簡易檢索 / 詳目顯示

研究生: 王仕翰
Shih-Han Wang
論文名稱: 鉚接開孔金屬板於積層製造鋁合金部件之塑性成形接合
Joining by forming of additively manufactured aluminum alloy component in riveting to perforated metallic sheet
指導教授: 何羽健
Yu-Chien Ho
口試委員: 林清安
楊侑倫
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 117
中文關鍵詞: 鋁合金積層製造塑性成形接合異向性有限元素法模具設計機械性質
外文關鍵詞: Aluminum alloy, Additive manufacturing, Joining by plastic deformation, Anisotropy, Finite element method, Die design, Mechanical property
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結構輕量化已是全球發展趨勢,金屬積層製造(Additive manufacturing, AM)之興起除對結構輕量化發展有重大影響外,亦可透過CAD軟體將零配件設計以數位化方式存檔,推動不需要保留過時的庫存或停產之備用零組件全方位解決方案。在航太、交通運輸對於金屬積層製造技術之輕量化應用逐漸普及,其中對其零件間之接合技術尤為發展之關鍵。本研究基於美國實驗飛機協會(Experimental aircraft association, EAA)實心鉚釘規範定義鉚接幾何及模具設計之重要指標,藉由金屬積層製造不受零件複雜度及客製化之優勢,採用榫卯結構設計將具有榫頭特徵之積層製造鋁合金零件與開孔(卯眼/榫眼)輕合金板材進行塑性成形接合成輕量化結構件。其中具有榫頭特徵之鋁合金AlSi10Mg單體零件透過選擇性雷射熔融(Selective laser melting, SLM)製備,亦從室溫拉伸與壓縮實驗觀察其機械性質及高溫壓縮試驗掌握加工條件與塑流行為之關聯。榫眼為鋁合金Al6061-T6板材透過雷射切割得到開孔。再者,Al6061-T6從單軸拉伸實驗得到異向性分析所需之降伏應力值及塑性應變比值r值(Plastic strain ration, r-value),接以Hill48與Barlat91降伏準則來描述板材異向性對鉚接過程中塑性成形接合之影響。另一方面,透過有限元素分析軟體(Finite element analysis, FEA) Simufact Forming輔助鍛壓成形接合分析異向性搭接板對材料變形之影響;由緊固異向性搭接板之鉚接頭直徑(Diameter by forming, Df)、干涉配合之擴孔(Hole expansion, HE)及機械互 鎖(Interlock, θ)作為分析指標,透過等向性von Mises、異向性Hill48與Barlat91降伏準則所得模擬結果與實驗對比,Barlat91模型具較好的描述準確度。最後,將其Single-lap與Cross-lap試片進行剪切及正向拉拔試驗,觀察其接合強度和試片破壞行為。


    Lightweight structure design is increasingly necessary to fulfill current engineering requirements. The metal additive manufacturing (AM) not only has been becoming a major impact on the development of lightweight structure, but also enables digital archiving of spare part through CAD software, which promotes a total solution for saving outdated inventory or spare parts that are out of production. The lightweight application of metal 3D printing technology in aerospace and transportation industries is gradually popularized, especially the key to the development of the joining technology between the components. Based on the Experimental Aircraft Association (EAA) solid rivet specification to define the indicators of riveting geometry and die design along with the advantages of metal 3D printing manufacturing with the complexity and customization, joining by forming of additively manufactured aluminum alloy part with tenon characteristic in riveting to open-hole (mortise) light alloy sheet to fabricate lightweight structure was proposed in this present study. Among them, the AlSi10Mg aluminum alloy unibody with tenon characteristic was printed by employing selective laser melting (SLM) as well as its tensile and compression properties were obtained at room temperature, further to the compression behavior at elevated temperature with different processing conditions was also examined. The opening (mortise) of Al6061-T6 aluminum alloy plate was made through laser cutting. Furthermore, the yield stress value and r-value (plastic strain ratio) of Al6061-T6 were gained from the uniaxial tensile tests for anisotropic analysis, followed by the Hill48 and Barlat91 yield criteria to describe the effect of mortise sheet anisotropy on plastic deformation during the riveting process. On the other hand, the influence of anisotropic mortise sheet on forging formed joint analysis through the finite element commercial code Simufact Forming was investigated. The diameter by forming (Df), interference caused hole expansion (HE), and mechanical interlock (θ) were used as indicators for comparing the simulation results obtained with isotropic von Mises, anisotropic Hill48 and Barlat91 yield criteria to the real experiments, thus the Barlat91 model held a better description accuracy for all. Subsequently, the single-lap and cross-lap specimens were subjected to shear and normal tension tests to observe the joint strength and the failure behavior.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 文獻回顧 1.3 研究動機與目的 1.4 本文架構 第二章 研究方法及實驗步驟 2.1 AlSi10Mg金屬積層製造 2.1.1 材料粉末及選擇性雷射熔融製程參數 2.1.2 緻密度表現及微觀組織 2.1.3 拉伸及壓縮測試之機械性質及破斷面分析 2.1.4高溫壓縮測試之機械性質 2.2 搭接板鋁合金Al6061-T6之異向性分析 2.2.1 等向性降伏準則 2.2.2 Hill48降伏準則 2.2.3 Barlat91降伏準則 2.2.4材料各方向之降伏應力值及塑性應變比 2.3 鉚接頭幾何設計準則與鍛壓模具設置 2.3.1 榫卯結構之設計 2.3.2定義鉚接幾何之指標 2.3.3 有限元素分析輔助幾何尺寸設計 2.4 有限元素分析之模型建置 2.4.1 CAD及幾何接觸之建置 2.4.2 積層製造之AlSi10Mg材料參數建置 2.4.3 鋁合金Al6061-T6材料參數建置 2.4.4 SKD61材料參數建置 2.4.5 邊界條件與其他參數建置 2.4.6 網格收斂性測試 2.5實驗設備及模具之設置 第三章 模擬與實驗驗證及分析 3.1 接合後之外觀 3.2 鍛壓之溫度曲線驗證分析 3.3 鍛壓之力與位移曲線驗證分析 3.4 塑性成形接合中各降伏準則與實驗之分析 3.4.1 鉚接頭之分析 3.4.2 榫眼之擴孔分析 3.4.3 榫眼厚度方向之機械互鎖分析 第四章 接合強度及破壞行為 4.1 接合後之應力分布 4.2 Single-lap之剪切強度及破壞行為 4.3 Cross-lap之拉拔強度及破壞行為 4.4應力分析與接合強度比較 第五章 結論 參考文獻

    [1] Meschut, G., Merklein, M., Brosius, A., Drummer, D., Fratini, L., Füssel, U., Gude, M., Homberg, W., Martins, P.A.F., Bobbert, M., Lechner, M., Kupfer, R., Gröger, B., Han, D., Kalich, J., Kappe, F., Kleffel, T., Köhler, D., Kuball, C.M., Popp, J., Römisch, D., Troschitz, J., Wischer, C., Wituschek, S., and Wolf. M. (2022). Review on mechanical joining by plastic deformation. Journal of Advanced Joining Processes, 5, 100113.
    [2] Duan, L., Feng, X., Cui, J., Li, G., and Jiang, H. (2021). Effect of angle deflection on deformation characteristic and mechanical property of electromagnetic riveted joint. The International Journal of Advanced Manufacturing Technology, 112, 3529-3543.
    [3] Wu, J., Chen, C., Ouyang, Y., Qin, D., and Li, H. (2021). Recent development of the novel riveting processes. The International Journal of Advanced Manufacturing Technology, 117, 19-47.
    [4] Alves, L. M., Gameiro, J., Silva, C. M. A., and Martins, P. A. F. (2017). Sheet-bulk forming of tubes for joining applications. Journal of Materials Processing Technology, 240, 154-161.
    [5] Alves, L. M., Afonso, R. M., Silva, C. M. A., and Martins, P. A. F. (2018). Joining tubes to sheets by boss forming and upsetting. Journal of Materials Processing Technology, 252, 773-781.
    [6] Alves, L. M., Silva, F. L., Afonso, R. M., and Martins, P. A. (2019). A new joining by forming process for fixing sheets to tubes. The International Journal of Advanced Manufacturing Technology, 104, 3199-3207.
    [7] Alves, L. M., Silva, F. L. R., Afonso, R. M., and Martins, P. A. F. (2019). Joining sheets to tubes by annular sheet squeezing. International Journal of Machine Tools and Manufacture, 143, 16-22.
    [8] Pragana, J. P., Silva, C. M., Bragança, I. M., Alves, L. M., and Martins, P. A. (2018). A new joining by forming process to produce lap joints in metal sheets. CIRP Annals, 67(1), 301-304.
    [9] Pragana, J. P. M., Baptista, R. J. S., Bragança, I. M. F., Silva, C. M. A., Alves, L. M., and Martins, P. A. F. (2020). Manufacturing hybrid busbars through joining by forming. Journal of Materials Processing Technology, 279, 116574.
    [10] Silva, C. M. A., Bragança, I. M. F., Alves, L. M., and Martins, P. A. F. (2018). Two-stage joining of sheets perpendicular to one another by sheet-bulk forming. Journal of Materials Processing Technology, 253, 109-120.
    [11] Bragança, I. M. F., Silva, C. M. A., Alves, L. M., and Martins, P. A. F. (2017). Joining sheets perpendicular to one other by sheet-bulk metal forming. The International Journal of Advanced Manufacturing Technology, 89, 77-86.
    [12] Sampaio, R. F. V., Pragana, J. P. M., Braganca, I. M. F., Silva, C. M. A., and Martins, P. A. F. (2021). Assembly of lightweight sandwich panels through joining by forming. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(7), 1645-1654.
    [13] Contreiras, T. R., Pragana, J. P. M., Bragança, I. M. F., Silva, C. M. A., Alves, L. M., and Martins, P. A. F. (2019). Joining by forming of lightweight sandwich composite panels. Procedia Manufacturing, 29, 288-295.
    [14] Pragana, J. P., Contreiras, T. R., Bragança, I. M., Silva, C. M., Alves, L. M., and Martins, P. A. (2019). Joining by forming of metal–polymer sandwich composite panels. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(10), 2089-2098.
    [15] Baptista, R. J. S., Pragana, J. P. M., Bragança, I. M. F., Silva, C. M. A., Alves, L. M., and Martins, P. A. F. (2020). Joining aluminium profiles to composite sheets by additive manufacturing and forming. Journal of Materials Processing Technology, 279, 116587.
    [16] Silva, D. F., Braganca, I. M., Silva, C. M., Alves, L. M., and Martins, P. A. (2019). Joining by forming of additive manufactured ‘mortise-and-tenon’joints. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(1), 166-173.
    [17] Paul, M. J., Liu, Q., Best, J. P., Li, X., Kruzic, J. J., Ramamurty, U., and Gludovatz, B. (2021). Fracture resistance of AlSi10Mg fabricated by laser powder bed fusion. Acta Materialia, 211, 116869.
    [18] Shi, Q., Qin, F., Li, K., Liu, X., and Zhou, G. (2021). Effect of hot isostatic pressing on the microstructure and mechanical properties of 17-4PH stainless steel parts fabricated by selective laser melting. Materials Science and Engineering: A, 810, 141035.
    [19] Hadadzadeh, A., Amirkhiz, B. S., Li, J., and Mohammadi, M. (2018). Columnar to equiaxed transition during direct metal laser sintering of AlSi10Mg alloy: effect of building direction. Additive Manufacturing, 23, 121-131.
    [20] Patakham, U., Palasay, A., Wila, P., and Tongsri, R. (2021). MPB characteristics and Si morphologies on mechanical properties and fracture behavior of SLM AlSi10Mg. Materials Science and Engineering: A, 821, 141602.
    [21] Delahaye, J., Tchuindjang, J. T., Lecomte-Beckers, J., Rigo, O., Habraken, A. M., and Mertens, A. (2019). Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by Selective Laser Melting. Acta Materialia, 175, 160-170.
    [22] Alghamdi, F., Song, X., Hadadzadeh, A., Shalchi-Amirkhiz, B., Mohammadi, M., and Haghshenas, M. (2020). Post heat treatment of additive manufactured AlSi10Mg: On silicon morphology, texture and small-scale properties. Materials Science and Engineering: A, 783, 139296.
    [23] Bao, J., Wu, Z., Wu, S., Hu, D., Sun, W., and Wang, R. (2022). The role of defects on tensile deformation and fracture mechanisms of AM AlSi10Mg alloy at room temperature and 250 C. Engineering Fracture Mechanics, 261, 108215.
    [24] Dai, S., Deng, Z. C., Yu, Y. J., and Zhu, K. Y. (2021). Microstructure and constitutive model for flow behavior of AlSi10Mg by Selective Laser Melting. Materials Science and Engineering: A, 814, 141157.
    [25] Yang, P., Rodriguez, M. A., Deibler, L. A., Jared, B. H., Griego, J., Kilgo, A., Allen, A., and Stefan, D. K. (2018). Effect of thermal annealing on microstructure evolution and mechanical behavior of an additive manufactured AlSi10Mg part. Journal of Materials Research, 33(12), 1701-1712.
    [26] Yang, P., Stefan, D. K., Rodriguez, M. A., Bradley, D. R., Griego, J., Deibler, L. A., Rodelas, J. M., Carroll, J., and Jared, B. H. (2016). Thermal Characterization of AlSi10Mg Alloy Fabricated by Selective Laser Melting (No. SAND2016-9829C). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
    [27] Jia, W., Ma, L., Le, Q., Zhi, C., and Liu, P. (2019). Deformation and fracture behaviors of AZ31B Mg alloy at elevated temperature under uniaxial compression. Journal of Alloys and Compounds, 783, 863-876
    [28] Takata, N., Kodaira, H., Sekizawa, K., Suzuki, A., & Kobashi, M. (2017). Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Materials Science and Engineering: A, 704, 218-228.
    [29] Patakham, U., Palasay, A., Wila, P., and Tongsri, R. (2021). MPB characteristics and Si morphologies on mechanical properties and fracture behavior of SLM AlSi10Mg. Materials Science and Engineering: A, 821, 141602.
    [30] Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033), 281-297.
    [31] Barlat, F., Lege, D. J., and Brem, J. C. (1991). A six-component yield function for anisotropic materials. International journal of plasticity, 7(7), 693-712.
    [32] Goto, K., Imai, K., Arai, M., and Ishikawa, T. (2019). Shear and tensile joint strengths of carbon fiber-reinforced thermoplastics using ultrasonic welding. Composites Part A: Applied Science and Manufacturing, 116, 126-137.
    [33] Jiang, H., Cong, Y., Zhang, J., Wu, X., Li, G., and Cui, J. (2019). Fatigue response of electromagnetic riveted joints with different rivet dies subjected to pull-out loading. International Journal of Fatigue, 129, 105238.
    [34] Baras, P., and Sawicki, J. (2020). Numerical analysis of mechanical properties of 3D printed aluminium components with variable core infill values. Journal of Achievements in Materials and Manufacturing Engineering, 103(1), 16-24.
    [35] Xiaohui, J., Chunbo, Y., Honglan, G., Shan, G., and Yong, Z. (2022). Effect of supporting structure design on residual stresses in selective laser melting of AlSi10Mg. The International Journal of Advanced Manufacturing Technology, 1-12.
    [36] Kurukuri, S., Miroux, A., Ghosh, M., and van den Boogaard, A. H. (2009). Effect of temperature on anisotropy in forming simulation of aluminum alloys. International journal of material forming, 2, 387-390.
    [36] Yoon, J. W., Barlat, F., Dick, R. E., Chung, K., & Kang, T. J. (2004). Plane stress yield function for aluminum alloy sheets—part II: FE formulation and its implementation. International Journal of Plasticity, 20(3), 495-522.
    [37] Geiger, M., Hußnätter, W., and Merklein, M. (2005). Specimen for a novel concept of the biaxial tension test. Journal of Materials Processing Technology, 167(2-3), 177-183.
    [38] Nasr, M. N., Ng, E. G., and Elbestawi, M. A. (2008). A modified time-efficient FE approach for predicting machining-induced residual stresses. Finite Elements in Analysis and Design, 44(4), 149-161.
    [39] Afazov, S. M., S. M. Ratchev, and J. Segal. "Prediction and experimental validation of micro-milling cutting forces of AISI H13 steel at hardness between 35 and 60 HRC." The International Journal of Advanced Manufacturing Technology 62 (2012): 887-899.
    [40] Na, Y. S., Yeom, J. T., Park, N. K., & Lee, J. Y. (2003). Simulation of microstructures for Alloy 718 blade forging using 3D FEM simulator. Journal of Materials Processing Technology, 141(3), 337-342.
    [41] Orowan, E. G. O. N. (1943). The calculation of roll pressure in hot and cold flat rolling. Proceedings of the Institution of Mechanical Engineers, 150(1), 140-167.
    [42] Lee, S., Lee, J., and Joun, M. (2020). On critical surface strain during hot forging of lubricated aluminum alloy. Tribology International, 141, 105855.
    [43] Hu, C., Ding, T., Ou, H., and Zhao, Z. (2019). Effect of tooling surface on friction conditions in cold forging of an aluminum alloy. Tribology International, 131, 353-362.
    [44] Fong, K. S., Atsushi, D., Kumar, D., Ong, W. K., and Jirathearanat, S. (2021). Mechanical Properties of Aluminium/Stainless Steel Bimetal Composite Fabricated by Extrusion Process. In Forming the Future: Proceedings of the 13th International Conference on the Technology of Plasticity (pp. 1383-1394). Springer International Publishing.
    [45] Duan, L., Feng, X., Cui, J., Li, G., and Jiang, H. (2021). Effect of angle deflection on deformation characteristic and mechanical property of electromagnetic riveted joint. The International Journal of Advanced Manufacturing Technology, 112, 3529-3543.
    [46] Li, M., Tian, W., Hu, J., Wang, C., and Liao, W. (2021). Study on shear behavior of riveted lap joints of aircraft fuselage with different hole diameters and squeeze forces. Engineering Failure Analysis, 127, 105499.

    無法下載圖示 全文公開日期 2025/08/07 (校內網路)
    全文公開日期 2025/08/07 (校外網路)
    全文公開日期 2025/08/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE