簡易檢索 / 詳目顯示

研究生: 張仕翰
SHIH-HAN CHANG
論文名稱: 積層製造結構於軟硬異質層疊材料之動態特性
Dynamic Characteristics of Additive Manufacturing Based on Dual Materials of Heterogeneity
指導教授: 劉孟昆
MENG-KUN LIU
黃育熙
YU-HSI HUANH
口試委員: 趙振綱
CHING-KONG CHAO
洪光民
GUANG-MIN HONG
劉孟昆
MENG-KUN LIOU
黃育熙
YU-HSI HUANH
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 151
中文關鍵詞: 積層製造黏彈材料複合材料共振頻率黏彈參數
外文關鍵詞: additive manufacturing, viscoelastic material, composite material, natural frequency, Prony series
相關次數: 點閱:178下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用積層製造的方法製作出複合材料來探討異質材料機械性質,使用聚合物噴射(PolyJet)光固化成形的列印方式列印出軟質硬質材料的疊層試片,首先軟質材料以黏彈材料為模型,利用拉伸試驗以及應力鬆弛得到所需的參數,再將參數匯入於有限元素分析建立出黏彈模型使用的Prony series,接著利用動態實驗來撞擊雙材料的試片,量測結構振動頻率,再將所得到的頻率套入白努利-尤拉樑理論反算楊氏係數,接著利用有限元素分析模擬自然共振頻率以及利用動態撞擊模擬,分別驗證實驗的準確性以及黏彈材料的動態特性,由相互比較的結果可以清楚的發現,本研究的模型在有無考慮黏彈特性的情況下可以得到明顯的差異性,黏彈材料在低頻時因為較容易吸收震動而剛性較弱,反之在高頻時不易吸收震動而剛性較強,本研究也利用多種不同軟硬程度組合的黏彈材料複合硬質材料模型來驗證此特性,並比較對稱與非對稱異質材料組合以及不同材料厚度比來比較之差異性。


    In this study, the hard and soft compounded, additive manufacturing is used to investigate the mechanical properties of composite materials. We use PolyJet method to print soft and hard material as the composite structural beam. First, the soft material with viscoelastic property used the tensile test and stress relaxation to obtain the parameters, and then using the parameters import the finite element analysis to establish Prony series, using dynamic experiments to impact the composite-material specimen, the equivalent elastic constant is measured by inversely calculation from the first natural mode, according to the Euler–Bernoulli beam theory. Recalculating by the finite element analysis to simulate the natural frequency and use dynamic impact simulation, the accuracy of the experiment measurement was verified in the dynamic properties of the viscoelastic material.
    Viscoelastic materials at low frequency has a lower rigidity because of vibrating absorption. Contrary, the viscoelasticity at high frequency has a higher rigidity. This study also uses the differently compounded models to verify the dynamic characteristic of material property, The difference between symmetric and asymmetric heterogeneous materials, and different thickness ratios, respectively, is also discussed on the applicability material properties in accurately of structural natural frequencies.

    中文摘要 I Abstract II 誌謝 I 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1研究背景、動機與目的 1 1.2文獻回顧 2 1.3內容介紹 4 第二章 基本理論介紹 5 2.1異向性力學理論 5 2.1.1非等向性材料(Anisotropic Material) 5 2.1.2正交性材料(Orthotropic Material) 6 2.1.3等向性材料(Isotropic Material) 9 2.2線黏彈理論理論 11 2.2.1機械性質試驗 11 2.2.2黏彈數學模型 12 2.3懸臂梁振動理論 14 2.3.1懸臂梁彎曲模態(Bending Mode)與側向模態(Lateral Mode) 14 2.3.2懸臂梁扭轉模態(Torsional Mode) 16 2.3.3懸臂梁軸向模態(Longitudinal mode) 18 2.4傅立葉轉換(Fourier transform) 19 第三章 實驗儀器設備 23 3.1光固化成型 23 3.2雷射都卜勒振動儀(Laser Doppler Vibrometer,LDV) 24 3.3應變計與應變規(Strain Gage Indicator/Strain Gage) 25 3.4拉伸試驗(Tensile testing) 25 3.5迴轉式動態流變儀(Rheometer) 26 第四章 積層製造軟硬質疊層對稱結構動態特性 33 4.1硬質材料實驗結果 34 4.2硬質材料加(Shore A 40)實驗結果 35 4.3硬質材料加(Shore A 50)實驗結果 38 4.4硬質材料加(Shore A 60)實驗結果 40 4.5硬質材料加(Shore A 70)實驗結果 42 4.6硬質材料加(Shore A 85)實驗結果 44 4.7硬質材料加(Shore A 95)實驗結果 46 4.8組合材料 48 第五章 積層製造軟硬質材料非對稱與厚度比例適用性 98 5.1硬質材料加Shore A 70(非對稱)_實驗結果 99 5.2硬質材料加Shore A 85(非對稱)_實驗結果 101 5.3非對稱結構綜合討論 103 5.4硬質材料加Shore A 85 (軟層0.9mm)_實驗結果 104 5.5硬質材料加Shore A 85 (軟層1.2mm)_實驗結果 105 5.6硬質材料加Shore A 85 (軟層1.5mm)_實驗結果 107 5.7軟硬材料不同厚度比例綜合討論 109 第六章 結論與展望 137 6.1本文成果 139 6.2未來工作 141 參考文獻 143 附錄 147 A. 光固機台_ Stratasys J750 147 B. 雷射都卜勒振動儀規格 148 C. 應變規(Strain Gage)規格 150 D. 拉伸試驗機(Series 40)規格 150 E. 流變儀(MCR 102)規格 141

    [1] Li, L., Sun, Q., Bellehumeur, C., and Gu, P., Composite Modeling and Analysis for Fabrication of FDM Prototypes with Locally Controlled Properties. Journal of Manufacturing Processes, 2002. 4(2): p. 129-141.
    [2] Sung-Hoon Ahn, M.M., Dan Odell, Shad Roundy and Paul K. Wright, Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 2002. 8(4): p. 248-257.
    [3] Lee, C.S., Kim, S. G., Kim, H. J., and Ahn, S. H., Measurement of anisotropic compressive strength of rapid prototyping parts. Journal of Materials Processing Technology, 2007. 187–188(0): p. 627-630.
    [4] Scholz, M.S., B.W. Drinkwater, and R.S. Trask, Ultrasonic assembly of anisotropic short fibre reinforced composites. Ultrasonics, 2014. 54(4): p. 1015-1019.
    [5] Vallittu, P.K., High-aspect ratio fillers: Fiber-reinforced composites and their anisotropic properties. Dental Materials, 2015. 31(1): p. 1-7.
    [6] Tymrak, B.M., M. Kreiger, and J.M. Pearce, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design, 2014. 58(0): p. 242-246.
    [7] J. D. Ferry, Viscoealstic Properties of Polymer, 3rd edition, John Wiley and SonsInc., New York, 1980.
    [8] P. H. Mott, J. R. Dorgan and C. M. Roland, “The bulk modulus and Poisson’s ratio of “incompressible” materials,” Journal of Sound and Vibration, Vol. 312, pp. 572-575, 2008.

    [9] Der-Song Lin, Student Member, IEEE, Xuefeng Zhuang, Member, IEEE,
    Serena H. Wong, Member, IEEE,Mario Kupnik, Senior Member, IEEE, and
    Butrus Thomas Khuri-Yakub, Fellow, IEEE, “Encapsulation of Capacitive
    Micromachined Ultrasonic Transducers Using Viscoelastic Polymer”,
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 19,
    NO. 6, DECEMBER 2010
    [10] Kyukwon Bang and H.-Y. Jeong*,“Combining stress relaxation and
    rheometer test results in modeling a polyurethane stopper†”, Journal of
    Mechanical Science and Technology 26 (6) (2012) 1849~1855.
    [11] X.-F.Li, A unified approach for analyzing static and dynamic behaviors of
    functionally graded Timoshenko and Euler–Bernoulli beams, JOURNAL OF
    SOUND AND VIBRATION, Journal of Sound and Vibration 318 (2008),
    p.1210–1229.
    [12] 傅志紅,喻堅,魏靈嬌,聚碳酸脂的應力鬆弛實驗及樹數據處理分析.塑料工
    業第42卷第6期
    [13] 鄭明昌, 碳纖複合材料吸水性質及應變量測方法研究. 國立雲林科技大
    學工程科技研究所博士論文, 2005年12月.
    [14] Ronald F.Gibson, PRINCIPLE OF COMPOSITE MATERIAL MECHANICS,
    CRC Press.
    [15] Signal conditioner model 2775AM4. ENDEVCO Corporation, 2008.
    [16] Polytec, PDV-100 Vibrometer Education Kit.
    [17] Ma, C.C., Y.H. Huang, and S.Y. Pan, Investigation of the transient behavior of a cantilever beam using PVDF sensors. Sensors, 2012. 12(2): p. 2088-2117.
    [18] Andrew Pytel, J.K.著. and 余念一譯,材料力學.高立圖書有限公司, 2013年.
    [19] Bent, A.A. and N.W. Hagood, Piezoelectric fiber composites with interdigitated electrodes. Journal of Intelligent Material Systems and Structures, 1997. 8(11): p. 903-919.
    [20] McMahon, G.W., Measurement of Poisson's Ratio in Poled Ferroelectric Ceramics. Ultrasonics Engineering, IEEE Transactions on, 1963. 10(2): p. 102-103.
    [21] IEEE Standard Definitions and Methods of Measurement for Piezoelectric Vibrators. IEEE Std No.177, 1966: p. 1.
    [22] Maeda, R., Tsaur, J. J., Lee, S. H., and Ichiki, M., Piezoelectric Microactuator Devices. Journal of Electroceramics, 2004. 12(1-2): p. 89-100.
    [23] Park, J.-M., Joung-Man, Kong, Jin-Woo, Kim, Dae-Sik, and Yoon, Dong-Jin, Nondestructive damage detection and interfacial evaluation of single-fibers/epoxy composites using PZT, PVDF and P(VDF-TrFE) copolymer sensors. Composites Science and Technology, 2005. 65(2): p. 241-256.
    [24] Campoli, G., et al., Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Materials & Design, 2013. 49(0): p. 957-965.
    [25] Chuang, K.C., Lin, S. H., Ma, C. C., and Wu, R. H., Application of a fiber bragg grating-based sensing system on investigating dynamic behaviors of a cantilever beam under impact or moving mass loadings. IEEE Sensors Journal, 2013. 13(1): p. 389-399.
    [26] Amin Yavari, S., Ahmadi, S. M., van der Stok, J., Wauthle, R., Riemslag, A. C., Janssen, M., Schrooten, J., Weinans, H., and Zadpoor, A. A., Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2014. 36(0): p. 109-119.
    [27] I-Kuan Lin; Kuang-Shun Ou ;Yen-Ming Liao;Yan Liu;Viscoelastic Characterization and Modeling of Polymer Transducers for Biological Applications.Journal of Microelectromechanical Systems 18(5):1087 - 1099 • November 2009 with 59 Reads
    [28] 許明發, 柯哲豪, 劉顯光, and 郭文雄, 複合材料入門. 中華民國尖端材料科技協會, 94年8月.
    [29] 黃泰榮, 積層製造材料與噴頭壓電陶瓷之異向性力學材料常數
    量測,國立臺灣科技大學機械工程系碩士論文, 104年6月.
    [30] 黃柏鈞, 積層製造材料於異向性力學以複合材料薄樑結構進行
    振動特性分析與應用,國立臺灣科技大學機械工程系碩士論文, 106年6
    月.

    QR CODE