簡易檢索 / 詳目顯示

研究生: 賴紹榕
Shao-jung Lai
論文名稱: 新型被動式靜平衡腹腔鏡扶持器之設計
Design of a Novel Passive Statically Balancing Laparoscope Holder
指導教授: 郭進星
Chin-Hsing Kuo
口試委員: 石伊蓓
Yi-Pe Shih
謝文賓
Win-Bin Shieh
湯孝威
Hsiao-Wei Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 115
中文關鍵詞: 腹腔鏡扶持器全域靜平衡靜平衡機構遠端運動中心
外文關鍵詞: laparoscope holder, global statically balancing, statically balancing mechanism, remote center of motion
相關次數: 點閱:342下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一種新型被動式腹腔鏡手術扶持器,該扶持器透過靜平衡機構(Statically balancing mechanism)設計方法,可以不需任何驅動馬達或機械性鎖附接頭等,便能靜止地停留在任何手術需求位置上。此新型扶持器由「定位」與「定向」兩機構組成,定位機構提供腹腔鏡定位(Positioning)功能,定向機構則負責腹腔鏡角度定向(Orientating)功能,兩機構可獨立分開操作,使用上更加便利。此外,本設計並具備遠端運動中心(Remote center-of-motion)特性,限制扶持器於手術切口之橫向位移,提供更佳的操作安全性。本文首先回顧現有的主動式與被動式腹腔鏡扶持器,並比較其優缺點與歸納待改善問題。接著,根據以上回顧,訂立本研究之設計目標,進而提出一新型之被動式腹腔鏡扶持器機構,再透過拉伸彈簧之彈力,使腹腔鏡扶持器達成全域靜平衡(Fully static balancing)之效果。本文並分析該腹腔鏡扶持器之順向及逆向運動學以及運動空間,藉此得知腹腔鏡扶持器的運動範圍,以及利用電腦輔助機構運動模擬軟體,驗證本設計之全域靜平衡理論模型的正確性。最後,製作本設計之原型機,經測試後發現本新型扶持器可靜止停留於任意位置上,驗證本設計確實可行。


    This thesis presents a novel passive laparoscope holder that employs the concept of statically balancing mechanisms for positioning and orientating the laparoscope. In other words, the proposed design is able to stay rest at any required surgical location without the use of electric motors and/or mechanical joint locks. The system is composed of a positioning mechanism and an orientating mechanism. These two mechanisms are respectively responsible to position and orientate the laparoscope, and each of them can be manipulated independently. The new design also realizes a remote center-of-motion that constrains the lateral motion of the laparoscope on the abdomen wall of the patient to avoid injury to during surgical operation. In this thesis, we first survey the laparoscopic procedures and compare the existing active and passive holders. Based on this comparative study, we conclude the essential design requirements for laparoscope holders and, accordingly, propose a new mechanism concept. The proposed mechanism is not driven by any electrical actuation but is statically balanced at any location within workspace by using springs. Furthermore, we derive the analytical solutions of the forward and inverse kinematics and demonstrate reachable and orientation the workspaces of the holder. In addition, we use the computer-aided software to verify the theoretical model of the statically balanced holder. Finally, we build a prototype of the new design, verifying that the holder does be able to stay at any arbitrary position and orientation without the use of electrical actuation or mechanical locks.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號表 XIII 第一章 緒論 1 1.1. 研究動機 2 1.2. 文獻回顧 3 1.2.1. 腹腔鏡扶持器 3 1.2.2. 遠端運動中心(Remote center-of-motion, RCM) 8 1.2.3. 靜平衡機構 10 1.3. 研究目的 12 1.4. 論文架構 13 第二章 腹腔鏡扶持器介紹 15 2.1. 主動式腹腔鏡扶持器 15 2.2. 被動式腹腔鏡扶持器 27 2.3. 討論 31 2.4. 小結 34 第三章 新型腹腔鏡扶持器之構想設計 35 3.1. 設計目標 35 3.2. 設計規格 35 3.3. 設計概念 36 3.3.1. 定位機構 39 3.3.2. 定向RCM機構 39 3.4. 小結 41 第四章 全域靜平衡設計 42 4.1. 靜平衡方式分類 42 4.2. 基本假設與理論基礎 43 4.3. 定位機構之靜平衡設計 46 4.3.1. 彈簧接法與設計參數 47 4.3.2. 定位機構之Loop 2靜平衡設計 48 4.3.3. 定位機構之Loop 1靜平衡設計 52 4.4. 定向機構之靜平衡設計 56 4.4.1. 設計參數 57 4.4.2. 定向機構之靜平衡推導 61 4.5. 零自由長度(Zero-Free-Length)彈簧之實現 66 4.6. 數值範例 67 4.6.1. 定位機構 67 4.6.2. 定向機構 71 4.7. 小結 75 第五章 工作空間分析 77 5.1. 定位機構位移分析 77 5.1.1. 順向運動學 77 5.1.2. 逆向運動學 82 5.2. 定向機構位移分析 83 5.3. 扶持器工作空間分析 88 5.3.1. 腹腔鏡之工作空間(Reachable workspace) 89 5.3.2. 腹腔鏡之偏擺角 90 5.4. 小結 91 第六章 電腦模擬 92 6.1. MD Adams軟體簡介 92 6.2. CAD模型定義 92 6.3. 前處理設定 94 6.4. 能量驗證分析 99 6.5. 小結 100 第七章 原型機實作與測試 101 7.1. 扶持器製作 101 7.2. 扶持器測試 103 7.3. 小結 104 第八章 結論與未來展望 105 8.1. 結論 105 8.2. 未來展望 106 參考文獻 108

    [1] Summit Medical Group,"Laparoscopy to Remove an Ovarian Cyst", 2012, Available at: http://www.summitmedicalgroup.com/library/adult_health/obg_therapeutic_laparoscopy_for_ovarian_cystectomy/.
    [2] Wickham, J. E., 1987, “The New Surgery,” British Medical Journal (Clinical Research Ed.), 295(6613), pp. 1581-1582.
    [3] Litynski, G. S., 1999, “Profiles in Laparoscopy: Mouret, Dubois, and Perissat: The Laparoscopic Breakthrough in Europe (1987-1988),” Journal of the Society of Laparoendoscopic Surgeons, 3(2), pp. 163-167.
    [4] Davies, B., 2000, “A Review of Robotics in Surgery,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 214(1), pp. 129-140.
    [5] Sackier, J. M., Wang, Y., 1994, “Robotically Assisted Laparoscopic Surgery- From Concept to Development,” Surgical Endoscopy, 8(1), pp. 63-66.
    [6] Nebot, P. B., Jain, Y., Haylett, K., Stone, R., McCloy, R., 2003, “Comparison of Task Performance of the Camera-Holder Robots EndoAssist and Aesop,” Surgical Laparoscopy, Endoscopy and Percutaneous Techniques, 13(5), pp. 334-338.
    [7] Ghodoussi, M., Butner, S. E., Yulun, W., 2002, “Robotic Surgery - the Transatlantic Case,” Proceedings of IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11-15 May, Vol. 2, pp. 1882-1888.
    [8] Ewing, D. R., Pigazzi, A., Wang, Y., Ballantyne, G. H., 2004, “Robots in the Operating Room - the History,” Seminars in Laparoscopic Surgery, 11(2), pp. 63-71.
    [9] Guthart, G. S., Salisbury Jr., K. J., 2000, “The Intuitive Telesurgery System: Overview and Application,” Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24-28 April, Vol. 1, pp. 618-621.
    [10] Finlay, P. A., Ornstein, M. H., 1995, “Controlling the Movement of a Surgical Laparoscope,” IEEE Engineering in Medicine and Biology Magazine, 14(3), pp. 289-291.
    [11] Dowler, N. J., Holland, S. R. J., 1996, “The Evolutionary Design of an Endoscopic Telemanipulator,” IEEE Robotics and Automation Magazine, 3(4), pp. 38-45.
    [12] Aiono, S., Gilbert, J. M., Soin, B., Finlay, P. A., Gordan, A., 2002, “Controlled Trial of the Introduction of a Robotic Camera Assistant (EndoAssist) for Laparoscopic Cholecystectomy,” Surgical Endoscopy and Other Interventional Techniques, 16(9), pp. 1267-1270.
    [13] Kommu, S. S., Rimington, P., Anderson, C., Rane, A., 2007, “Initial Experience with the EndoAssist Camera-Holding Robot in Laparoscopic Urological Surgery,” Journal of Robotic Surgery, 1(2), pp. 133-137.
    [14] Yasunaga, T., Hashizume, M., Kobayashi, E., Tanoue, K., Akahoshi, T., Konishi, K., Yamaguchi, S., Kinjo, N., Tomikawa, M., Muragaki, Y., Shimada, M., Maehara, Y., Dohi, Y., Sakuma, I., Miyamoto, S., 2003, “Remote-Controlled Laparoscope Manipulator System, Naviot™, for Endoscopic Surgery,” Computer Assisted Radiology and Surgery: Proceedings of the 17th International Congress and Exhibition, 1256, pp. 678-683.
    [15] Yoshino, I., Yasunaga, T., Hashizume, M., Maehara, Y., 2005, “A Novel Endoscope Manipulator, Naviot, Enables Solo-Surgery to Be Performed During Video-Assisted Thoracic Surgery,” Interactive Cardiovascular and Thoracic Surgery, 4(5), pp. 404-405.
    [16] Polet, R., Donnez, J., 2008, “Using a Laparoscope Manipulator (Lapman) in Laparoscopic Gynecological Surgery,” Surgical Technology International, 17, pp. 187-191.
    [17] Hourlay, P., 2006, “How to Maintain the Quality of Laparoscopic Surgery in the Era of Lack of Hands?,” Acta Chirurgica Belgica, 106(1), pp. 22-26.
    [18] Taylor, R. H., Funda, J., Eldridge, B., Gomory, S., Gruben, K., LaRose, D., Talamini, M., Kavoussi, L., Anderson, J., 1995, “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Engineering in Medicine and Biology Magazine, 14(3), pp. 279-288.
    [19] Taylor, R., Jensen, P., Whitcomb, L., Barnes, A., Kumar, R., Stoianovici, D., Gupta, P., Wang, Z., DeJuan, E., Kavoussi, L., 1999, “A Steady-Hand Robotic System for Microsurgical Augmentation,” International Journal of Robotics Research, 18(12), pp. 1201-1210.
    [20] Abbott, J. J., Hager, G. D., Okamura, A. M., 2003, “Steady-Hand Teleoperation with Virtual Fixtures,” Proceedings of IEEE International Workshop on Robot and Human Interactive Communication, Johns Hopkins Univ., Baltimore, MD, USA, 31 October-2 November, pp. 145-151.
    [21] Buess, G. F., Arezzo, A., Schurr, M. O., Ulmer, F., Fisher, H., Gumb, L., Testa, T., Nobman, C., 2000, “A New Remote-Controlled Endoscope Positioning System for Endoscopic Solo Surgery: The Fips Endoarm,” Surgical Endoscopy, 14(4), pp. 395-399.
    [22] Berkelman, P., Cinquin, P., Boidard, E., Troccaz, J., Letoublon, C., Ayoubi, J. M., 2003, “Design, Control and Testing of a Novel Compact Laparoscopic Endoscope Manipulator,” Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 217(4), pp. 329-341.
    [23] Berkelman, P., Boidard, E., Cinquin, P., Troccaz, J., 2003, “LER: The Light Endoscope Robot,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 27-31 October, Vol. 3, pp. 2835-2840.
    [24] Berkelman, P., Cinquin, P., Troccaz, J., Ayoubi, J., Letoublon, C., Bouchard, F., 2002, “A Compact, Compliant Laparoscopic Endoscope Manipulator,” Proceedings of IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11-15 May, Vol. 2, pp. 1870-1875.
    [25] Kim, J., Lee, Y.-J., Ko, S.-Y., Kwon, D.-S., Lee, W.-J., 2004, “Compact Camera Assistant Robot for Minimally Invasive Surgery: KaLAR,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 28 September-2 October, Vol. 3, pp. 2587-2592.
    [26] Zemiti, N., Morel, G., Ortmaier, T., Bonnet, N., 2007, “Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery,” IEEE/ASME Transactions on Mechatronics, 12(2), pp. 143-153.
    [27] 王景洸,1997,腹腔鏡定位用機械手臂之設計與製作,碩士論文,國立中央大學機械工程所,桃園,臺灣。
    [28] Hurteau, R., DeSantis, S., Begin, E., Gagner, M., 1994, “Laparoscopic Surgery Assisted by a Robotic Cameraman: Concept and Experimental Results,” Proceedings of IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8-13 May, pp. 2286-2289.
    [29] 湯孝威,2011,“華陀微創手術機器人的研發藍圖”,微創手術及醫療機器人國際研討會,臺北,臺灣,11月12日。
    [30] Jaspers, J. E., Breedveld, P., Herder, J. L., Grimbergen, C. A., 2004, “Camera and Instrument Holders and Their Clinical Value in Minimally Invasive Surgery,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 14(3), pp. 145-152.
    [31] Unitrac System, Available at: http://www.aesculapusa.com/default.aspx?pageid=909.
    [32] Arezzo, A., Schurr, M. O., Braun, A., Buess, G. F., 2005, “Experimental Assessment of a New Mechanical Endoscopic Solosurgery System: Endofreeze,” Surgical Endoscopy and Other Interventional Techniques, 19(4), pp. 581-588.
    [33] Endoboy, Chirurgischer Manipulator, Available at: http://www.mikroland-endobloc.fr/fr/_index-fr.html.
    [34] Arezzo, A., Ulmer, F., Weiss, O., Schurr, M. O., Hamad, M., Buess, G. F., 2000, “Experimental Trial on Solo Surgery for Minimally Invasive Therapy: Comparison of Different Systems in a Phantom Model,” Surgical Endoscopy, 14(10), pp. 955-959.
    [35] ASSISTO, Available at: http://www.geomed.de/index.php?id=60&L=0.
    [36] Schurr, M. O., Arezzo, A., Neisius, B., Rininsland, H., Hilzinger, H. U., Dorn, J., Roth, K., Buess, G. F., 1999, “Trocar and Instrument Positioning System TISKA: An Assist Device for Endoscopic Solo Surgery,” Surgical Endoscopy, 13(5), pp. 528-531.
    [37] Buess, G. F., Schurr, M. O., Fischer, S. C., 2000, “Robotics and Allied Technologies in Endoscopic Surgery,” Archives of Surgery, 135(2), pp. 229-235.
    [38] Kuo, C. H., Dai, J. S., Dasgupta, P., 2012, “Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview,” International Journal of Medical Robotics and Computer Assisted Surgery, 8(2), pp. 127-145.
    [39] Taylor, R. H., Stoianovici, D., 2003, “Medical Robotics in Computer-Integrated Surgery,” IEEE Transactions on Robotics, 19(5), pp. 765-781.
    [40] 陳威達,2006,腹腔鏡固定器之設計與實作,碩士論文,國立清華大學動力與工程學系,新竹,臺灣。
    [41] Baumann, R., Maeder, W., Glauser, D., Clavel, R., 1997, “The Pantoscope: A Spherical Remote-Center-of-Motion Parallel Manipulator for Force Reflection,” Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on, 20-25 Apr 1997, Vol. 1, pp. 718-723 vol.1, 10.1109/ROBOT.1997.620120.
    [42] Vischer, P., Clavel, R., 2000, “Argos: A Novel 3-Dof Parallel Wrist Mechanism,” International Journal of Robotics Research, 19(1), pp. 5-11.
    [43] Hadavand, M., Mirbagheri, A., Behzadipour, S., Farahmand, F., 2013, “A Novel Remote Center of Motion Mechanism for the Force-Reflective Master Robot of Haptic Tele-Surgery Systems,” International Journal of Medical Robotics and Computer Assisted Surgery.
    [44] Zong, G., Pei, X., Yu, J., Bi, S., 2008, “Classification and Type Synthesis of 1-Dof Remote Center of Motion Mechanisms,” Mechanism and Machine Theory, 43(12), pp. 1585-1595.
    [45] French, M. J., Widden, M. B., 2000, “The Spring-and-Lever Balancing Mechanism, George Carwardine and the Anglepoise Lamp,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214(3), pp. 501-507.
    [46] Fisher, K. J., 1992, “Counterbalance Mechanism Positions a Light with Surgical Precision,” ASME Mechanical Engineering, 114(5), pp. 76-80.
    [47] Sander, U., 2003, Stand Arrangement, United States Patent, No. US6543914.
    [48] Merlin D. Fox, R. L. M., Donald R. Rettich, Edward D. Scarborough, Jr., James J. Souder, Jr., 1984, Spring Counterbalanced Support Arm System, United States Patent, No. US4447031.
    [49] Banala, S. K., Agrawal, S. K., Fattah, A., Krishnamoorthy, V., Hsu, W. L., Scholz, J., Rudolph, K., 2006, “Gravity-Balancing Leg Orthosis and Its Performance Evaluation,” IEEE Transactions on Robotics, 22(6), pp. 1228-1239.
    [50] Rahman, T., Sample, W., Seliktar, R., Scavina, M. T., Clark, A. L., Moran, K., Alexander, M. A., 2007, “Design and Testing of a Functional Arm Orthosis in Patients with Neuromuscular Diseases,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(2), pp. 244-251.
    [51] Hain, K., 1961, “Spring Mechanisms-Point Balancing and Spring Mechanisms-Continuous Balancing,” Spring Design and Application, Chironis, N. P., Ed., New York, McGraw-Hill, pp. 268-275.
    [52] Nathan, R. H., 1985, “A Constant Force Generation Mechanism,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, 107(4), pp. 508-512.
    [53] Streit, D. A., Gilmore, B. J., 1989, “`Perfect' Spring Equilibrators for Rotatable Bodies,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, 111(4), pp. 451-458.
    [54] Kobayashi, K., 2001, “Comparison between Spring Balancer and Gravity Balancer in Inertia Force and Performance,” ASME Journal of Mechanical Design, 123(4), pp. 549-555.
    [55] Kobayashi, K., 2001, “New Design Method for Spring Balancers,” ASME Journal of Mechanical Design, 123(4), pp. 494-500.
    [56] Streit, D. A., Shin, E., 1993, “Equilibrators for Planar Linkages,” ASME Journal of Mechanical Design, 115(3), pp. 604-611.
    [57] Rahman, T., Ramanathan, R., Seliktar, R., Harwin, W., 1995, “Simple Technique to Passively Gravity-Balance Articulated Mechanisms,” ASME Journal of Mechanical Design, 117(4), pp. 655-658.
    [58] Barents, R., Schenk, M., Van Dorsser, W. D., Wisse, B. M., Herder, J. L., 2011, “Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators,” ASME Journal of Mechanical Design, 133(6), pp. 061010(1-10).
    [59] Herder, J. L., Schenk, M., Wisse, B. M., Barents, R., Dorsser, W. D. V., 2008, “Energy-Free Adjustment of Gravity Equilibrators by Adjusting the Spring Stiffness,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(9), pp. 1839-1846.
    [60] Wisse, B. M., Van Dorsser, W. D., Barents, R., Herder, J. L., 2007, “Energy-Free Adjustment of Gravity Equilibrators Using the Virtual Spring Concept,” Proceedings of IEEE International Conference on Rehabilitation Robotics, Noordwijk, Netherlands, 12-15 June, pp. 742-750.
    [61] Van Dorsser, W. D., Barents, R., Wisse, B. M., Herder, J. L., 2007, “Gravity-Balanced Arm Support with Energy-Free Adjustment,” ASME Journal of Medical Devices, 1(2), pp. 151-158.
    [62] Van Dorsser, W. D., Barents, R., Wisse, B. M., Herder, J. L., 2006, “Energy-Free Adjustment of Gravity Equilibrators, with Application in a Mobile Arm Support,” ASME Design Engineering Technical Conferences and Computers and Information In Engineering Conference, Philadelphia, PA, USA, 10-13 September, pp. 591-599.
    [63] Rijff, B. L., Herder, J. L., Radaelli, G., 2011, “An Energy Approach to the Design of Single Degree of Freedom Gravity Balancers with Compliant Joints,” ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington, DC, USA, 28-31 August, Vol. 6, pp. 137-148.
    [64] Lecours, A., Gosselin, C., 2009, “Reactionless Two-Degree-of-Freedom Planar Parallel Mechanism with Variable Payload,” ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, CA, USA, Vol. 7, pp. 887-896.
    [65] Carricato, M., Gosselin, C., 2009, “A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation,” ASME Journal of Mechanisms and Robotics, 1(3), pp. 1-16.
    [66] Wang, J., Gosselin, C. M., 2000, “Static Balancing of Spatial Four-Degree-of-Freedom Parallel Mechanisms,” Mechanism and Machine Theory, 35(4), pp. 563-592.
    [67] Gosselin, C. M., Wang, J., 2000, “Static Balancing of Spatial Six-Degree-of-Freedom Parallel Mechanisms with Revolute Actuators,” Journal of Robotic Systems, 17(3), pp. 159-170.
    [68] Ebert-Uphoff, I., Gosselin, C. M., Laliberte, T., 2000, “Static Balancing of Spatial Parallel Platform Mechanisms - Revisited,” ASME Journal of Mechanical Design, 122(1), pp. 43-51.
    [69] Wang, J. G., Gosselin, C. M., 1999, “Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms,” Mechanism and Machine Theory, 34(3), pp. 437-452.
    [70] Laliberte, T., Gosselin, C. M., Jean, M., 1999, “Static Balancing of 3-Dof Planar Parallel Mechanisms,” IEEE/ASME Transactions on Mechatronics, 4(4), pp. 363-377.
    [71] Gosselin, C. M., 1999, “Static Balancing of Spherical 3-Dof Parallel Mechanisms and Manipulators,” International Journal of Robotics Research, 18(8), pp. 819-829.
    [72] Gosselin, C. M., Wang, J., 1998, “On the Design of Gravity-Compensated Six-Degree-of-Freedom Parallel Mechanisms,” Proceedings of IEEE International Conference on Robotics and Automation, Leuven, Belgium, 16-20 May, Vol. 3, pp. 2287-2294.
    [73] Lin, P.-Y., Shieh, W.-B., Chen, D.-Z., 2010, “A Stiffness Matrix Approach for the Design of Statically Balanced Planar Articulated Manipulators,” Mechanism and Machine Theory, 45(12), pp. 1877-1891.
    [74] Lin, P. Y., Shieh, W. B., Chen, D. Z., 2012, “Design of Statically Balanced Planar Articulated Manipulators with Spring Suspension,” IEEE Transactions on Robotics, 28(1), pp. 12-21.
    [75] da Vinci Surgical System, Available at: http://www.intuitivesurgical.com/.
    [76] Martins Arm, Available at: http://www.ltlmedical.net/martins-arm.html.
    [77] Matern, U., Waller, P., Giebmeyer, C., Ruckauer, K. D., Farthmann, E. H., 2001, “Ergonomics: Requirements for Adjusting the Height of Laparoscopic Operating Tables,” Journal of the Society of Laparoendoscopic Surgeons, 5(1), pp. 7-12.
    [78] Manasnayakorn, S., Cuschieri, A., Hanna, G. B., 2009, “Ergonomic Assessment of Optimum Operating Table Height for Hand-Assisted Laparoscopic Surgery,” Surgical Endoscopy and Other Interventional Techniques, 23(4), pp. 783-789.
    [79] Arakelian, V., Ghazaryan, S., 2008, “Improvement of Balancing Accuracy of Robotic Systems: Application to Leg Orthosis for Rehabilitation Devices,” Mechanism and Machine Theory, 43(5), pp. 565-575.
    [80] Baradat, C., Arakelian, V., Briot, S., Guegan, S., 2008, “Design and Prototyping of a New Balancing Mechanism for Spatial Parallel Manipulators,” ASME Journal of Mechanical Design, 130(7), pp. 072305(1-13).
    [81] Agrawal, S. K., Fattah, A., 2004, “Reactionless Space and Ground Robots: Novel Designs and Concept Studies,” Mechanism and Machine Theory, 39(1), pp. 25-40.
    [82] Russo, A., Sinatra, R., Xi, F., 2005, “Static Balancing of Parallel Robots,” Mechanism and Machine Theory, 40(2), pp. 191-202.
    [83] Herder, J. L., 2001, Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms, Ph.D. Thesis, Delf University of Technology.
    [84] Johnson, K., Ebert-Uphoff, I., 2002, “Practical Considerations for the Static Balancing of Mechanisms of Parallel Architecture,” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 216(1), pp. 73-85.
    [85] Simionescu, I., Ciupitu, L., 2000, “The Static Balancing of the Industrial Robot Arms Part I: Discrete Balancing,” Mechanism and Machine Theory, 35(9), pp. 1287-1298.
    [86] Agrawal, A., Agrawal, S. K., 2005, “Design of Gravity Balancing Leg Orthosis Using Non-Zero Free Length Springs,” Mechanism and Machine Theory, 40(6), pp. 693-709.
    [87] Segla, S., Kalker-Kalkman, C. M., Schwab, A. L., 1998, “Statical Balancing of a Robot Mechanism with the Aid of a Genetic Algorithm,” Mechanism and Machine Theory, 33(1-2), pp. 163-174.
    [88] Lin, P.-Y., Shieh, W.-B., Chen, D.-Z., 2010, “Design of a Gravity-Balanced General Spatial Serial-Type Manipulator,” ASME Journal of Mechanisms and Robotics, 2(3), pp. 031003(1-7).
    [89] Simionescu, I., Ciupitu, L., 2000, “The Static Balancing of the Industrial Robot Arms Part Ii: Continuous Balancing,” Mechanism and Machine Theory, 35(9), pp. 1299-1311.
    [90] Gvozdev, Y. F., 1992, Manipulator, Russian Patent, No. SU1777993.
    [91] Wildenberg, F., 2002, Compensating System for a Hexapod, Russian Patent, No. SU6474915.
    [92] Dzhavakhyan, R. P., Dzhavakhyan, N. P., 1987, Balanced Manipulator, Russian Patent, No. SU1357218.
    [93] Segawa, Y., Yamamoto, M., Shimada, A., 2000, Parallel Link Mechanism, Japan Patent, No. JP2000120824.
    [94] Arsenault, M., Gosselin, C. M., 2007, “Static Balancing of Tensegrity Mechanisms,” ASME Journal of Mechanical Design, 129(3), pp. 295-300.
    [95] Tsai, L.-W., 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, New York.

    無法下載圖示 全文公開日期 2018/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE