簡易檢索 / 詳目顯示

研究生: 黃韻臻
Yun-jen Huang
論文名稱: 在旋轉填充床反應器中以過氧化氫/臭氧程序處理含異丙醇水溶液之研究
Decomposition of isopropyl alcohol in aqueous solution by the H2O2/O3 process in a rotating packed bed reactor
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
張祖恩
Juu-En Chang
曾迪華
Dyi-Hwa Tseng
劉志成
Jhy-Chern Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 168
中文關鍵詞: 旋轉填充床液相體積質傳係數異丙醇丙酮過氧化氫臭氧
外文關鍵詞: rotating packed bed, isopropyl alcohol, acetone, hydrogen peroxide
相關次數: 點閱:260下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在考量光電產業廢水處理之成本居高不下以及污染防治設備之設置與維護保養負擔,本研究擬利用高重力式之旋轉填充床,配合進行臭氧對有機廢水之強制性質傳與氧化程序,開發適用於光電製程現場之廢水處理設備單元。擬開發之設備乃藉由臭氧之高氧化能力,將製程廢水中之有機物氧化分解,同時透過旋轉填充床之高質傳特性,克服以往臭氧程序因溶解度不足而無法有效處理大量廢水之窘境,且因臭氧利用率提升,能於製程現場及時將廢水分解並減少尾氣臭氧濃度,進而降低操作成本且免於臭氧廢氣之後處理。
    旋轉填充床是以離心的方式產生高重力場,藉此產生極大的剪切力使液膜變薄或液滴變小,以增加氣液接觸面積進而提升質傳效率。實驗結果也顯示液相體積質傳係數隨液體流量增加而增加,且與轉速的0.51次方成正比。在旋轉填充床中以過氧化氫/臭氧程序處理含異丙醇水溶液可有效提升異丙醇之去除率,由實驗結果顯示,隨著轉速提高,異丙醇去除率會提高,但增加趨勢逐漸減緩,此時反應速率決定步驟應由質傳控制轉變為反應控制;液體流量增加和異丙醇去除率呈線性關係,此外也縮短反應時間大幅提升對污染物的處理效率;水溶液pH值提高會促進液相臭氧自解,而鹼催化的現象也會使得氫氧自由基更易生成,有利於污染物的去除。然而,對不同污染物而言,隨著不同的溶液pH值會有不同的競爭反應,因此最適化的pH值會隨著污染物的種類而有所不同。適量的過氧化氫可促進臭氧生成氫氧自由基提升氧化速率而過量的過氧化氫會捕捉氫氧自由基抑制反應,其最適過氧化氫/臭氧添加莫耳劑量比為0.5;在低轉速下添加過氧化氫可大幅提升甲酚之去除率,以降低動力消耗;在高pH值時,過氧化氫添加效應是較明顯的。


    Organic wastewater could be treated at various levels in this project to evaluate the potentiality of rotating packed bed in wastewater treatment, especially in TFT-LCD and semiconductor manufacturing. In this study, the degree of isopropyl alcohol (IPA) and acetone removal was defined from the observed data and employed to quantify the treating efficiency of ozonation process in rotating packed bed reactor.
    This work deals with the hydrogen peroxide / ozone system. The decomposition of isopropyl alcohol (IPA) in aqueous solutions using a rotating packed bed reactor by H2O2/O3 process were studied under various operation conditions such as rotor speed, gas/liquid flow rate ratio, [H2O2](aq)/[O3](g) molar ratio and solution pH. The centrifugal acceleration generates powerful shear force to render thinner liquid film and smaller droplets on the packing of reactor. Experimental results indicated that the values of kLa for ozone transfer in the rotating packed bed reactor increased with the decreasing gas/liquid flow rate ratio. In this case, a theoretical correlation for predicting kLa in a rotating packed bed was developed which showed that kLa should increase with the liquid flow rate (L0.76) and was proportional to 0.51 order of the rotor speed. It may be concluded that factors affecting H2O2/O3 oxidation efficiency from strong to weak can be ranked as gas/liquid flow rate ratio to rotor speed.
    Experimental results indicated that the reaction rate constant of isopropyl alcohol (IPA) increased with an increase in the rotor speed and decreasing gas/liquid flow rate ratio. However, the removal rate constant of total organic carbon (TOC) were not notably affected by the variation of the rotor speed and the gas/liquid flow rate ratio. In the H2O2/O3 system, low concentration of hydrogen peroxide increases oxidation rates of isopropyl alcohol (IPA) while higher concentration of hydrogen peroxide inhibits the oxidation. Initially, the optimal conditions for applying the H2O2/O3 system were sought using isopropyl alcohol (IPA). In a closed reactor with isopropyl alcohol (IPA) the oxidation velocity is faster with a solution pH of 9 and a consumption of 0.5 mol H2O2 mol-1 of ozone introduced in alkaline solution was observed.

    Acknowledgments…………………………………………………………………………………Ι English abstract………………………………………………………………………………ΙΙ Chinese abstract………………………………………………………………………………ΙV Table of Contents………………………………………………………………………………V List of Figures………………………………………………………………………………VΙΙΙ List of Tables…………………………………………………………………………………ХΙΙ Chapter 1 Introduction…………………………………………………………………………1 1.1 Background……………………………………………………………………………1 1.2 Objectives and Scope………………………………………………………………3 Chapter 2 Literature Review…………………………………………………………………4 2.1 Ozonation Process…………………………………………………………………………5 2.1.1 Physical and chemical properties of ozone………………………………………5 2.1.2 Mass transfer behavior of ozone……………………………………………………7 2.1.3 Ozonation pathway………………………………………………………………………12 2.2 Hydrogen Peroxide / Ozone Oxidation Process………………………………………16 2.2.1 Properties of hydrogen peroxide and H2O2 / O3 oxidation process…………16 2.2.2 Effect of solution pH…………………………………………………………………20 2.2.3 Effect on [H2O2](aq)/[O3](g) molar ratio………………………………………22 2.3 Rotating Packed bed………………………………………………………………………25 2.3.1 Principle and conformation…………………………………………………………25 2.3.2 Characteristic of rotating packed bed……………………………………………30 2.3.3 Operation factors………………………………………………………………………35 Chapter 3 Experimental………………………………………………………………………40 3.1 Measurements………………………………………………………………………………40 3.2 Chemicals……………………………………………………………………………………41 3.3 Apparatus and Reactor Design…………………………………………………………42 3.4 Experimental Procedures…………………………………………………………………47 3.5 Experimental Framework...…………………………………….………………………52 3.6 Methods………………………………………………………………………………………55 Chapter 4 Results and Discussion…………………………………………………………60 4.1 Mass Transfer Behavior of Ozone in a Rotating Packed Bed Reactor…………60 4.1.1 Effect of rotor speed…………………………………………………………………61 4.1.2 Effect of gas/liquid flow rate ratio……………………………………………66 4.1.3 Effect of ozone dosage………………………………………………………………72 4.1.4 Effect of solution pH…………………………………………………………………77 4.1.5 Mass transfer behavior of ozone with continuous H2O2 solution addition.81 4.2 Decomposition of Isopropyl Alcohol in Aqueous Solution by the H2O2/O3 Process in a Rotating Packed Bed Reactor………………………………………………86 4.2.1 Property of isopropyl alcohol and background experiments…………………86 4.2.2 Effect of rotor speed…………………………………………………………………92 4.2.3 Effect of gas/liquid flow rate ratio……………………………………………100 4.2.4 Effect of solution pH………………………………………………………………106 4.2.5 Effect of [H2O2](aq)/[O3](g) molar ratio………………………………………112 4.3 Decomposition of Acetone in Aqueous Solution by the H2O2/O3 Process in a Rotating Packed Bed Reactor………………………………………………………………119 4.3.1 Property of acetone and background experiments………………………………119 4.3.2 Effect of rotor speed………………………………………………………………123 4.3.3 Effect of gas/liquid flow rate ratio……………………………………………128 4.3.4 Effect of solution pH………………………………………………………………134 4.3.5 Effect of [H2O2](aq)/[O3](g) molar ratio………………………………………139 4.4 Comparison between H2O2/O3 Oxidation of Isopropyl Alcohol and Acetone...146 4.4.1 Series reaction………………………………………………………………………148 4.4.2 Influence of physical parameter…………………………………………………149 4.4.3 Influence of chemical parameter………………………...………………………154 Chapter 5 Conclusions and Recommendations……………………………………………155 5.1 Conclusions………………………………………………………………………………155 5.2 Recommendations…………………………………………………………………………157 Nomenclature……………………………………………………………………………………158 Reference………………………………………………………………………………………160 Vita………………………………………………………………………………………………168

    Albet, J., Farines, V., Baig, J., Molinier, J. and Legay, C., “Ozone Transfer from Gas to Water in a Co-Current Upflow Packed Bed Reactor Containing Silica Gel,” Chem. Eng. J., Vol. 91, pp. 67-73 (2003).

    Bader, H. and Hoigne J., “Determination of Ozone in Water by the Indigo Method,” Water Res., Vol. 15, pp. 449-456 (1981).

    Bader, H. and Hoigne J., “Determination of Ozone in Water by the Indigo Method: A Submitted Standard Method,” Ozone Sci. Eng., Vol. 4, pp. 169-176 (1982).

    Beltran, F. J., Encinar, J. M. and Alonso, M. A., “Nitroaromatic Hydrocarbon Ozonation in Water. 2. Combined Ozonation with Hydrogen Peroxide or UV Radiation,” Ind. Eng. Chem. Res., Vol. 37, pp. 32-40 (1998).

    Beltran, F. J., Gonzalez, M., Rivas, J. and Marin, M., “Oxidation of Mecoprop in Water with Ozone Combined with Hydrogen Peroxide,” Ind. Eng. Chem. Res., Vol. 33, pp. 125-136 (1994).

    Beltran, F. J., Ovejero, G. and Rivas, J., “Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 4. Ozone Combined with Hydrogen Peroxide,” Ind. Eng. Chem. Res., Vol. 35, pp. 891-898 (1996).

    Beltran, F. J., Rivas, J., Garcia-Araya, J. F. and Navarrete, V., “Simazine Removal from Water in a Continuous Bubble Column by O3 and O3/H2O2,” J. Environ. Sci. Health, Vol. B36, pp. 809-819 (2001).

    Buchanan, J. E., “Holdup in Irrigated Ring Packed Towers Below the Loading Point,” Ind. Eng. Chem. Fundam., Vol. 6, pp. 400 (1967).

    Buhler, R. E., Staehelin, J. and Hoigne, J., “Ozone Decomposition in Water Studied by Pulse Radiolysis: 2. [˙OH] and [·OH4] as Chain Intermediates.,” J. Phys. Chem., Vol. 88, pp. 5999 (1984).

    Burns, J. R. and Ramshaw, C., “Process Intensification: Visual Study of Liquid Maldistribution in Rotating Packed Beds,” Chem. Enq. Sci., Vol. 51, pp. 1347-1352 (1996).

    Buxton, G. V., Greenstock, C. L., Phillips Helman, W. and Ross, A. B., “Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (˙OH/˙O-) in Aqueous Solution,” J. Phys. Chem. Ref., Data. 17, pp. 513-885 (1988).

    Chen, Y. H., Chang, C. Y., Su, W. L., Chen, C. C., Chiu, C. Y., Yu, Y. H., Chiang, P. C., and Chiang, S. I. M., “Modeling Ozone Contacting Process in a Rotating Packed Bed,” Ind. Eng. Chem. Res., Vol. 43, pp. 228-236 (2004).

    Chen, Y. H., Chang, C. Y., Su, W. L., Chiu, C. Y., Yu, Y. H., Chiang, P. C., Chang, C. F., Shie, J. L., Chiou, C. S. and Chiang, S. I. M., “Ozonation of Cl Reactive Black 5 Using Rotating Packed Bed and Stirred Tank Reactor,” J. Chem. Techonl. Biotechnol., Vol, 80, pp. 68-75 (2005).

    Chen, Y. S. and Liu, H. S., “Absorption of VOCs in a Rotating Packed Bed,” Ind. Eng. Chem. Res., Vol. 41, pp. 1583-1588 (2002).

    Christensen, H., Sehested, K. and Corfitzen, H., “Reactions of Hydroxyl Radicals with Hydrogen Peroxide at Ambient and Elevated Temperatures,” J. Phys. Chem., Vol. 86, pp. 1588 (1982).

    Dangelo, C. and Mote, C.D., “Aerodynamically Excited Vibration and Flutter of Thin Disk Rotating at Supercritical Speed,” J. of sound and Vibration, Vol. 168, No. 1, pp.15-30 (1993).

    Den, W., Ko, F. H. and Huang, T. Y., “Treatment of Organic Wastewater Discharge From Semiconductor Manufacturing Process by Ultraviolet / Hydrogen Peroxide and Biodegradation,” IEEE Transactions on Semiconductor Manufacturing, Vol. 15, pp. 540-551 (2002).

    Elizardo, K., “Fighting Pollution with Hydrogen Peroxide,” Pollut. Eng., pp. 106-109 (1991).

    Evren, V., Cagatay, T. and Ozdural, A. R., “Carbon Dioxide-Air Mixtures: Mass Transfer in Recycling Packed-Bed Absorption Columns Operating under High Liquid Flow Rates,” Separation and Purification Technology, Vol. 17, pp. 89-96 (1999).

    Fogler, H. S., Elements of Chemical Reaction Engineering, 3rd Ed., Prentice Hall, New Jersey, USA (1999).

    Garoma, T. and Gurol, M. I., “Degradation of Tert-Butyl Alcohol in Dilute Aqueous Solution by an O3/UV Process,” Environ. Sci. Technol., Vol. 38, pp. 5246-5252 (2004).

    Glaze, W. H. and Kang, J. W., “Advanced Oxidation Processes. Description of a Kinetic Model for the Oxidation of Hazardous Materials in Aqueous Media with Ozone and Hydrogen Peroxide in a Semibatch Reactor,” Ind. Eng. Chem. Res., Vol. 28, pp. 1573-1580 (1989a).

    Guo, F., Zheng, C., Guo, K., Feng, Y. and Gardner, N. C., “Hydrodynamics and Mass Transfer in Cross-Flow Rotating Packed Bed,” Chem. Eng. Sci., Vol. 52, pp. 3853-3859 (1997).

    Hautaniemi, M., Kallas, J., Munter, R. and Trapido, M. “Modeling of Chlorophenol Treatment in Aqueous Solutions. 2. Ozonation under Basic Conditions,” Ozone Sci. Eng. Vol. 20, No. 4, pp. 283-302 (1998).

    Hoigné, J. and Bader, H., “Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water: I,” Water Res., Vol. 17, pp. 173–183 (1983).

    Hoigne, J. and Bader, H., “Rate Constant of Reactions of Ozone with Organic and Inorganic Compounds in Water: II. Dissociating Organic Compounds,” Water Res. Vol. 17, pp. 185-194 (1983).

    Hoigne, J. and Bader, H., “The Role of Hydroxyl Radical Reactions in Ozonation Processes in Aqueous Solutions,” Water Res. Vol. 10, pp. 377–386 (1976).

    Iliuta, I., Iliuta, M. C. and Thyrion, F. C., “Gas-liquid Mass Transfer in Trickle-Bed Reactors: Gas-Side Mass Transfer,” Chem. Eng. Technol., Vol. 20, pp. 589 (1997).

    Keyvani, M. and Gardner, N. C., “Operating Characteristics of Rotating Packed Beds,” Chem. Eng. Prog., Vol. 85, pp. 48-52 (1989).

    Ku, Y. and Wang, W., “The Decomposition Kinetics of Monocrotophos in Aqueous Solutions by the Hydrogen Peroxide-Ozone Process,” Water Environ. Res., Vol. 71, pp. 18-22 (1999).

    Kumar, M. P. and Rao, D. P., “Studies on a High-Gravity Gas-Liquid Contactor,” Ind. Eng. Chem. Res., Vol.29, pp.917-920 (1990).

    Kumar, R. and Bose, P., “Development and Experimental Validation of the Model of a Continuous-Flow Countercurrent Ozone Contaceor,” Ind. Eng. Chem. Res., Vol. 43, pp. 1418-1429 (2004).

    Kuo, C. H., Yuan, F. and Hill, Donald O., “Kinetics of Oxidation of Ammonia in Solutions Containing Ozone With or Without Hydrogen Peroxide,” Ind. Eng. Chem. Res., Vol. 36, pp. 4108-4113 (1997).

    Langlais, B., Reckhow, D. A. and Brink, D. R. “Ozone in Water Treatment,” Application and Engineering, Lewis Publishers, Chelsea, MI, (1991).

    Legrini, O., Oliveros, E. and Braun, A. M., “Photochemical Processes for Water Treatment,” Chem. Rev., Vol. 93, pp. 671-698 (1993).

    Lin, C. C. and Liu, W. T., “Ozone Oxidation in a Rotating Packed Bed,” J. Chem. Technol. Biotechnol., Vol. 78, pp. 138-141 (2003).

    Linders, J., “Control by Variable Rotor Speed of a Fixed-Pitch Wind Turbine Operating in a Wide Speed Range,” IEEE Transaction on Energy Conversion, Vol. 8, No. 3, pp.520-526 (1993).

    Lin, S. H. and Wang C. S., “Recovery of Iisopropyl Alcohol from Waste Solvent of A Semiconductor Plant,” J. of Hazardous Materials, Vol. B106, pp. 161-168 (2004).

    Lipnizki, F., Field, R. W. and Ten, P.K., “Pervaporation-Based Hybrid Process: A Review of Process Design,” J. Membr. Sci., Vol. 153, pp. 183–210 (1999).

    Ma, H. W., Hsu, Y. C., Yang, H. C. and Kuo M. C., “The Effectiveness of a New Gas-Induced Reactor in Treating Phenolic Wastewater by Ozonation and Hydrogen Peroxide,” J. of Environ. Sci. and Health Part A, Vol. A38, pp. 619-630 (2003).

    Munjal, S., Duduković, M. P. and Ramachandran, P., “Mass-Transfer in Rotating Packed Beds-I. Development of Gas-Liquid and Liquid-Solid Mass-Transfer Correlation,” Chem. Eng. Sci., Vol. 44, pp. 2245-2256 (1989a).

    Munjal, S., Duduković, M. P. and Ramachandran, P., “Mass-Transfer in Rotating Packed Beds-II. Experimental Results and Comparison with Theory and Gravity Flow,” Chem. Eng. Sci., Vol. 44, pp. 2257-2268 (1989b).

    Munter, R., Preis,S., Kamenev,S. and Siirde, E., “Methodology of Ozone Introduction into Water and Wastewater Treatment,” Ozone Sci. Eng., Vol. 15, pp. 149–165 (1993).

    Paillard, H., Brunet, R. and Dore, M., “Optimal Conditions for Applying an Ozone-Hydrogen Peroxide Oxidizing System,” Water Res., Vol. 22, pp. 91-103 (1988).

    Ramshaw, C. and Mallinson, R. H., “Mass Transfer Process,” U. S. Patent 4283255 (1981).

    Ramshaw, C., “HIGEE Distillation-An Example of Process Intensification,” Chem. Engr., February (389), pp.13-14 (1983).

    Rao, D. P., Chandra, A. and Goswami, P. S., “Characteristics of Flow in a Rotating Packed Bed (HIGEE) with Split Packing,” Ind. Eng. Chem. Res., Vol. 44, pp. 4051-4060 (2005).

    Rice, R. G.., “Ozone for the Treatment of Hazardous Materials,” Water-1980, AIChE Symp. Ser., Vol. 77, pp. 79-107 (1980).

    Roustan, M., Mallevialle, J., Roques, H. and Jones, J. P., “Mass Transfer of Ozone to Water a Fundamental Study,” Ozone Sci. Eng., Vol. 2, pp. 337-344 (1981).

    Shanley, A., Ondrey, G. and Moore, S., “Pervaporation Finds Its Niche,” Chem. Eng., Vol. 10, pp. 34–37 (1994).

    Sotelo, J. L., Beltran, F. J., Benitez, F. J. and Beltran-Heredia, J., “Henry’s Law Constant for the Ozone-Water System,” Water Res., Vol. 23, pp. 1239-1246 (1989).

    Staehelin, J. and Hoigne, J., “Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide,” Environ. Sci. Technol., Vol. 16, pp. 676-681 (1982).

    Suh, J. H. and Mohseni, M., “A Study on the Relationship Between Biodegradability Enhancement and Oxidation of 1,4-Dioxane Using Ozone and Hydrogen Peroxide,” Water Res., Vol. 38, pp. 2596-2604 (2004).

    Trapido, M., Hivronen, A., Veressinina, Y., Hentunen,J. and Munter, R., “Ozonation, Ozone/UV and UV/H2O2 Degradation of Chlorophenols,” Ozone Sci. Eng., Vol. 19, pp. 75–96 (1997).

    Treybal, R. E., “Mass Transfer Operations,” third ed., McGraw-Hill, New York (1987).

    Tung, H. H. and Mah, R. S. H., “Modeling Liquid Mass Transfer in Higee Separation Process,” Chem. Eng. Commun., Vol.39, pp.147-153 (1985).

    Vivian, J. E., Brian, P. L. T. and Krukonis, V. J., “The Influence of Gravitational Force on Gas Absorption in a Packed Column,” AIChE J., Vol. 11, pp. 1088-1091 (1965).

    Weir, B. A., Sundstrom, D. W. and Klei, H. E., “Destruction of Benzene by Ultraviolet Light-Catalyzed Oxidation with Hydrogen Peroxide,” Hazardous Waste and Hazardous Materials., Vol. 4, pp. 165 (1987).

    Xianliou, M., Dazhang, H., Rongji, H. and Taiping, X., “Gas Holdup and Volumetric Liquid Phase Mass Transfer Coefficients in a Downjet Loop Reactor,” Chem. Eng. J., Vol. 49, pp. 49 (1992).

    林木興,「在旋轉填充床反應器中以臭氧處理2-氯酚水溶液反應及質傳行為之研究」,90學年碩士論文,國立台灣科技大學化學工程研究所 (2002)。

    林佳璋、劉文宗,「超重力技術的原理與進展」,化工資訊,二月,頁數16-21 (2003)。
    紀岩勳,「在旋轉填充床反應器中以臭氧相關程序處理含甲酚水溶液之研究」,91學年碩士論文,國立台灣科技大學化學工程研究所 (2003)。

    張介林,「以臭氧及紫外線/臭氧程序處理含有機磷農藥水溶液反應行為之研究」,83學年碩士論文,國立台灣工業技術學院化學工程技術研究所 (1995)。

    陳修斌,「氣泡形成對臭氧質傳及其對含2-氯酚水溶液分解反應行為之影響」,88學年碩士論文,國立台灣科技大學化學工程研究所 (2000)。

    顧洋,「高級氧化程序在廢水處理上的應用,工業污染防治技術手冊」,經濟部工業局 (1993)。

    QR CODE