簡易檢索 / 詳目顯示

研究生: 吳鉉智
Hsuan-Chih Wu
論文名稱: Fe2O3/Al2O3/TiO2複合載氧體應用於化學迴路程序移動床反應器之評估研究
Performance Evaluation of Fe2O3/Al2O3/TiO2 Oxygen Carrier for Chemical Looping Process by Moving Bed Reactor
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
曾堯宣
Yao-Hsuan Tseng
郭俞麟
Yu-Lin Kuo
李豪業
Hao-Yeh Lee
徐恆文
Hen-Wen Hsu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 203
中文關鍵詞: 化學迴路程序載氧體移動床反應器甲烷異丙醇溶液木炭
外文關鍵詞: Chemical looping process, Oxygen carrier, Moving bed reactor, Methane, Isopropanol solution, Charcoal
相關次數: 點閱:347下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的為製備氧化鐵/氧化鋁/氧化鈦複合載氧體與氧化鐵/氧化鋁複合載氧體,並於固定床反應器與不同的氣體燃料反應,以探討各項實驗操作變因(如:燃料氣體濃度、操作溫度)對載氧體還原轉化率之影響。並以縮核反應動力模式(shrinking core model)應用於化學迴路程序中分析鐵係載氧體與氣體燃料於高溫環境下之反應行為,並利用動力參數作為指標進行鐵係載氧體的反應特性分析。實驗結果顯示:在不同氣體燃料(甲烷、氫氣或一氧化碳)的環境下進行鐵係載氧體還原反應時,氧化鐵/氧化鋁/氧化鈦複合載氧體的質傳系數(kg)皆高於氧化鐵/氧化鋁複合載氧體。因此,相較於氧化鐵/氧化鋁複合載氧體,氣體燃料與氧化鐵/氧化鋁/氧化鈦複合載氧體的反應速率較快。
    本研究亦以甲烷、異丙醇溶液及木炭為燃料,並分別與氧化鐵/氧化鋁/氧化鈦複合載氧體與氧化鐵/氧化鋁複合載氧體在移動床反應器中於900°C下進行燃燒。實驗結果顯示:氧化鐵/氧化鋁/氧化鈦複合載氧體與氧化鐵/氧化鋁複合載氧體於適當的操作條件下可提供足夠的氧於燃料反應器內進行甲烷與異丙醇燃燒,並達到高燃料轉化率。研究結果亦發現,氧化鐵/氧化鋁/氧化鈦複合載氧體還原後無Fe3C和Fe的形成。由於Fe3C和Fe是甲烷裂解反應的觸媒,因此使用氧化鐵/氧化鋁/氧化鈦複合載氧體可以避免在甲烷燃燒過程中產生的碳沉積。
    固體燃料則以木炭進行測試,並以水蒸氣為氣化劑,於移動床反應器內管將木炭進行氣化,隨後在於移動床反應器外管與載氧體進行燃燒反應。實驗結果顯示:使用氧化鐵/氧化鋁/氧化鈦複合載氧體和氧化鐵/氧化鋁複合載氧體的最大碳轉化率分別為47%和62%,表示燃料反應器內無充足的氧提供給木炭進行燃燒。研究結果亦發現,蒸氣作為氣化劑可提升木炭中固定碳的氣化速率,然而,在通入過量的蒸氣時,並無充足的滯留時間始可燃氣體與載氧體進行燃燒反應,因而抑制木碳氣化。本研究從氧化鐵/氧化鋁/氧化鈦複合載氧體和氧化鐵/氧化鋁複合載氧體的特性、固定床反應器與移動床反應器的操作以及各種燃料的燃燒測試,完整評估化學迴路程序的各項重要參數。因此本研究所製備之氧化鐵/氧化鋁/氧化鈦複合載氧體經各項評估之後,可符合化學迴路程序應用之需求。


    In this study, alumina/titania co-supported Fe2O3 oxygen carrier and alumina supported Fe2O3 oxygen carrier were fabricated to investigate its reactivity with various gaseous fuels in a fixed bed reactor. Effect of inlet fuel gas concentration and operating temperature on the performance of iron-based oxygen carrier reduction were discussed in this study. A kinetic model was established to express iron-based oxygen carrier reduction by CLC with gaseous fuels at high temperature based on shrinking core mechanism. Kinetic parameters were considered to be a decent indicator of oxygen carrier’s reactivity for the CLC of gaseous fuels. Experimental results indicated that higher mass transfer coefficients (kg) was obtained for experiments conducted with Fe2O3/Al2O3/TiO2 oxygen carriers as compared to those conducted with Fe2O3/Al2O3 oxygen carriers during the course of iron-based oxygen carrier reduction in the present of various gaseous fuels (CH4, H2 or CO), illustrating that the reaction rate of gaseous fuels for Fe2O3/Al2O3/TiO2 reduction was faster than that for Fe2O3/Al2O3 reduction.
    In this study, methane, isopropanol (IPA) and charcoal were employed as fuels for chemical looping combustion with Fe2O3/Al2O3/TiO2 and Fe2O3/Al2O3 oxygen carriers in a moving bed reactor (MBR) operated at 900°C. Experimental results indicated that Fe2O3/Al2O3/TiO2 and Fe2O3/Al2O3 oxygen carriers could provide enough oxygen present in the fuel reactor for CLC of methane and isopropanol to achieve high fuel conversion under appropriate operating conditions. In addition, the Fe3C and Fe were not formed after the reduction of Fe2O3/Al2O3/TiO2. carbon deposition took place during methane decomposition that was prevented by using Fe2O3/Al2O3/TiO2 as oxygen carrier, because of the Fe3C and Fe are catalysts for methane decomposition.
    For solid fuel combustion, steam was utilized as gasification agent for consequent CLC of charcoal was operated in a moving bed reactor with iron-based oxygen carriers. Experimental results indicated that the maximum carbon conversion for charcoal combustion were determined to be roughly 47% and 62% for experiments conducted with Fe2O3/Al2O3/TiO2 and Fe2O3/Al2O3, illustrating that not enough oxygen present in the fuel reactor for complete combustion of charcoal. Steam as gasification agent might enhance the gasification rate of the fixed carbons contained in the charcoal. However, the injections of excessive steam inhibited charcoal gasification, because of the insufficient residence time was provided for the combustion of fuel gases with oxygen carriers. This study evaluated essential parameters on property of Fe2O3/Al2O3/TiO2 and Fe2O3/Al2O3 oxygen carrier, operation of fixed bed reactor and moving bed reactor, and fuel combustion. Hence, the present study provides further insight for potential applications of the chemical looping process for efficient energy generation as well as inherent CO2 separation.

    Chinese Abstract I English Abstract III Acknowledgement V Table of Contents VII List of Figures XI List of Tables XVI List of Symbols XVII Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective and Scope 3 Chapter 2 Review of Literature 5 2.1 Chemical Looping Process 6 2.1.1 Chemical Looping Combustion 6 2.1.2 Chemical Looping Gasification 7 2.1.3 Chemical Looping with Oxygen Uncoupling 7 2.1.4 Chemical Looping with Air Separation 9 2.1.5 Chemical Looping Hydrogen Generation 10 2.1.6 Chemical Looping Reforming 11 2.2 Oxygen Carrier 13 2.2.1 Thermodynamic Properties of the Oxygen Carriers 13 2.2.2 Development of the Fe-based Oxygen Carriers 18 2.3 Various Fuel Combustion by Chemical Looping Process 23 2.3.1 Gaseous Fuel Combustion 23 2.3.2 Liquid Fuel Combustion 27 2.3.3 Solid Fuel Combustion 30 Chapter 3 Materials and Experiments 37 3.1 Materials 37 3.2 Apparatus and Instruments 38 3.3 Experimental Procedures 39 3.3.1 Experimental Framework 39 3.3.2 Preparation and Characterization of Iron-based Oxygen Carriers 41 3.3.3 Characterization of Charcoal 47 3.3.4 Establishment and Operation of the Fixed Bed System 49 3.3.5 Establishment and Operation of the Moving Bed System 53 3.3.6 Establishment and Operation of the Cold Flow Model of a Moving Bed System 59 Chapter 4 Results and Discussion 85 4.1 Fe2O3/Al2O3/TiO2 as Oxygen Carrier for CLC of Methane in a MBR 86 4.1.1 Methane Combustion in a Fixed Bed Reactor 86 4.1.2 Methane Combustion with Fe2O3/Al2O3 Oxygen Carriers 93 4.1.3 Methane Combustion with Fe2O3/Al2O3/TiO2 Oxygen Carriers 98 4.1.4 Performance Evaluation and Heat Analysis for Methane Combustion 103 4.2 Fe2O3/Al2O3/TiO2 as Oxygen Carrier for CLC of IPA in a MBR 111 4.2.1 IPA Decomposition in an Empty Bed Reactor 111 4.2.2 Hydrogen Combustion in a Fixed Bed Reactor 114 4.2.3 IPA Combustion with Fe2O3/Al2O3 Oxygen Carriers 121 4.2.4 IPA Combustion with Fe2O3/Al2O3/TiO2 Oxygen Carriers 126 4.2.5 Performance Evaluation and Heat Analysis for IPA Combustion 131 4.3 Fe2O3/Al2O3/TiO2 as Oxygen Carrier for CLC of Charcoal in a MBR 137 4.3.1 Charcoal Gasification in an Empty Bed Reactor 137 4.3.2 Carbon Monoxide Combustion in a Fixed Bed Reactor 141 4.3.3 Charcoal Combustion with Fe2O3/Al2O3 Oxygen Carriers 148 4.3.4 Charcoal Combustion with Fe2O3/Al2O3/TiO2 Oxygen Carriers 153 4.3.5 Performance Evaluation and Heat Analysis for Charcoal Combustion 158 Chapter 5 Conclusions and Recommendations 165 References 173 Appendix 189 Curriculum Vitae 191  

    Abad, A., Adánez, J., Cuadrat, A., García-Labiano, F., Gayán, P., and de Diego, L. F., “Kinetics of Redox Reactions of Ilmenite for Chemical-looping Combustion,” Chem. Eng. Sci., Vol.66, No.4, pp.689-702 (2011).
    Abad, A., Adánez, J., García-Labiano, F., de Diego, L. F., Gayán, P., and Celaya, J., “Mapping of the Range of Operational Conditions for Cu-, Fe-, and Ni-based Oxygen Carriers in Chemical-looping Combustion,” Chem. Eng. Sci., Vol.62, pp.533-549 (2007).
    Abad, A., de las Obras-Loscertales, M., García-Labiano, F., de Diego, L. F., Gayán, P., and Adánez, J., “In Situ Gasification Chemical-looping Combustion of Coal using Limestone as Oxygen Carrier Precursor and Sulphur Sorbent,” Chem. Eng. J., Vol.310, pp.226-239 (2017).
    Abad, A., García-Labiano, F., Gayán, P., de Diego, L. F., and Adánez, J., “Redox Kinetics of CaMg0.1Ti0.125Mn0.775O2.9- δ for Chemical Looping Combustion (CLC) and Chemical Looping with Oxygen Uncoupling (CLOU),” Chem. Eng. J., Vol.269, pp.67-81 (2015).
    Abad, A., Mattisson, T., Lyngfelt, A., and Johansson, M., “The Use of Iron Oxide as Oxygen Carrier in a Chemical-looping Reactor,” Fuel, Vol.86, pp.1021-1035 (2007).
    Adánez, J, Abad, A, Garcia-Labiano, F, Gayan, P, and de Diego, L. F, “Progress in Chemical-looping Combustion and Reforming Technologies,” Prog. Energy Combust. Sci., Vol.38, pp.215-282 (2012).
    Adánez, J., de Diego, L. F., García-Labiano, F., Gayán, P., Abad, A., and Palacios, J. M., “Selection of Oxygen Carriers for Chemical-looping Combustion,” Energy Fuels, Vol.18, No.2, pp.371-377 (2004).
    Adánez-Rubio, I., Gayán, P., Abad, A., García-Labiano, F., de Diego, L. F., and Adánez, J., “Kinetic Analysis of a Cu-based Oxygen Carrier: Relevance of Temperature and Oxygen Partial Pressure on Reduction and Oxidation Reactions Rates in Chemical Looping with Oxygen Uncoupling (CLOU),” Chem. Eng. J., Vol.256, pp.69-84 (2014).
    Alghamdi, Y., Peng, Z., Shah, K., Moghtaderi, B., and Doroodchi, E., “Predicting the Solid Circulation Rate in Chemical Looping Combustion Systems Using Pressure Drop Measurements,” Powder Technol., Vol.286, pp.572-581 (2015).
    Bayham, S. C., Kim, H. R., Wang, D., Tong, A., Zeng, L., McGiveron, O., Kathe, M. V., Chung, E., Wang, W., Wang, A., Majumder, A., and Fan, L. S., “Iron-based Coal Direct Chemical Looping Combustion Process: 200-h Continuous Operation of a 25-kWth Subpilot Unit,” Energy Fuels, Vol.27, No.3, pp.1347-1356 (2013).
    Berguerand, N., and Lyngfelt, A., “Design and Operation of a 10 kWth Chemical-looping Combustor for Solid Fuels - Testing with South African Coal,” Fuel, Vol.87, No.12, pp.2713-2726 (2008).
    Bhattacharya, S., Kabir, K.B., and Hein, K., “Dimethyl Ether Synthesis from Victorian Brown Coal through Gasification-Current Status, and Research and Development Needs,” Prog. Energ. Combust., Vol.39, pp.577-605 (2013).
    Bidwe, A. R., Hawthorne, C., Dieter, H., Dominguez, M. A. M., Zieba, M., and Scheffknecht, G., “Cold Model Hydrodynamic Studies of a 200kWth Dual Fluidized Bed Pilot Plant of Calcium Looping Process for CO2 Capture,” Powder Technol., Vol.253, pp.116-128 (2014).
    Bidwe, A. R., Mayer, F., Hawthorne, C., Charitos, A., Schuster, A., Scheffknecht, G., “Use of Ilmenite as an Oxygen Carrier in Chemical Looping Combustion-batch and Continuous Dual Fluidized Bed Investigation,” Energy Procedia, Vol.4, pp.433-440 (2011).
    Brachi, P., Miccio, F., Ruoppolo, G., and Miccio, M., “Pressurized Steam Torrefaction of Biomass: Focus on Solid, Liquid, and Gas Phase Distributions,” Ind. Eng. Chem. Res., Vol.56, pp.12163-12173 (2017).
    Cabello, A., Abad, A., García-Labiano, F., Gayán, P., de Diego, L. F., and Adánez, J., “Kinetic Determination of a Highly Reactive Impregnated Fe2O3/Al2O3 Oxygen Carrier for Use in Gas-fueled Chemical Looping Combustion,” Chem. Eng. J., Vol.258, pp.265-280 (2014).
    Cao, Y., Li, B., Zhao, H. Y., Lin, C. W., Sit, S. P., and Pan, W. P., “Investigation of Asphalt (Bitumen)-fuelled Chemical Looping Combustion using Durable Copper-based Oxygen Carrier,” Energy Procedia, Vol.4, pp.457-464 (2011).
    Cao, Y., Sit, S. P., and Pan, W. P., “Preparation and Characterization of Lanthanum-promoted Copper-based Oxygen Carriers for Chemical Looping Combustion Process,” Aerosol Air Qual. Res., Vol.14, pp.572-584 (2014).
    Channiwala, S. A., and Parikh, P. P., “A Correlation for Estimating HHV from Solid, Liquid and Gaseous Fuels,” Fuel, Vol.81, pp.1051-1063 (2002).
    Charitos, A., Hawthorne, C., Bidwe, A. R., Korovesis, L., Schuster, A., and Scheffknecht, G., “Hydrodynamic Analysis of a 10kWth Calcium Looping Dual Fluidized Bed for Post-combustion CO2 Capture,” Powder Technol., Vol.200, pp.117-127 (2010).
    Chiu, P. C., and Ku, Y., “Chemical Looping Process - a Novel Technology for Inherent CO2 Capture,” Aerosol Air Qual. Res., Vol.12, No.6, pp.1421-1432 (2012).
    Chiu, P. C., Ku, Y., Wu, H. C., Kuo, Y. L., and Tseng, Y. H., “Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion,” Energy Fuels, Vol.28, No.1, pp.657-665 (2014a).
    Chiu, P. C., Ku, Y., Wu, Y. L., Wu, H. C., Kuo, Y. L., and Tseng, Y. H., “Characterization and Evaluation of Prepared Fe2O3/Al2O3 Oxygen Carriers for Chemical Looping Process,” Aerosol Air Qual. Res., Vol.14, No.3, pp.981-990 (2014b).
    Cho, P., Mattisson, T., and Lyngfelt, A., “Carbon Formation on Nickel and Iron Oxide-containing Oxygen Carriers for Chemical-looping Combustion,” Ind. Eng. Chem. Res., Vol.44, No.4, pp.668-676 (2005).
    Corbella, B. M., and Palacios, J. M., “Titania-supported Iron Oxide as Oxygen Carrier for Chemical-looping Combustion of Methane,” Fuel, Vol.86, pp.113-122 (2007).
    Cuadrat, A., Abad, A., García-Labiano, F., Gayán, P., de Diego, L. F., and Adánez, J., “The Use of Ilmenite as Oxygen-carrier in a 500Wth Chemical-Looping Coal Combustion Unit,” Int. J. Greenhouse Gas Control, Vol.5, No.6, pp.1630-1642 (2011).
    de Diego, L. F., Abad, A., Cabello, A., Gayán, P., García-Labiano, F., and Adánez, J., “Reduction and Oxidation Kinetics of a CaMn0.9Mg0.1O3-δ Oxygen Carrier for Chemical-looping Combustion,” Ind. Eng. Chem. Res., Vol.53, No.1, pp.87-103 (2014).
    Dupont, V., Ross, A., Hanley, I., and Twigg, M. V., “Unmixed Steam Reforming of Methane and Sunflower Oil: a Single-reactor Process for H2-rich Gas,” Int. J. Hydrogen Energy, Vol.32, No.1, pp.67-79 (2007).
    Emmenegger, C., Bonard, J. M., Mauron, P., Sudan, P., Lepora, A., Grobety, B., Züttel, A., and Schlapbach, L., “Synthesis of Carbon Nanotubes over Fe Catalyst on Aluminium and Suggested Growth Mechanism,” Carbon, Vol.41, No.3, pp.539-547 (2003).
    Ennenbach, F., and Kluger, K. (2012), “Challenges for 2nd Generation Technologies Like Chemical and Carbonate Looping from an Industry Point of View,” 2nd International Conference on Chemical Looping, Darmstadt, Germany.
    Fan, L. S., “Chemical Looping Systems for Fossil Energy Conversions,” New York: John Wiley & Sons, Inc., USA (2010).
    Fan, L. S., and Li, F., “Chemical Looping Technology and Its Fossil Energy Conversion Applications,” Ind. Eng. Chem. Res., Vol.49, pp.10200-10211 (2010).
    Fan, L. S., Li, F., and Ramkumar, S., “Utilization of Chemical Looping Strategy in Coal Gasification Processes,” Particuology, Vol.6, pp.131-142 (2008).
    Fan, L. S., Zeng, L., and Luo, S., “Chemical-looping Technology Platform,” AIChE J., Vol.61, No.1, pp.2-22 (2015).
    Fennell, P., and Anthony, B., “Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture,” Cambridge, UK: Elsevier (2015).
    Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., and Srivastava, R. D., “Advances in CO2 Capture Technology - The U.S. Department of Energy’s Carbon Sequestration Program,” Int. J. Greenhouse Gas Control, Vol.2, pp.9-20 (2008).
    Gayán, P., Adánez-Rubio, I., Abad, A., de Diego, L. F., García-Labiano, F., and Adánez, J., “Development of Cu-based Oxygen Carriers for Chemical-looping with Oxygen Uncoupling (CLOU) Process,” Fuel, Vol.96, pp.226-238 (2012).
    Gayán, P., Forero, C. R., de Diego, L. F., Abad, A., García-Labiano, F., and Adánez, J., “Effect of Gas Composition in Chemical-Looping Combustion with Copper-based Oxygen Carriers: Fate of Light Hydrocarbons,” Int. J. Greenhouse Gas Control, Vol.4, No.1, pp.13-22 (2010).
    Gayán, P., Pans, M. A., Ortiz, M., Abad, A., de Diego, L. F., García-Labiano, F., and Adánez, J., “Testing of a Highly Reactive Impregnated Fe2O3/Al2O3 Oxygen Carrier for a SR-CLC System in a Continuous CLC Unit,” Fuel Process. Technol., Vol.96, pp.37-47 (2012).
    Giannakeas, N., Lea-Langton, A., Dupont, V., and Twigg, M. V., “Hydrogen from Scrap Tyre Oil via Steam Reforming and Chemical Looping in a Packed Bed Reactor,” Appl. Catal., B, Vol.126, pp.249-257 (2012).
    Gu, H., Shen, L., Xiao, J., Zhang, S., and Song, T., “Chemical Looping Combustion of Biomass/Coal with Natural Iron Ore as Oxygen Carrier in a Continuous Reactor,” Energy Fuels, Vol.25, No.1, pp.446-455 (2011).
    Gu, H., Shen, L., Zhong, Z., Niu, X., Ge, H., Zhou, Y., and Xiao, S., “Potassium-modified Iron Ore as Oxygen Carrier for Coal Chemical Looping Combustion: Continuous Test in 1 kW Reactor,” Ind. Eng. Chem. Res., Vol.53, No.33, pp.13006-13015 (2014).
    Gucho, E. M., Shahzad, K., Bramer, E. A., Akhtar, N. A., and Brem, G., “Experimental Study on Dry Torrefaction of Beech Wood and Miscanthus,” Energies, Vol.8, No.5, pp.3903-3923, (2015).
    Hart, A., and Gnanendran, N., “Cryogenic CO2 Capture in Natural Gas,” Energy Procedia, Vol.1, pp.697-706 (2009).
    Hossain, M. M., and de Lasa, H. I., “Chemical-looping Combustion (CLC) for Inherent CO2 Separations-a Review,” Chem. Eng. Sci., Vol.63, No.18, pp.4433-4451 (2008).
    Hoteit, A., Forret, A., Pelletant, W., Roesler, J., and Gauthier, T., “Chemical Looping Combustion with Different Types of Liquid Fuels,” Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, Vol.66, No.2, pp.193-199 (2011).
    Hurst, S., “Production of Hydrogen by the Steam-Iron Method,” Oil & Soap, Vol.16, No.2, pp.29-35 (1939).
    Intergovernmental Panel on Climate Change (IPCC), “2006 IPCC Guidelines for National Greenhouse Gas Inventories,” Institute for Global Environmental Strategies (IGES), Hayama, Japan on behalf of the IPCC (2006).
    International Energy Agency (IEA), “Coal Information 2009 Edition Documentation For Beyond 2020 Files,” IEA, Paris, France (2009).
    Ishida, M., Takeshita, K., Suzuki, K., and Ohba, T., “Application of Fe2O3-Al2O3 Composite Particles as Solid Looping Material of the Chemical-loop Combustor,” Energy Fuels, Vol.19, No.6, pp.2514-2518 (2005).
    Johansson, M., Mattisson, T., and Lyngfelt, A., “Investigation of Fe2O3 with MgAl2O4 for Chemical-looping Combustion,” Ind. Eng. Chem. Res., Vol.43, pp.6978-6987 (2004).
    Johnson J. E., and Homme Jr., A. C., “Selexol Solvent Process Reduces Lean, High-CO2 Natural Gas Treating Costs,” Energy Progress, Vol.4, No.4, pp.241-248 (1984).
    Karl, T. R., and Trenberth, K. E., “Modern Global Climate Change,” Science, Vol.302, Nol.5651, pp.1719-1723 (2003).
    Kathe, M. V., Empfield, A., Na, J., Blair, E., and Fan, L. S., “Hydrogen Production from Natural Gas using an Iron-based Chemical Looping Technology: Thermodynamic Simulations and Process System Analysis,” Appl. Energy, Vol.165, pp.183-201 (2016).
    Kathe, M., Fryer, C., Sandvik, P., Kong, F., Zhang, Y., Empfield, A., and Fan, L. S., “Modularization Strategy for Syngas Generation in Chemical Looping Methane Reforming Systems with CO2 as Feedstock,” AIChE J., Vol.63, No.8, pp.3343-3360 (2017).
    Kato, M., Nakagawa, K., Essaki, K., Maezawa, Y., Takeda, S., Kogo, R., and Hagiwara, Y., “Novel CO2 Absorbents using Lithium-containing Oxide,” Int. J. Appl. Ceram. Technol., Vol.2, No.6, pp.467-475 (2005).
    Kierzkowska, A. M., Bohn, C. D., Scott, S. A., Cleeton, J. P., Dennis, J. S., and Müller, C. R., “Development of Iron Oxide Carriers for Chemical Looping Combustion Using Sol-Gel,” Ind. Eng. Chem. Res., Vol.49, No.11, pp.5383-5391 (2010).
    Kim, H. R., Wang, D., Zeng, L., Bayham, S., Tong, A., Chung, E., Kathe, M. V., Luo, S., McGiveron, O., Wang, A., Sun, Z., Chen, D., and Fan, L. S., “Coal Direct Chemical Looping Combustion Process: Design and Operation of a 25-kWth Sub-pilot Unit,” Fuel, Vol.108, pp.370-384 (2013).
    Ksepko, E., Babinski, P., Evdou, A., Nalbandian, L., “Studies on the Redox Reaction Kinetics of Selected, Naturally Occurring Oxygen Carrier,” J. Therm. Anal. Calorim., Vol.124, pp.137-150 (2016).
    Ku, Y., Liu, Y. C., Chiu, P. C., Kuo, Y. L., and Tseng, Y. H., “Mechanism of Fe2TiO5 as Oxygen Carrier for Chemical Looping Process and Evaluation for Hydrogen Generation,” Ceram. Int., Vol.40, No.3, pp.4599-4605 (2014b).
    Ku, Y., Wang, L. C., and Ma, C. M., “Photocatalytic Oxidation of Isopropanol in Aqueous Solution using Perovskite-structured La2Ti2O7,” Chem. Eng. Technol., Vol.30, No.7, pp.895-900 (2007).
    Ku, Y., Wu, H. C., Chiu, P. C., Tseng, Y. H., and Kuo, Y. L., “Methane Combustion by Moving Bed Fuel Reactor with Fe2O3/Al2O3 Oxygen Carriers,” Appl. Energy, Vol.113, pp.1909-1915 (2014a).
    Kuo, Y. L., Huang, W. C., Hsu, W. M., Tseng, Y. H., and Ku, Y., “Use of Spinel Nickel Aluminum Ferrite as Self-Supported Oxygen Carrier for Chemical Looping Hydrogen Generation Process,” Aerosol Air Qual. Res., Vol.15, pp.2700-2708 (2015).
    Lea-Langton, A., Giannakeas, N., Rickett, G., Dupont, V., and Twigg, M. V., “Waste Lubricating Oil as a Source of Hydrogen Fuel using Chemical Looping Steam Reforming,” SAE Int. J. Fuels Lubr., Vol.3, No.2, pp.810-818 (2010).
    Lea-Langton, A., Zin, R. M., Dupont, V., and Twigg, M. V., “Biomass Pyrolysis Oils for Hydrogen Production using Chemical Looping Reforming,” Int. J. Hydrogen Energy, Vol.37, No.2, pp.2037-2043 (2012).
    Leion, H., Mattisson, T., and Lyngfelt, A., “Using Chemical-looping with Oxygen Uncoupling (CLOU) for Combustion of Six Different Solid Fuels,” Energy Procedia, Vol.1, pp.447-453 (2009).
    Lewis, W. K., and Gilliland, E. R., “Production of Pure Carbon Dioxide,” U.S. Patent 2,665,972 (1954).
    Li, F., and Fan, L. S., “Clean Coal Conversion Processes-Progress and Challenges,” Energy Environ. Sci., Vol.1, pp.248-267 (2008).
    Li, F., Luo, S., Sun, Z., Bao, X., and Fan, L. S., “Role of Metal Oxide Support in Redox Reactions of Iron Oxide for Chemical Looping Applications: Experiments and Density Functional Theory Calculations,” Energy Environ. Sci., Vol.4, pp.3661-3667 (2011).
    Li, F., Zeng, L., Velazquez-Vargas, L. G., Yoscovits, Z., and Fan, L. S., “Syngas Chemical Looping Gasification Process: Bench-scale Studies and Reactor Simulations,” AIChE J., Vol.56, No.8, pp.2186-2199 (2010).
    Li, S. X., Chen, C. Z., Li, M. F., and Xiao, X., “Torrefaction of Corncob to Produce Charcoal under Nitrogen and Carbon Dioxide Atmospheres,” Bioresour. Technol., Vol.249, pp.348-353 (2018).
    Lin, H. Y., Chen, Y. W., and Li, C., “The Mechanism of Reduction of Iron Oxide by Hydrogen,” Thermochim. Acta, Vol.400, pp.61-67 (2003).
    Linderholm, C., and Schmitz, M., “Chemical-looping Combustion of Solid Fuels in a 100 kW Dual Circulating Fluidized Bed System using Iron Ore as Oxygen Carrier,” J. Environ. Chem. Eng., Vol.4, No.1, pp.1029-1039 (2016).
    Lo, M. C., “Composite Fe-Ti Based Oxygen Carrier for Chemical Looping Combustion and Hydrogen Generation,” Master Thesis in Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan (2011).
    Luo, M., Wang, S., Wang, L., and Lv, M., “Reduction Kinetics of Iron-based Oxygen Carriers using Methane for Chemical-looping Combustion,” J. Power Sources, Vol.270, pp.434-440 (2014a).
    Luo, S., Bayham, S., Zeng, L., McGiveron, O., Chung, E., Majumder, A., and Fan, L. S., “Conversion of Metallurgical Coke and Coal Using a Coal Direct Chemical Looping (CDCL) Moving Bed Reactor,” Appl. Energy, Vol.118, pp.300-308 (2014b).
    Luo, S., Zeng, L., and Fan, L. S., “Chemical Looping Technology: Oxygen Carrier Characteristics,” Annu. Rev. Chem. Biomol. Eng., Vol.6, pp.53-75 (2015).
    MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C. S., Williams, C. K., Shah, N., and Fennell, P., “An Overview of CO2 Capture Technologies,” Energy Environ. Sci., Vol.3, pp.1645-1669 (2010).
    Markström, P., and Lyngfelt, A., “Designing and Operating a Cold-flow Model of a 100kW Chemical-looping Combustor,” Powder Technol., Vol.222, pp.182-192 (2012).
    Markström, P., Linderholm, C., and Lyngfelt, A., “Chemical-looping Combustion of Solid Fuels - Design and Operation of a 100kW Unit with Bituminous Coal,” Int. J. Greenhouse Gas Control, Vol.15, pp.150-162 (2013).
    Maroto-Valer, M. M., Tang, Z., and Zhang, Y., “CO2 Capture by Activated and Impregnated Anthracites,” Fuel Process. Technol., Vol.86, No.14-15, pp.1487-1502 (2005).
    Mattisson, T., Lyngfelt, A., and Cho, P., “The Use of Iron Oxide as an Oxygen Carrier in Chemical-looping Combustion of Methane with Inherent Separation of CO2.” Fuel, Vol.80, pp.1953-1962 (2011).
    Mattisson, T., Lyngfelt, A., and Leion, H., “Chemical-looping with Oxygen Uncoupling for Combustion of Solid Fuels,” Int. J. Greenhouse Gas Control, Vol.3, No.1, pp.11-19 (2009).
    Mendiara, T., Abad, A., de Diego, L. F., García-Labiano, F., Gayán, P., and Adánez, J., “Biomass Combustion in a CLC System Using an Iron Ore as an Oxygen Carrier,” Int. J. Greenhouse Gas Control, Vol.19, pp.322-330 (2013).
    Mendiara, T., de Diego, L. F., García-Labiano, F., Gayán, P., Abad, A., and Adánez, J., “On the Use of a Highly Reactive Iron Ore in Chemical Looping Combustion of Different Coals,” Fuel, Vol.126, pp.239-249 (2014).
    Metz, B., Davidson, O., de Coninck, H., Loos, M., and Meyer, L., “IPCC Special Report on Carbon Dioxide Capture and Storage,” Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK (2005).
    Moghtaderi, B., “Application of Chemical Looping Concept for Air Separation at High Temperatures,” Energy Fuels, Vol.60, No.1, pp.190-198 (2010a).
    Moghtaderi, B., and Song, H., “Reduction Properties of Physically Mixed Metallic Oxide Oxygen Carriers in Chemical Looping Combustion,” Energy Fuels, Vol.24, No.10, pp.5359-5368 (2010b).
    Moldenhauer, P., Rydén, M., Mattisson, T., and Lyngfelt, A., “Chemical-looping Combustion and Chemical-looping Reforming of Kerosene in a Circulating Fluidized-bed 300W Laboratory Reactor,” Int. J. Greenhouse Gas Control, Vol.9, pp.1-9 (2012a).
    Moldenhauer, P., Rydén, M., Mattisson, T., and Lyngfelt, A., “Chemical-looping Combustion and Chemical-looping with Oxygen Uncoupling of Kerosene with Mn- and Cu-based Oxygen Carriers in a Circulating Fluidized-bed 300 W Laboratory Reactor,” Fuel Process. Technol., Vol.104, pp.378-389 (2012b).
    Moldenhauer, P., Rydén, M., Mattisson, T., Younes, M., and Lyngfelt, A., “The Use of Ilmenite as Oxygen Carrier with Kerosene in a 300W CLC Laboratory Reactor with Continuous Circulation,” Appl. Energy, Vol.113, pp.1846-1854 (2014).
    Monazam, E. R., Breault, R. W. and Siriwardane, R., “Kinetics of Magnetite (Fe3O4) Oxidation to Hematite (Fe2O3) in Air for Chemical Looping Combustion,” Ind. Eng. Chem. Res., Vol.53, No.34, pp.13320-13328 (2014).
    Monazam, E. R., Breault, R. W., Siriwardane, R., Richards, G., and Carpenter, S., “Kinetics of the Reduction of Hematite (Fe2O3) by Methane (CH4) During Chemical Looping Combustion: a Global Mechanism,” Energy Fuels, Vol.232, pp.478-487 (2013).
    Notz, R., Tönnies, I., McCann, N., Scheffknecht, G., and Hasse, H., “CO2 Capture for Fossil Fuel-fired Power Plants,” Chem. Eng. Technol., Vol.34, No.2, pp.163-172 (2011).
    Olajire, A. A., “CO2 Capture and Separation Technologies for End-of-pipe Applications – A Review,” Energy, Vol.35, pp.2610-2628 (2010).
    Organization for Economic Co-operation and Development/International Energy Agency (OECD/IEA), “Energy Statistics Manual,” International Energy Agency, Paris, France (2005).
    Ortiz, M., Gayán, P., de Diego, L. F., García-Labiano, F., Abad, A., Pans, M. A., and Adánez, J., “Hydrogen Production with CO2 Capture by Coupling Steam Reforming of Methane and Chemical-looping Combustion: Use of an Iron-based Waste Product as Oxygen Carrier Burning a PSA Tail Gas,” J. Power Sources, Vol.196, pp.4370-4381 (2011).
    Penthor, S., Stollhof, M., Pröll, T., and Hofbauer, H., “Detailed Fluid Dynamic Investigations of a Novel Fuel Reactor Concept for Chemical Looping Combustion of Solid Fuels,” Powder Technol., Vol.287, pp.61-69 (2016).
    Pimenidou, P., Rickett, G., Dupont, V., and Twigg, M. V., “Chemical Looping Reforming of Waste Cooking Oil in Packed Bed Reactor,” Bioresour. Technol., Vol.101, No.16, pp.6389-6397 (2010a).
    Pimenidou, P., Rickett, G., Dupont, V., and Twigg, M. V., “High Purity H2 by Sorption-enhanced Chemical Looping Reforming of Waste Cooking Oil in a Packed Bed Reactor,” Bioresour. Technol., Vol.101, No.23, pp.9279-9286 (2010b).
    Pour, N. M., Azimi, G., Leion, H., Rydén, M., and Lyngfelt, A., “Production and Examination of Oxygen-carrier Materials Based on Manganese Ores and Ca(OH)2 in Chemical Looping with Oxygen Uncoupling,” AlChE J., Vol.60, No.2, pp.645-656 (2014).
    Pröll, T., Mayer, K., Bolhàr-Nordenkampf, J., Kolbitsch, P., Mattisson, T., Lyngfelt. A., and Hofbauer, H., “Natural Minerals as Oxygen Carriers for Chemical Looping Combustion in a Dual Circulating Fluidized Bed System,” Energy Procedia, Vol.1, pp.27-34 (2009).
    Pröll, T., Rupanovits, K., Kolbitsch, P., Bolhàr-Nordenkampf, J., and Hofbauer, H., “Cold Flow Model Study on a Dual Circulating Fluidized Bed System for Chemical Looping Processes,” Chem. Eng. Technol., Vol.32, No.3, pp.418-424 (2009).
    Qin, L., Cheng, Z., Fan, J. A., Kopechek, D., Xu, D., Deshpande, N., and Fan, L. S., “Nanostructure Formation Mechanism and Ion Diffusion in Iron-titanium Composite Materials with Chemical Looping Redox Reactions,” J. Mater. Chem. A, Vol.3, pp.11302-11312 (2015).
    Richter, H. J., and Knoche, K. F., “Reversibility of Combustion Process,” Efficiency and Costing, edited by R.A. Gaggioli, ACS Symposium Series 235, Washington, D.C., pp. 71-86 (1983).
    Rochelle, G. T., “Amine Scrubbing for CO2 Capture,” Science, Vol.325, No.5948, pp.1652-1654 (2009).
    Rydén, M., Lyngfelt, A., and Mattisson, T., “Synthesis Gas Generation by Chemical-Looping Reforming in a Continuously Operating Laboratory Reactor,” Fuel, Vol.85, pp.1631-1641 (2006).
    Serrano, A., García-Labiano, F., de Diego, L. F., Gayán, P., Abad, A., and Adánez, J., “Chemical Looping Combustion of Liquid Fossil Fuels in a 1 kWth Unit using a Fe-based Oxygen Carrier,” Fuel Process. Technol., Vol.160, pp.47-54 (2017).
    Shah, K., Moghtaderi, B., and Wall, T., “Selection of Suitable Oxygen Carriers for Chemical Looping Air Separation: A Thermodynamic Approach,” Energy Fuels, Vol.26, No.4, pp.2038-2045 (2012).
    Shen, L., Wu, J., Xiao, J., Song, Q., and Xiao, R., “Chemical-looping Combustion of Biomass in a 10 kWth Reactor with Iron Oxide as an Oxygen Carrier,” Energy Fuels, Vol.23, No.5, pp.2498-2505 (2009).
    Song, T., Shen, L., Zhang, H., Gu, H., Zhang, S., and Xiao, J. (2012), “Chemical Looping Combustion of Two Bituminous Coal/Char with Natural Hematite as Oxygen Carrier in 1 kWth Reactor,” 2nd International Conference on Chemical Looping, Darmstadt, Germany.
    Sozinho, T., Pelletant, W., Stainton, H., Guillou, F., and Gauthier, T. (2012), “Main Results of the 10 kWth Pilot Plant Operation,” 2nd International Conference on Chemical Looping, Darmstadt, Germany.
    Sridhar, D., Tong, A., Kim, H., Zeng, L., Li, F., and Fan, L. S., “Syngas Chemical Looping Process: Design and Construction of a 25 kWth Subpilot Unit,” Energy Fuels, Vol.26, pp.2292-2302 (2012).
    Strandberg, M., Olofsson, I., Pommer, L., Wiklund-Lindström, S., Åberg, K., and Nordin, A., “Effects of Temperature and Residence Time on Continuous Torrefaction of Spruce Wood,” Fuel Process. Technol., Vol.134, pp.387-398 (2015).
    Ströhle, J., Orth, M., and Epple, B., “Chemical Looping Combustion of Hard Coal in a 1 MWth Pilot Plant Using Ilmenite as Oxygen Carrier,” Appl. Energy, Vol.157, pp.288-294 (2015).
    Svoboda, K., Slowinski, G., Rogut, J., and Baxter, D., “Thermodynamic Possibilities and Constraints for Pure Hydrogen Production by Iron Based Chemical Looping Process at Lower Temperatures,” Energy Convers. Manage., Vol.48, pp.3063-3073 (2007).
    Takenaka, S., Serizawa, M., and Otsuka, K., “Formation of Filamentous Carbons over Supported Fe Catalysts through Methane Decomposition,” J. Catal., Vol.222, No.2, pp.520-531 (2004).
    Thon, A., Kramp, M., Hartge, E. U., Heinrich, S., and Werther, J., “Operational Experience with a System of Coupled Fluidized Beds for Chemical Looping Combustion of Solid Fuels using Ilmenite as Oxygen Carrier,” Appl. Energy, Vol.118, pp.309-317 (2014).
    Tong, A., Sridhar, D., Sun, Z., Kim, H. R., Zeng, L., Wang, F., Wang, D., Kathe, M. V., Luo, S., Sun, Y., and Fan, L. S., “Continuous High Purity Hydrogen Generation from a Syngas Chemical Looping 25 kWth Sub-pilot Unit with 100% Carbon Capture,” Fuel, Vol.103, pp.495-505 (2013a)
    Tong, A., Zeng, L., Kathe, M. V., Sridhar, D. and Fan, L. S., “Application of the Moving-bed Chemical Looping Process for High Methane Conversion,” Energy Fuels, Vol.27, No.8, pp.4119-4128 (2013b).
    Turner, J. A., “Sustainable Hydrogen Production,” Science, Vol.305, No.5686, pp.972-974 (2004).
    Turton, R., and Levenspiel, O., “A Short Note on the Drag Correlation for Spheres,” Powder Technol., Vol.47, pp.83-86 (1986).
    U.S. Energy Information Administration (EIA), “Annual Energy Outlook 2014 with Projections to 2040,” EIA, U.S. Department of Energy, Washington, DC, USA (2014).
    U.S. Energy Information Administration (EIA), “Annual Energy Outlook 2016 with Projections to 2040,” EIA, U.S. Department of Energy, Washington, DC, USA (2016).
    U.S. Energy Information Administration (EIA), “International Energy Outlook 2016,” EIA, U.S. Department of Energy, Washington, DC, USA (2016).
    U.S. Energy Information Administration (EIA), “Monthly Energy Review: August 2017,” EIA, U.S. Department of Energy, Washington, DC, USA (2017).
    United Nations (UN), “Concepts and Methods in Energy Statistics, with Special Reference to Energy Accounts and Balances – A Technical Report,” United Nations, New York, USA (1982).
    Wang, K., Yu, Q., and Qin, Q., “Reduction Kinetics of Cu-based Oxygen Carriers for Chemical Looping Air Separation,” Energy Fuels, Vol.27, No.9, pp.5466-5474 (2013).
    Wang, K., Yu, Q., Duan, W., Qin, Q., and Xie, H., “The Adaptability of Cu/Zr Oxides as Oxygen Carrier used for Chemical Looping Air Separation (CLAS),” J. Therm. Anal. Calorim., Vol.115, No.2, pp.1163-1172 (2014).
    Wang, K., Yu, Q., Qin, Q., Zuo, Z., and Wu, T., “Evaluation of Cu-based Oxygen Carrier for Chemical Looping Air Separation in a Fixed-bed Reactor,” Chem. Eng. J., Vol.287, pp.292-301 (2016a).
    Wang, L., Weller, C. L., Jones, D. D., and Hanna, M. A., “Contemporary Issues in Thermal Gasification of Biomass and Its Application to Electricity and Fuel Production,” Biomass Bioenerg., Vol.32, pp.573-581 (2008).
    Wang, W., Zhang, B., Wang, G., and Li, Y., “O2 Release of Mn-Based Oxygen Carrier for Chemical Looping Air Separation (CLAS): An Insight into Kinetic Studies,” Aerosol Air Qual. Res., Vol.16, pp.453-463 (2016).
    Weiss, H., “Rectisol Wash for Purification of Partial Oxidation Gases,” Gas Sep. Purif., Vol.2, No.4, pp.171-176 (1998).
    Wilk, M., Magdziarz, A., and Kalemba, I., “Characterization of Renewable Fuels’ Torrefaction Process with Different Instrumental Techniques,” Energy, V.ol.87, pp.259-269 (2015).
    World Energy Council (WEC), “World Energy Resources - Unconventional Gas, a Global Phenomenon,” World Energy Council, London, United Kingdom (2016).
    World Energy Council (WEC), “World Energy Resources 2016,” World Energy Council, London, United Kingdom (2016).
    Wu, H. C., and Ku, Y., “Chemical Looping Gasification of Charcoal with Iron-based Oxygen Carriers in an Annular Dual-tube Moving Bed Reactor,” Aerosol Air Qual. Res., Vol.16, No.4, pp. 1093-1103 (2016).
    Wu, H. C., Ku, Y., Tsai, H. H., Kuo, Y. L., and Tseng, Y. H., “Rice Husk as Solid Fuel for Chemical Looping Combustion in an Annular Dual-tube Moving Bed Reactor,” Chem. Eng. J., Vol.280, pp.82-89 (2015).
    Xiao, R., Chen, L., Saha, C., Zhang, S., and Bhattacharya, S., “Pressurized Chemical-Looping Combustion of Coal Using an Iron Ore as Oxygen Carrier in a Pilot-scale Unit,” Int. J. Greenhouse Gas Control, Vol.10, pp.363-373 (2012).
    Yang, J. B., Cai, N. S., and Li, Z. S., “Hydrogen Production from the Steam-Iron Process with Direct Reduction of Iron Oxide by Chemical Looping Combustion of Coal Char,” Energy Fuels, Vol.22, pp.2570-2579 (2008).
    Yang, W. C., “Handbook of Fluidization and Fluid-particle Systems,” Marcel Dekker, Inc., New York (2003).
    Zafar, Q., Mattisson, T., and Gevert, B., “Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as a Support,” Ind. Eng. Chem. Res., Vol.44, pp.3485-3496 (2005).
    Zafar, Q., Mattisson, T., and Gevert, B., “Redox Investigation of Some Oxides of Transition-state Metals Ni, Cu, Fe, and Supported on SiO2 and MgAl2O4,” Energy Fuels, Vol.20, pp.33-44 (2006).
    Zeng, L., Tong, A., Kathe, M., Bayham, S., and Fan, L. S., “Iron Oxide Looping for Natural Gas Conversion in a Countercurrent Moving Bed Reactor,” Appl. Energy, Vol.157, pp.338-347 (2015).
    Zhang, Y., Doroodchi, E., and Moghtaderi, B., “Reduction Kinetics of Fe2O3/Al2O3 by Ultralow Concentration Methane under Conditions Pertinent to Chemical Looping Combustion,” Energy Fuels, Vol.29, No.1, pp.337-345 (2015).
    Zhao, L., Riensche, E., Menzer, R., Blum, L., and Stolten, D., “A Parametric Study of CO2/N2 Gas Separation Membrane Processes for Post-combustion Capture,” J. Membr. Sci., Vol.325, pp.284-294 (2008).
    Zhao, Y., and Shadman, F., “Kinetics and Mechanism of Ilmenite Reduction with Carbon Monoxide,” AlChE J., Vol.36, pp.1433-1438 (1990).
    Zhou, Z., Han, L., and Bollas, G. M., “Overview of Chemical-looping Reduction in Fixed Bed and Fluidized Bed Reactors Focused on Oxygen Carrier Utilization and Reactor Efficiency,” Aerosol Air Qual. Res., Vol.14, pp.559-571 (2014).
    Zhu, W., Winterstein, J., Maimon, I., Yin, Q., Yuan, L., Kolmogorov, A. N., Sharma, R., and Zhou, G., “Atomic Structural Evolution during the Reduction of α-Fe2O3 Nanowires,” J. Phys. Chem. C, Vol.120, No.27, pp.14854-14862 (2016).

    無法下載圖示 全文公開日期 2023/01/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE