簡易檢索 / 詳目顯示

研究生: 楊翔仁
HSIANG ZEN YANG
論文名稱: 高速3D列印製作數位牙模 用以量產透明矯正器製程研究
High-speed 3D printing to make digital dental molds Research on the process for mass production of clear aligners
指導教授: 鄭正元
Jeng, Jeng-Ywan
口試委員: 林上智
Shang-Chih Lin
陳俊名
Chun-Ming, Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 67
中文關鍵詞: 積層製造數位牙模客製化量產高速3D列印
外文關鍵詞: Additive manufacturing, Digital dental molds, Customized mass production, High-speed 3D printing
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是將高速積層製造技術導入牙醫產業製程當中,希望藉由其數位化、自動化、高精度等獨特優勢,解決傳統牙體技術中耗時費工的牙模製作過程,發掘出能突破隱形矯正器生產所需要大量客製化製程條件瓶頸,研擬出一套可供業界執行參考的製程模板,協助國產數位牙醫技術能量的提升增進國產醫療器材的國際競爭力。
    研究的主軸是應用兩款高速3D列印技術(大面積LCD光固化成形技術與MJF多射流熔融粉末燒結成形技術)做為製程核心工作也就是齒列模型的生產方法,發揮其數位化與自動化的優勢大幅提升牙模產能與生產速度,在具備量產條件之下同時兼具客製化能力且讓量產的每一件成品都是依病患齒列量身訂做而成。
    研究最後發現兩款高速3D列印技術來生產數位牙模每週的產能約可達500至800/PCS,比起仿間一般3D列印設備每週產能約40-50個來看產能增加超過10倍之多,如相較於傳統牙技以手工方式生產牙模來看產能差異更是高達百倍。若在前期製成的圖資檔案處理與後期製程真空成型若皆能自動化,此隱形矯正器生產效率更相較傳統製程數百倍之多。


    This paper mainly introduces the high-speed additive manufacturing technology into the dental industry process, hoping to solve the time-consuming and labor-intensive dental mold making process in the traditional dental technology with its unique advantages such as digitization, automation, and high precision, and explore breakthroughs. The production of invisible aligners requires a lot of customized process conditions. We developed a set of process templates that can be used as a reference for the industry to help improve the technical energy of domestic digital dentists and enhance the international competitiveness of domestic medical equipment.
    The main axis of the research is to apply two high-speed 3D printing technologies (large-area LCD light-curing technology and multi-jet fusion powder sintering technology) as the core work of the process, that is, the production method of the dental models. Its advantages of digitization and automation greatly increase the productivity and production speed of dental molds. Under the conditions of mass production, it also has the ability to customize and make each finished product in mass production tailored to the patient's dentition. made.
    At the end of the study, it was found that the weekly production capacity of two high-speed 3D printing technologies to produce digital dental molds can reach about 500 to 600/PCS, which is an increase in production capacity compared with the weekly production capacity of common general 3D printing equipment of about 40-50 pieces. More than 10 times, such as the production capacity difference is as high as 100 times compared with the traditional dental technique to manually produce dental molds. In addition, if the processing of the pre-made graphics files and the post-process vacuum forming can be automated, the production efficiency is hundreds of times that of the traditional process.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 2 1.3 研究方法與步驟 4 1.4 論文架構 5 第二章 文獻回顧 7 2.1 積層製造 7 2.2 高速3D列印 (High Speed 3D Printing) 9 2.2.1 光聚合固化成型技術 (Vat Photopolymerization, VP) 9 2.2.2 粉床熔融成型技術(Powder Bed Fusion, PBF) 12 2.3 齒顎矯正技術 14 2.3.1 傳統矯正系統 15 2.3.2 數位矯正系統 16 2.4 牙模製作流程 17 2.4.1 取模程序(Dental impression) 17 2.4.2 牙模鑄造(Dental Cast) 20 2.5 透明矯正器生產方法 22 2.5.1 熱壓成型法 22 2.5.2 熱真空成型系統 23 2.5.3 切割研磨 24 2.6 直接3D列印矯正器 25 第三章 系統設備與製程規劃 26 3.1 數位檔案前置修整 27 3.1.1 齒模數位檔裁切 27 3.1.2 列印位置與數量定位 29 3.2 牙模積層製造製程 31 3.2.1 光固化列印測試 31 3.2.2 粉末床列印測試 32 3.3 透明隱形矯正器製程 34 第四章 實驗歷程與分析 38 4.1 口內3D掃描檔案修整 38 4.2 光固化列印測試結果 40 4.3 粉床熔融列印測試結果 42 4.4 牙模列印效能分析 44 4.5 熱真空成型測試結果 46 4.6 製程綜合分析 51 第五章 結論與未來展望 52 5.1 結論 52 5.2 未來展望 53 參考文獻 55

    葉雲鵬 and 鄭正元, 智慧機械與數位製造3D列印的發展. 科儀新知, 2020(222): p. 92-103.
    2. 鄭正元, 江卓培, 林宗翰, 林榮信, 蘇威年, 汪家昌, 蔡明忠, 賴維祥, 鄭逸琳, 洪基彬, 3D列印:積層製造技術與應用. 第二版 ed. 2021: 全華圖書.
    3. Carbon. What is Carbon Digital Light Synthesis™? 2021; Available from: https://www.carbon3d.com/carbon-dls-technology/.
    4. (AMRG), L.U.A.M.R.G. The 7 Categories of Additive Manufacturing. Available from: https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/.
    5. Wang, Y., et al., Current Status and Prospects of Polymer Powder 3D Printing Technologies. Materials, 2020. 13(10): p. 2406.
    6. 中華民國齒顎矯正學會. 專科醫師訓練. 2021; Available from: http://www.tao.org.tw/about_intro.php.
    7. 臺北醫學大學口腔醫學院, ed. 齒顎矯正健康照護手冊. 2018, 衛生福利部.
    8. 林榆芩, 七種牙套矯正器比較:金屬與陶瓷差異;新型自鎖式矯正器如戴蒙牙套比傳統的好在哪?舌側矯正隱形性更勝隱適美?. 2020. p. https://youtu.be/ThFz6nLLWzc.
    9. Wheeler, T.T., Orthodontic clear aligner treatment. Seminars in Orthodontics, 2017. 23(1): p. 83-89.
    10. 林榆芩, 為什麼戴牙套矯正時間那麼長?拔牙矯正改骨性嘴凸最耗時,磨牙患者矯正時間長|. 2020. p. https://youtu.be/3OA6OS0HUJw.
    11. Wikipedia, c., Dental impression, in Wikipedia, The Free Encyclopedia.
    12. Invisalign, Invisalign Treatment -- Taking Impressions. 2014.
    13. Richert, R., et al., Intraoral Scanner Technologies: A Review to Make a Successful Impression. Journal of Healthcare Engineering, 2017. 2017: p. 8427595.
    14. RetainerDesigner, Clear Aligner - Invisible Orthodontic Retainer to Move Teeth. 2013. p. https://youtu.be/F6O07UiElxo.
    15. Fekonja, A., N. Roser, and I. Drstvensek, ADDITIVE MANUFACTURING IN ORTHODONTICS. Materiali in Tehnologije, 2019. 53(2): p. 165-169.

    無法下載圖示 全文公開日期 2027/07/26 (校內網路)
    全文公開日期 2027/07/26 (校外網路)
    全文公開日期 2027/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE