簡易檢索 / 詳目顯示

研究生: 周宛婷
WAN-TING CHOU
論文名稱: 電極設計方法應用於壓電陶瓷平板與雙晶片提升振動能量擷取系統效能研究
The application study of electrode design in vibrating piezoceramic plate and bimorphs for energy harvesting
指導教授: 黃育熙
Yu-Hsi Huang
趙振綱
Ching-Kong Chao
口試委員: 馬劍清
Chien-Ching Ma
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 220
中文關鍵詞: 壓電陶瓷平板壓電陶瓷雙晶片電極設計共振頻率振動模態電子斑點干涉術、阻抗分析儀雷射都卜勒振動儀光功率計有限元素法三維耦合振動
外文關鍵詞: piezoceramic plate, electrode design, AF-ESPI, impedance analyzer, optical power meter, power meter, three-dimensional coupling vibration
相關次數: 點閱:475下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對壓電陶瓷材料進行能量擷取系統的整合研究與分析,探討單層的壓電陶瓷平板和加強結構剛性與機電耦合效率的多層組合壓電陶瓷雙晶片的差異,並且利用了不同電極切割設計、電極連接方法與極化方向堆疊的方式等,進行實驗量測與數值計算的比較。爾後,探討壓電陶瓷材料的動態特性以及其振動發電效率,並評估單層壓電陶瓷平板振動與發電效率的電極設計方法,和多層壓電雙晶片的極化方向堆疊形式之振動與發電效率。
    本研究之壓電材料實驗量測使用三種量測設備來協助進行分析,包括全域式的電子斑點干涉術(Electric Speckle Pattern Interferometry,簡稱ESPI)可針對壓電材料進行即時量測,記錄三維振動的模態振形與共振頻率的參考依據;雷射都卜勒振動儀(Laser Doppler Vibrometer,簡稱LDV)可針對壓電材料單點的面外(out-of-plane)振動進行穩態掃頻量測位移分析,並且可以獲得壓電材料的面外共振頻率;阻抗分析儀(Impedance Analyzer)則針對壓電材料的電性作量測,可獲得面內振動的共振頻率,同時亦可獲得反共振頻率。對於壓電材料的動態特性有了詳細的了解後,透過改變電壓和頻率去驅動振動器以激振壓電試片,擷取壓電材料因為正壓電效應而產生的交流與直流電壓,並接上發光二極體配合光功率計量測其光強度變化。所有實驗量測結果皆與有限元素數值計算進行分析比較,結果得到無論在共振頻率或振動模態的比較上皆可互相對應,正規化位移量比較理論解析與實驗量測皆與壓電材料於各方向振動之強度相符,更提出有限元素計算之電動勢梯度(Electrical Potential Gradient Vector and Magnitude,EPG)來預測模態效率並與實驗結果相互對應,作為電極設計與機電耦合效率的指標,故以電極設計的方式有效地提升模態的效率。最後將單層壓電陶瓷平板與串聯型、並聯型的壓電陶瓷雙晶片以串聯連接方式進行逆壓電效應與能量擷取系統實驗量測,獲得串聯型壓電陶瓷雙晶片以串聯連接方式有最佳的模態效率,而並聯型壓電陶瓷雙晶片以串聯連接方式與單層陶瓷平板的模態效率呈現相似地效果。


    The energy harvesting systems of piezoelectric material are investigated in this project. The piezoceramic plate and bimorphs are used to perform the vibration characteristics by experimental measurements and finite element method (FEM). Thereafter, the dynamic characteristics and the electromechanical coupling efficiency of the piezoelectric energy harvesting system are studied by the electrode design method of the single-layer piezceramic plate and by series electrically connection of piezoelectric bimorphs with different polarizations. This study thoroughly analyzed vibration dynamic characteristics of piezoelectric materials by experimental measurements and numerical calculations. Several experimental techniques are used to measure the dynamic characteristics of piezoelectric materials. First, the full-filed optical technique, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), can measure simultaneously the resonant frequencies and mode shapes for out-of-plane and in-plane vibrations. Second, the pointwise measurement system, laser Doppler vibrometer (LDV), can obtain resonant frequencies by dynamic signal swept-sine analysis. Third, the correspondent in-plane resonant frequencies and anti-resonant frequencies are obtained by impedance analysis. The experimental results of vibration characteristics are verified with numerical calculations. After the dynamic characteristics of piezoelectric materials are analyzed in converse piezoelectric effect, the piezoelectric materials are excited by shaker to generate the electric voltage and applied on the stimulation of LED. It has excellent consistence between resonant frequencies and mode shapes on the vibration characteristics by experimental measurements and finite element numerical calculations. In this study, the Electrical Potential Gradient (EPG) calculated by FEM is proposed to evaluate the electromechanical coupling efficiency of piezoceramic plate on the specific vibration mode. The correspondent electrode configuration, which is designed by EPG, can produce the best electromechanical transfer both in direct and converse piezoelectric effects. Finally, the series piezoelectric bimorpf in series connection shows the best out put of electric voltage and light intensity of LED, than the case of parallel piezoelectric bimorph in series connection and single-layer piezoceramic plate. It is concluded that the vibration characteristics of piezoelectric materials have excellent consistence determined by experimental measurements and FEM.

    目錄 摘要 Ι ABSTRACT III 誌謝 V 目錄 VII 符號索引 IX 圖目錄 XIII 表目錄 XIX 第一章 緒論 1 1.1 研究動機、方法、步驟 1 1.2 文獻回顧 3 1.3 內容介紹 9 第二章 壓電材料基本原理 13 2.1 壓電基本理論 13 2.2 壓電材料常數轉換 16 第三章 實驗原理與架設 21 3.1 電子斑點干涉術 21 3.1.1 斑點效應(Speckle Effect) 21 3.1.2 電子斑點干涉術架設原理、方法、步驟 21 3.2 雷射都卜勒振動儀 26 3.2.1 邁克森干涉原理 28 3.2.2 雷射都卜勒振動儀量測原理 30 3.2.3 雷射都卜勒振動儀量測動態信號系統 33 3.3 阻抗分析儀 35 3.4 振動器 42 3.5 整流器 43 3.6 光功率計 44 第四章 壓電試片與邊界條件 49 4.1 單層壓電陶瓷平板 49 4.1.1 壓電陶瓷平板理論解析 49 4.1.2 單層壓電陶瓷平板簡介 51 4.2 壓電陶瓷雙晶片 54 4.2.1 壓電陶瓷雙晶片簡介 54 4.2.2 壓電陶瓷雙晶片理論方程組 58 第五章 壓電試片之逆壓電效應 61 5.1 實驗方法與量測步驟 61 5.2 數值分析 66 5.3 實驗量測與數值計算結果比較 70 5.4 討論 119 第六章 壓電材料於能量擷取系統之應用 135 6.1 實驗方法與量測步驟 135 6.2 數值分析 141 6.3 實驗量測與數值計算結果比較 144 6.6 討論 190 第七章 結論與未來展望 207 7.1 結論 207 7.2 未來展望 209 參考文獻 211 附錄 217 A. AF-ESPI儀器設備之詳細資料 217 B. 振動器(DP-SHAKER)規格 218

    參考文獻
    [1]Lloyd, P. and Redwood, M., “Finite-difference method for the investigation of the vibrations of solids and the equivalent-circuit characteristics of piezoelectric resonators, Parts I and II,” J. Acoust. Soc. Am. Vol. 39, pp. 346-361, 1966.
    [2]Tiersten, H.F., Linear Piezoelectric Plate Vibrations. New York: Plenum, 1969
    [3]IEEE standard on piezoelectricity. IEEE Ultrasonics Ferroelectrics and Frequency Control Society, ANSI/IEEE Std 176-1987.
    [4]Tzou, H.S., Piezoelectric shells: distributed sensing and control of continua. Kluwer Academic Publishers, 1993.
    [5]Heywang, W., Lubitz, K. and Wersing, W., Piezoelectricity-evolution and future of a technology. Springer, 2008.
    [6]Butters, J.N. and Leendertz, J.A., “Speckle pattern and holographic techniques in engineering metrology,” Optics and Laser Technology, 3(1), pp. 26-30, 1971.
    [7]Hgmoen, K. and Lkberg, O.J., “Detection and measurement of small vibrations using electronic speckle pattern interferometry,” Applied Optics, 16(7), pp. 1869-1875, 1977.
    [8]Wykes, C., “Use of electronic speckle pattern interferometry/ESPI/ in the measurement of static and dynamic surface displacements,” Optical Engineering, 21, pp.400-406, 1982.
    [9]Nakadate, S., Saito, H. and Nakajima, T., “Vibration measurement using phase-shifting stroboscopic holographic interferometry,” Journal of Modern Optics, 33(10), pp. 1295-1309, 1986.
    [10]Wang, W.C, Hwang, C.H, and Lin, S.Y, “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods”, Applied Optics, Vol. 35, No. 22, pp.4502-4509, 1996.
    [11]Ma, C.C. and Huang, C.H., “Experimental and numerical analysis of vibrating cracked plates at resonant frequencies,” Experimental Mechanics, 41(1), pp. 8-18, 2001.
    [12]Ma, C.C. and Huang, C.H., “Experimental full field investigations of resonant vibrations for piezoceramic plates by an optical interferometry method,” Experimental Mechanics, 42(2), pp. 140-146, 2002.
    [13]Lee, C.K. and Wu, G.Y., “High performance doppler interferometer for advanced optical storage systems,” Japanese Journal of Applied Physics, 38(3B), pp. 1730-1741, 1999.
    [14]Ma, C.C., Lin, H.Y., Lin, Y.C. and Huang Y.H., “Experimental and numerical investigations on resonant characteristics of a single-layer piezoceramic plate and a cross-ply piezolaminates composite plate,” Journal of the Acoustical Society of America, 119(3), pp. 1476-1486, 2006.
    [15]Cady, W.G., Piezoelectricity. McGraw-Hill Book Co. Inc., New York, 1946.
    [16]Mason, W.P., Piezoelectric crystals and their application to ultrasonics. New York: Van Nostrand, 1950.
    [17]Henry A. Sodano, Daniel J. Inman and Gyuhae Park, “Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries,” Journal of Intelligent Material Systems and Structures, 2005.
    [18]Steven R Anton and Henry A Sodano, “A review of power harvesting using piezoelectric materials (2003-2006)” , Smart Materials and Structures, vol. 16, No. 3, 2007.
    [19]Guan, M.J. and Liao, W.H., “Characteristics of Energy Storage Devices in PiezoelectricEnergy Harvesting Systems,” Journal of Intelligent Material Systems and Structures, 2007.
    [20]Kimberly Ann Cook-Chennault, Nithya Thambi, Mary Anne Bitetto and E.B. Hameyie, “Piezoelectric Energy Harvesting a Green and Clean Alternative for Sustained Power Production,” Bulletin of Science Technology & Society, 2008.
    [21]Liang, J. and Liao, W.H., “Energy Harvesting and Dissipation with Piezoelectric Materials”, IEEE International Conference on Information and Automation, pp. 446-451, June 20 -23, 2008.
    [22]Christopher A Howells, “Piezoelectric energy harvesting,” Energy Conversion and Management, 50, 2009.
    [23]Carlos De Marqui Junior, Alper Erturk, Daniel J. Inman, “An electromechanical finite element model for piezoelectric energy harvester plates”, Journal of Sound and Vibration, pp. 9–25, 2009.
    [24]Robiah Ahmad, Mohd Hanifah Hashim, “Development of Energy Harvesting Device using Piezoelectric Material”, IEEE, 2011.
    [25]Erturk, A., Tarazaga, P. A., Farmer, J. R., Inman, D. J., “Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams”, Journal of Vibration and Acoustics, Vol. 131, 2009.
    [26]Chen, C.P., Huang, C.H., Chen, Y.Y., “Vibration analysis and measurement for piezoceramic rectangular plates in resonance”, Journal of Sound and Vibration 326, pp. 251–262, 2009.
    [27]Michael I. Friswell and Sondipon Adhikari, “Sensor shape design for piezoelectric cantilever beams to harvest vibration energy”, Journal of Applied Physics 108, 2010.
    [28]Krushynska, A., Meleshko, V., Ma, C.C., and Yu-Hsi Huang, “Mode Excitation Efficiency for Contour Vibrations of Piezoelectric Resonators”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 10, pp.2222-2238, October 2011.
    [29]Kim, S.H., Ahn, J.H., Chung, H.M., Kang, H.W., “Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system”, Sensors and Actuators A, 167, pp. 468-483, 2011.
    [30]Wang, S.Y., “A finite element model for the static and dynamic analysis of a piezoelectric bimorph,” International Journal of Solids and Structures, 41, pp. 4075-4096, 2004.
    [31]Ma, C.C., Lin, Y.C., Huang, Y.H. and Lin, H.Y., “Experimental measurement and numerical analysis on resonant characteristics of cantilever plates for piezoceramic bimorphs,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(2), pp. 227-239, 2007.
    [32]Zhang, S., Alberta, E.F., Eitel, R.E., Randall, C.A. and Shrout, T.R., “elastic, piezoelectric, and dielectric characterization of modified BiScO3-PbTiO3 ceramics,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(11), pp. 2131-2139, 2005.
    [33]Wu, J.H., Liu, A.Q. and Chen, H.L., “Exact solutions for free-vibration analysis of rectangular plates using bessel functions,” Journal of Applied Mechanics, 74, pp. 1247, 2007.
    [34]Hibbeler, R.C., Mechanics of materials. 3rd edition, Prentice Hall Press, 1997.
    [35]黃育熙,”壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實驗量測、數值計算與理論分析”,國立台灣大學工學院機械工程學系博士論文,中華民國98年10月。
    [36]王泰然,”壓電振動平板的能量收集與轉換”,大葉大學機械工程研究所碩士論文,中華民國95年6月。
    [37]李柏勳,”壓電懸臂樑式微型能量擷取器之研究”,國立台灣大學工學院工程科學及海洋工程研究所博士論文,中華民國99年1月。
    [38]“基本壓電材料學”,池田拓郎著、陳世春譯,復漢出版社出版,中華民國74年7月。
    [39]林憲陽,”壓電陶瓷複合層板動態特性之數值分析與實驗量測”,國立台灣大學機械工程研究所博士論文,中華民國91年6月。
    [40]黃吉宏,”應用電子斑點干涉術探討三維壓電材料體及含裂紋板的振動問題”,國立台灣大學機械工程研究所博士論文,中華民國87年6月。
    [41]“壓電力學”,周卓明,全華科技圖書股份有限公司出版,中華民國92年11月。
    [42]曾國順,”壓電纖維複材與壓電陶瓷雙晶片的動態特性及應用於能量擷取系統之探討”,國立台灣大學工學院機械工程學系碩士論文,中華民國101年7月。
    [43]翁嘉駿,”工具機動件結構最佳化設計與分析”,中原大學機械工程學系碩士論文,中華民國94年7月。

    QR CODE