, 130-142 (2009).
    Adanez, J., A. Cuadrat, A. Abad, P. Gayan, L.F. de Diego and F. Garcia-Labiano, “Ilmenite Activation during Consecutive Redox Cycles in Chemical-looping Combustion,” Energy Fuels, 24, 1402-1413 (2010).
    Adanez, J., A. Abad, F. Garcia-Labiano, P. Gayan and L.F. de Deigo, “Progress in Chemical-Looing Combustion and Reforming Technologies,” Prog. Energy Combust. Sci., 38, 215-282 (2012).
    Amelio, M., P. Morrone, F. Gallucci and A. Basile, “Integrated Gasification Gas Combined Cycle Plant with Membrane Reactors: Technological and Economical Analysis,” Energy Convers. Manage., 48, 2680-2693 (2007).
    Anheden, M. and G. Svedberg, “Exergy Analysis of Chemical-Looping Combustion Systems,” Energy Convers. Manage., 39, 1967-1980 (1998).
    Andrus, H.E., J.H. Chiu and P.R. Thibeault, “Alstom’s Chemical Looping Combustion Coal Power Technology Development Prototype,” 1st International Conference on Chemical Looping, Lyon, France (2010).
    Aresta, M. and A. Dibenedetto, “Utilisation of CO2 as a Chemical Feedstock: Opportunities and Challenges,” Dalton Trans., 2975-2992 (2007).
    Azis, M.M., E. Jerndal, H. Leion, T. Mattisson and A. Lyngfelt, “On the Evaluation of Synthetic and Natural Ilmenite Using Syngas as Fuel in Chemical Looping Combustion (CLC),” Chem. Eng. Res. Des., 88 (11), 1505-1514 (2010).
    Beal, C., B. Epple, A. Lyngfelt, J. Adanez, Y. Larring, A. Guillemont and M. Anheden, “Development of Metal Oxides Chemical Looping Process for Coal-fired Power Plants,” 1st International Conference on Chemical Looping, Lyon, France (2010).
    Berguerand, N. and A. Lyngfelt, “The Use of Petroleum Coke as Fuel in a 10 kWth Chemical-looping Combustor,” Int. J. Greenhouse Gas Control, 2, 169-179 (2008).
    Berguerand, N. and A. Lyngfelt, “Chemical Looping Combustion of Petroleum Coke Using Ilmenite in a 10 kWth Unit High Temperature Operation,” Energy Fuels, 23, 5257-5268 (2009).
    Bolhar-Nordenkampf, J., T. Proll, P. Kolbitsch and H. Hofbauer, “Performance of a NiO Based Oxygen Carrier for Chemical-looping Combustion and Reforming in a 120 kW Unit,” Energy Procedia, 1, 19-25 (2009).
    Bos, A.N.R., P.C. Borman, M. Kuczynski and K.R. Westerterp, “The Kinetics of the Methanol Synthesis on a Copper Catalyst: an Experimental Study,” Chem. Eng. Sci., 44, 2435-2449 (1989).
    Caneghem, J.V., A. Brems, P. Lievens, P. Billen, I. Vermeulen, R. Dewil, J. Baeyens, C. Vandecasteele, “Fluidized Bed Waste Incinerators: Design, Operational and Environmental Issues,” Prog. Energy Combust. Sci., 38, 551-582 (2012).
    Cao, Y. and W.P. Pan, “Investigation of Chemical Looping Combustion by Solid Fuels 1. Process Analysis,” Energy Fuels, 20, 1836-1844 (2006).
    Claridge, J.B., M.L.H. Green, S.C. Tsang, A.P.E. York, A.T. Ashcroft and P.D. Battle, “A Study of Carbon Deposition on Catalysts during the Partial Oxidation of Methane to Synthesis Gas,” Catalysis Letters, 22 (4), 299-305 (1993).
    Channiwala, S.A. and P.P. Parikh, “A Correlation for Estimating HHV from Solid, Liquid and Gaseous Fuels,” Fuel, 81, 1051-1063 (2002).
    Cho, P., T. Mattisson and A. Lyngfelt, “Carbon Formation on Nickel and Iron Oxide-Containing Oxygen Carriers for Chemical-looping Combustion,” Ind. Eng. Chem. Res., 44, 668-676 (2005).
    Chiu, P.C. and Y. Ku, “Chemical Looping Process-A Novel Technology for Inherent CO2 Capture,” Aerosol Air Qual. Res., 12, 1421-1432 (2012).
    Chiu, P.C., Y. Ku, Y.L. Wu, H.C. Wu, Y.H. Tseng and Y.L. Kuo, “Characterization and Evaluation of Prepared Fe2O3/Al2O3 Oxygen Carriers for Chemical Looping Process,” Aerosol Air Qual. Res., DOI: 10.4209/aaqr.2013.04.0135 (2013).
    Corbella, B.M., L.F. de Diego, F. Garcla-Labiano, J. Adanez and J. M. Palacios, “Characterization and Performance in a Multicycle Test in a Fixed-bed Reactor of Silica-supported Copper Oxide as Oxygen Carrier for Chemical-looping Combustion of Methane,” Energy Fuels, 20, 148-154 (2006).
    Cuadrat, A., A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego and J. Adanez, “Ilmenite as Oxygen Carrier in a Chemical Looping Combustion System with Coal,” Energy Procedia, 4, 362-369 (2011).
    De Diego, L.F., P. Gayan, F. Garcia-Libiano, J. Celaya, A. Abad and J. Adanez, “Impregnated CuO-Al2O3 Oxygen Carriers for Chemical Looping Combustion Avoiding Fluidized Bed Agglomeration,” Energy Fuels, 19, 1850-1856 (2005).
    De Diego, L.F., F. Garcia-Libiano, P. Gayan, J. Celaya, J.M. Palacios and J. Adanez, “Operation of a 10 kWth Chemical-looping Combustor during 200h with a CuO-Al2O3 Oxygen Carrier,” Fuel, 86, 1036-1045 (2007).
    Dueso, C., F. Garcia-Libiano, J. Adanez, L.F. de Diego, P. Gayan and A. Abad, “Syngas Combustion in a Chemical-looping Combustion System Using an Impregnated Ni-based Oxygen Carrier,” Fuel, 88, 2357-2364 (2009).
    Ennenbach, F. and K. Kluger, “Challenges for 2nd Generation Technologies Like Chemical and Carbonate Looping from an Industry Point of View,” 2nd International Conference on Chemical Looping, Darmstadt, Germany (2012).
    Eyring, E.M., G. Konya, J.S. Lighty, A.H. Sahir, A.F. Sarofim and K. Whitty, “Chemical Looping with Copper Oxide as Carrier and Coal as Fuel,” Oil Gas Sci. Technol., 66, 209-221 (2011).
    Figueroa, J.D., T. Fout, S. Plasynski, H. McIlvried and R.D. Srivastava, “Advances in CO2 Capture Technology-The U.S. Department of Energy’s Carbon Sequestration Program,” Int. J. Greenhouse Gas Control, 2, 9-20 (2008).
    Fan, L.S., P. Gupta, L.G. Velazquez-Vargas and F. Li, “System and Methods of Converting Fuel,” U.S. Patent US 2009/000194 A1 (2009).
    Fan, L.S. and F. Li, “Chemical Looping Technology and Its Fossil Energy Conversion Applications,” Ind. Eng. Chem. Res., 49, 10200-10211 (2010).
    Fan, L.S., “Chemical Looping Systems for Fossil Energy Conversions,” John Wiley & Sons Inc., Hoboken, New Jersey, USA (2010).
    Forero, C.R., P. Gayan, L.F. de Diego, F. Garcia-Labiano and J. Adanez, “Syngas Combustion in a 500Wth Chemical-looping Combustion System Using an Impregnated Cu-based Oxygen Carrier,” Fuel Process Technol., 90, 1471-1479 (2009).
    Gao, Z, L. Shen, J. Xiao, C. Qing and Q. Song, “Use of Coal as Fuel for Chemical-looping Combustion with Ni-based oxygen Carrier,” Ind. Eng. Chem. Res., 47, 9279-9287 (2008).
    Gayan, P., L.F. de Diego, F. Garcia-Labiano, J. Adanez, A. Abad and C. Dueso, “Effect of Support on Reactivity and Selectivity of Ni-based Oxygen Carriers for Chemical-looping Combustion,” Fuel, 87, 2641-2650 (2008).
    Gupta, P., G. Velazquez-Vargas and L.S. Fan, “Syngas Redox (SGR) Process to Produce Hydrogen from Coal Derived Syngas,” Energy Fuels, 21, 2900-2908 (2007).
    Hacker, V., R. Frankhaiser, G. Faleschini, H. Fuchs, K. Friedrich, M. Muhr And K. Kordesch, “Hydrogen Production by Steam-Iron Process,” J. Power Sources, 86, 531-535 (2000).
    Han, T., H. Hong, F. He and H. Jin, “Reactivity Study on Oxygen Carriers for Solar-hybrid Chemical-looping Combustion of Di-methyl Ether,” Combust. Flame, 159, 1806-1813 (2012).
    Hossain, M.M. and H.I. de Lasa, “Chemical-looping Combustion (CLC) for Inherent CO2 Separations-A Review,” Chem. Eng. Sci., 63, 4433-4451 (2008).
    Hurst, S., “Production of Hydrogen by the Steam-iron Method,” J. Am. Oil Chem. Soc. 16 (2), 29-35 (1939).
    IEA, “2010 Key World Energy Statistics,” International Energy Agency, Paris, France (2010).
    IEA, “2012 Key World Energy Statistics,” International Energy Agency, Paris, France (2012).
    IPCC, “Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC, Geneva, Switzerland (2007).
    IPCC, “Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change,” IPCC, New York, USA (2011).
    Ishida, M., D. Zheng and T. Akehata, “Evaluation of a Chemical Looping Combustion Power Generation System by Graphic Exergy Process Analysis,” Energy Fuels, 20, 1836-1844 (1987).
    Ishida, M. and H. Jin, “A New Advanced Power Generation System Using Chemical-looping Combustion,” Energy, 19 (4), 415-422 (1994).
    Ishida, M., H. Jin and T. Okamoto, “A Fundamental Study of A New Kind of Medium Material for Chemical-looping Combustion,” Energy Fuels, 10, 958-963 (1996).
    Ishida, M., K. Takeshita, K. Susuki and T. Ohba, “Application of Fe2O3-Al2O3 Composite Particles as Solid Looping Material of the Chemical Loop Combustor,” Energy Fuels, 19, 2514-2518 (2005).
    Jerndal, E., T. Mattisson and A. Lyngfelt, “Thermal Analysis of Chemical-looping Combustion,” Chem. Eng. Res. Des., 84, 795-806 (2006).
    Jin, H. and M. Ishida, “Graphical Exergy Analysis of Complex Cycles,” Energy, 18 (6), 615-625 (1993).
    Jin, H. and M. Ishida, “Reactivity Study on A Novel Hydrogen Fueled Chemical-looping Combustion,” Int. J. Hydrog. Energy, 26, 889-894 (2001).
    Jin, H. and M. Ishida, “Reactivity Study on Natural-gas-fueled Chemical-looping Combustion by a Fixed Bed Reactor,” Ind. Eng. Chem. Res., 41, 4004-4007 (2002).
    Johansson, M., T. Mattisson and A. Lyagfelt, “Investigation of Fe2O3 with MgAl2O4 for Chemical Looping Combustion,” Ind. Eng. Chem. Res., 43, 6978-6987 (2004).
    Johansson, M., T. Mattisson and A. Lyagfelt, “Use of NiO/NiAl2O4 Particles in a 10 kW Chemical-looping Combustor,” Ind. Eng. Chem. Res., 45, 5911-5919 (2006).
    Johansson, E., T. Mattisson, A. Lyngfelt and H. Thurman, “Combustion of Syngas and Natural Gas in a 300 W Chemical Looping Combustor,” Chem. Eng. Res. Des., 84 (A9), 819-827 (2006).
    Kolbitsch, P., J. Bolhar-Nordenkampf, T. Proll and H. Hofbauer, “Comparison of Two Ni-based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation,” Ind. Eng. Chem. Res., 48, 5542-5547 (2009a).
    Kolbitsch, P., T. Proll, J. Bolhar-Nordenkampf and H. Hofbauer, “Operating Experience with Chemical Looping Combustion in a 120 kW Dual Circulating Fluidized Bed (DCFB) Unit,” Energy Procedia, 1, 1465-1462 (2009b).
    Kronberger, B, E. Johansson, G. Loffler, T. Mattisson, A. Lyngfelt and H. Hofbauer, “A Two Compartment Fluidized Bed Reactor for CO2 Capture by Chemical-looping Combustion,” Chem. Eng. Technol., 27 (12), 1318-1326 (2004).
    Ku, Y., L.C. Wang and C.M. Ma, “Photocatalytic Decomposition of Isopropanol in Aqueous Solution Using Perovskite-Structured La2Ti2O7,” Chem. Eng. Technol., 30 (7), 895-900 (2007).
    Ku, Y., H.C. Wu, P.C. Chiu, Y.H. Tseng and Y.L. Kuo, “Methane Combustion by Moving Bed Fuel Reactor with Fe-based Oxygen Carrier,” Appl. Energy, 113, 1909-1915 (2014a).
    Ku, Y., Y.C. Liu, P.C. Chiu, Y.L. Kuo and Y.H. Tseng, “Mechanism of Pseudobrookite as Oxygen Carrier for Chemical Looping Process and Evaluation for H2 Generation,” Ceram. Int., 40, 4599-4605 (2014b).
    Kuo, Y.L., W.M. Hsu, P.C. Chiu, Y.H. Tseng and Y. Ku, “Assessment of Nickel Ferrite as Oxygen Carriers for Chemical Looping Process,” Ceram. Int., 39, 5459-5465 (2013).
    Leion, H., T. Mattisson and A. Lyngfelt, “The Use of Petroleum Coke as Fuel in Chemical-looping Combustion,” Fuel, 86, 1947-1958 (2007).
    Leion, H., T. Mattisson and A. Lyngfelt, “Solid Fuels in Chemical-looping Combustion,” Int. J. Greenhouse Gas Control, 2, 180-193(2008).
    Leion H., E. Jerndal, B. Steenari, S. Hermansson, M. Israelsson, E. Jansson, M. Johnsson, R. Thunberg, A. Vadenbo, T. Mattisson and A. Lyngfelt, “Solid Fuels in Chemical-looping Combustion Using Oxide Scale and Unprocessed Iron Ore as Oxygen Carriers,” Fuel, 88, 1945-1954 (2009a).
    Leion, H., T. Mattisson and A. Lyngfelt, “Using Chemical-looping with Oxygen Uncoupling (CLOU) for Combustion of Six Different Solid Fuels,” Energy Procedia, 1, 447-453 (2009b).
    Lewis, W.K. and E.R. Gilliland, “Production of Pure Carbon Dioxide,” U.S. Patent 2,665,972 (1954).
    Li, F. and L.S. Fan, “Clean Coal Conversion Process,” Energy Environ. Sci., 1, 248-267 (2008).
    Li, F., H.R. Kim, D. Sridhar, F. Wang, L. Zeng, J. Chen and L.S. Fan, “Syngas Chemical Looping Gasification Process: Oxygen Carrier Particle Selection and Performance,” Energy Fuels, 23, 4182-4189 (2009).
    Li, F., L. Zeng, L.G. Velazquez-Vargas, Z. Yoscovits and L.S. Fan, “Syngas Chemical Looping Gasification Process: Bench-Scale Studies and Reactor Simulations,” AIChE J., 56 (8), 2186-2199 (2010a).
    Li, F., L. Zeng and L.S. Fan, “Biomass Direct Chemical Looping Process: Process Simulation,” Fuel, 89, 3773-3784 (2010).
    Li, F., Z. Sun, S. Luo and L.S. Fan, “Ionic Diffusion in the Oxidation of Iron-effect of Support and Its Implications,” Energy Environ. Sci., 4, 876-880 (2011).
    Lin, P.H., “Preparation of Al2O3 and TiO2 Supported Fe2O3 Pellets for Chemical Looping Combustion and Hydrogen Generation,” Master Thesis in Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan (2012).
    Linderholm, C., A. Abad, T. Mattisson and A. Lyngfelt, “160 h of Chemical-looping Combustion in a 10 kW Reactor System with a NiO-based Oxygen Carrier,” Int. J. Greenhouse Gas Control, 2, 520-530 (2008).
    Linderholm, C., T. Mattisson and A. Lyngfelt, “Long-term Integrity Testing of Spray-dried Particles in a 10-kW Chemical-looping Combustor Using Natural Gas as Fuel,” Fuel, 88, 2083-2096 (2009).
    Liu, Y.C. “Application of the Fe2TiO5 as Oxygen Carriers for Chemical Looping Prcoess Using the Syngas as a Fuel,” Master Thesis in Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan (2011).
    Lyngfelt, A., B. Leckner and T. Mattisson, “A Fluidized-bed Combustion Process with Inherent CO2 Separation; Application of Chemical-looping Combustion,” Chem. Eng. Sci., 56, 3101-3113 (2001).
    Lyngfelt, A. “Oxygen Carriers for Chemical Looping Combustion-4000 h of Operational Experience,” Oil and Gas Science and Technology, 66 (2), 161-172 (2011).
    MacDowell, N., N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C.S. Adjiman, C.K. Williams, N. Shah and P. Fennell, “An Overview of CO2 Capture Technologies,” Energy Environ. Sci., 3, 1645-1669 (2010).
    Moldenhauer, P.; Ryden, M.; Mattisson, T.; Lyngfelt, A., “Chemical-looping Combustion and Chemical-looping with Oxygen Uncoupling of Kerosene with Mn- and Cu-based Oxygen Carriers in a Circulating Fluidized-bed 300 W Laboratory Reactor,” Fuel Process Technol., 104, 378-389 (2012).
    Mattisson, T., A. Lyngfelt and P. Cho, “The Use of Iron Oxide as an Oxygen Carrier in Chemical Looping Combustion of Methane with Inherent Separation of CO2,” Fuel, 80, 1953-1962 (2001).
    Mattisson, T., A. Jardnas and A. Lyngfelt, “Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen-application for Chemical-looping Combustion,” Energy Fuels, 17, 643-651 (2003).
    Mattisson, T., M. Johansson and A. Lyngfelt, “Multicycle Reduction and Oxidation of Different Types of Iron Oxide Particles-Application to Chemical-looping Combustion,” Energy Fuels, 18, 628-637 (2004).
    Mattisson, T., M. Johansson and A. Lyngfelt, “The Use of NiO as an Oxygen Carrier in Chemical-looping Combustion,” Fuel, 85, 736-747 (2006a).
    Mattisson, T., M. Johansson and A. Lyngfelt, “CO2 Capture from Coal Combustion Using Chemical-looping-reactivity Investigation of Fe, Ni and Mn Based Oxygen Carriers Using Syngas,” The Clearwater Coal Conference (2006b).
    Mattisson, T., F. Garcia-Labiano, B. Kronberger, A. Lyngfelt, J. Adanze and H. Hofbauer, “Chemical Looping Combustion Using Syngas as Fuel,” Int. J. Greenhouse Gas Control, 1, 158-169 (2007).
    Mattisson, T., A. Lyngfelt and H. Leion, “Chemical-looping with Oxygen Uncoupling for Combustion of Solid Fuels,” Int. J. Greenhouse Gas Control, 3, 11-19 (2009).
    Notz, R., I. Tonnies, N. McCann, G. Scheffknecht and Hasse, H., “CO2 Capture for Fossil Fuel-fired Power Plants,” Chem. Eng. Technol., 34, 163–172 (2011).
    Olajire, A.A., “CO2 Capture and Separation Technologies for End-of-pipe Applications–A Review,” Energy, 35, 2610–2628 (2010).
    Orth, M., J. Strohle and B. Epple, “Design and Operation of a 1 MWth Chemical Looping Plant, 2nd International Conference on Chemical Looping,” Darmstadt, Germany (2012).
    Perry, R.H. and D.W. Green, “Perry’s Chemical Engineers’ Handbook,” McGraw-Hill (1997).
    Pirotta, F.J.C., E.C. Ferreira, C.A. Bernardo, “Energy Recovery and Impact on Land Use of Maltese Municipal Solid Waste Incineration,” Energy, 49, 1-11 (2013).
    Proll, T., K. Mayer, J. Bolhar-Nordenkampf, P. Kolbitsch, T. Mattisson, A. Lyngfelt and H. Hofbauer, “Natural Mineral as Oxygen Carriers for Chemical Looping Combustion in a Dual Circulating Fluidized Bed System,” Energy Procedia, 1, 27-34 (2009a).
    Proll, T., P. Kolbitsch, J. Bolhar-Nordenkampf and H. Hofbauer, “A Novel Dual Circulating Fluidized Bed System for Chemical Looping Processes,” AIChE J., 55 (12), 3255-3266 (2009b).
    Rahaman, M.N., “Sintering of Ceramics,” SRC Press, Boca Raton, 45-176 (2008).
    Rajor, A., M. Xaxa, R. Mehta and Kunal, “An Overview on Characterization, Utilization and Leachate Analysis of Biomedical Waste Incinerator Ash,” J. Environ. Manage., 108, 36-41 (2012).
    Razali, N.A.M., K.T. Lee, S. Bhatia and A.R. Mohamed, “Heterogeneous Catalysts for Production of Chemicals Using Carbon Dioxide as Raw Material: A Review,” Renew. Sust. Energy Rev., 16, 4951–4964 (2012).
    Richter, H.J. and K.F. Knoche, “Reversibility of Combustion Processes in Efficiency and Costing-Second Law Analysis of Processes,” ACS symposium series, 71-85 (1983).
    Ryu, H.J., N.Y. Lim, D.H. Bae and G.T. Jin, “Carbon Deposition Characteristics and Regenerative Ability of Oxygen Carrier Particles for Chemical-looping Combustion,” Korean J. Chem. Eng., 20 (1), 157-162 (2003).
    Ryu, H.J., G.T. Jin, D.H. Bae and C.K. Yi, “Development of Novel Two-interconnected Fluidized Bed System,” 5th China-Korea Joint Workshop on Clean Energy Technology, 221-230 (2004).
    Ryu, H.J., Y.C. Park, S.H. Jo and M.H. Park, “Development of Novel Two Interconnected Fluidized Bed System,” Korean J. Chem. Eng., 25 (5), 1178-1183 (2008).
    Ryu. H.J., S.H. Jo, Y. Park, D.H. Bae and S. Kim, “Long Term Operation Experience in a 50 kWth Chemical Looping Combustor Using Natural Gas and Syngas as Fuels,” 1st International Conference on Chemical Looping, Lyon, France (2010).
    Ryden, M., A. Lyngfelt and T. Mattisson, “Synthesis Gas Generation by Chemical-Looping Reforming in a Continuously Operating Laboratory Reactor,” Fuel, 85, 1631-1641 (2006).
    Shen, L., J. Wu, J. Xiao, Q. Song and R. Xiao, “Chemical Looping Combustion of Biomass in a 10 kWth Reactor with Iron Oxide as an Oxygen Carrier,” Energy Fuels, 23, 2948-2505 (2009a).
    Shen, L., J. Wu, J. Xiao, Z. Gao and J. Xiao, “Reactivity Deterioration of NiO/Al2O3 Oxygen Carrier for Chemical Looping Combustion of Coal in a 10 kWth Reactor,” Combust. Flame, 156, 1377-1385 (2009b).
    Son, S.R. and S.D. Kim, “Chemical Looping Combustion with NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Reactor with Double Loops,” Ind. Eng. Chem. Res., 45, 2689-2696 (2006).
    Song, Q., R. Xiao, Z. Deng, L. Shen and M. Zhang, “Reactivity of a CaSO4 Oxygen Carrier in Chemical-looping Combustion of Methane in a Fixed Bed Reactor,” Korean J. Chem. Eng., 26 (2), 592-602 (2009).
    Sridhar, D., A. Tong, H. Kim, L. Zeng, F. Li and L.S. Fan, “Syngas Chemical Looping Process: Design and Construction of a 25 kWth Subpilot Unit,” Energy Fuels, 26, 2292-2302 (2012).
    Tong, A., S. Bayham, M. V. Kathe, L. Zeng, S. Luo and L.S. Fan, “Iron-based Syngas Chemical Looping Process and Coal-direct Chemical Looping Process Development at Ohio State University,” 2nd International Conference on Chemical Looping, Darmstadt, Germany (2012).
    Tsatsaronis, G., L. Lin, T. Tawfik and D.T. Gallaspy, “Exergoeconomic Evaluation of a KRW-based IGCC Power Plant,” J. Eng. Gas Turb. Power, 116 (2), 300-306 (1994).
    Tseng, Y.H., J.L. Ma, P.C. Chiu, Y.L. Kuo and Y. Ku, “Preparation of Composite Nickle-iron Oxide as Highly Reactive Oxygen Carrier for Chemical-looping Combustion Process,” J. Taiwan Inst. Chem. Eng., DOI: 10.1016/j.jtice.2013.06.014 (2013).
    Wu, Y.L., “Preparation of Fe2O3/Al2O3 Composite Oxygen Carrier and Its Application for Chemical Looping Process Using Charcoal as a Fuel,” Master Thesis in Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan (2011).
    Xiang, W. and S. Wang, “Investigation of Gasification Chemical Looping Combustion Combined Cycle Performance,” Energy Fuels, 22, 961-966 (2008).
    Xiao, R., L. Chen, C. Saha, S. Zhang and S. Bhattacharya, “Pressurized Chemical-looping Combustion of Coal Using an Iron Ore as Oxygen Carrier in a Pilot-scale Unit,” Int. J. Greenhouse Gas Control, 10, 363-373 (2012).
    Zafar, Q., T. Mattisson and B. Gevert, “Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as a Support,” Ind. Eng. Chem. Res., 44, 3485-3496 (2005).
    Zafar, Q., T. Mattisson and B. Gevert, “Redox Investigation of Some Oxides of Transition-state Metals Ni, Cu, Fe, and Mn Supported on SiO2 and MgAl2O4,” Energy Fuels, 20, 34-44 (2006).
    經濟部能源局(BOE),「我國燃料燃燒二氧化碳排放統計」(2013)。

    QR CODE