簡易檢索 / 詳目顯示

研究生: 陳廷亞
Ting-Ya Chen
論文名稱: 對於金屬、複材銑削之微鑽孔破壞系統分析
The Micro-drilling Damage Model Analysis of Metals and Composites
指導教授: 劉孟昆
Meng-Kun Liu
口試委員: 黃育熙
Yu-Hsi Huang
藍振洋
Jen-Yang Lan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 鑽孔金屬複合材料推力
外文關鍵詞: Drilling, Metals, Composites, Thrust force
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑽孔係指多刃工具對工件實施切削加工之過程,並廣泛運用於機械加工中。刀具依照加工方式與尺寸的不同,有中心鑽、直柄銑刀等不同型式。過去鑽孔製程多半運用於金屬材料加工,用以製作家電、或車體板金等部件。而近年複合材料之開發越趨進步,結構重量相對輕盈,但硬度卻不遜於金屬材料之材料特性,此材料遂成為航太產業近年技術開發之重鎮項目。而於電路板孔洞加工中,則使用著尺寸相對小了許多之微鑽針。
    鑽孔加工製程中,刀具與工件表面接觸破壞產生推力(thrust force)。該行為若持續發生,刀具刃面本身將發生磨耗而變鈍,甚至導致斷針之狀況。故預測鑽針於製程中之所受推力情形,或是磨耗狀況,有助於加工者節省成本,遂成為該產業鏈中重要之一環。
    本研究意圖建立一能穩定擷取推力數值之鑽孔加工系統,並利用Johnson-Cook破壞準則分析金屬材料,以及利用Hashin破壞準則分析複合材料加工之過程,應用加工中轉速增大將使切削推力下降之現象,驗證其本研究模擬之吻合程度,已期建立一有效能預測鑽孔製程力學現象之模型,對未來相關加工產業有所臂助。


    Drilling is one kind of cutting process with mutli-edged tools, and it is widely used in the mechanical manufacturing. Due to the different processing types and tool sizes, there are many kinds of tools such as center drills or straight handle cutters. In the past, drilling process is usually used in metal machining process to make the panel-beating of car shells or home appliances. However, the development of composite materials is progressing steadily. The weight of composite materials is lighter than metals, but they have the same hardness in structure. This material becomes the important project in the development of aerospace industry. In the process of circuit board manufacturing, it uses micro-drills, which are much smaller than normal tools.
    Drilling process produces thrust force from the interaction between the surface of tool and the workpiece. If this situation is kept continuously, the wear happens on the blade surface and makes the tool blunt and even breaking. Therefore it is helpful for factory to save the cost by predicting the thrust force in the drilling process. It becomes the important part of industrial chain.
    This research aims to establish a milling process system which can capture the thrust force steadily and analyze metal material milling by Johnson-Cook criteria. In the case of composite material, it used Hashin criteria to analyze the machining process. It applies the phenomenon that larger spin rate makes smaller thrust force to validate the simulation in this research. This research also expects to establish a model to simulate the cutting phenomenon in the drilling process effectively.

    目錄 論文摘要 I Abstract II 致謝 III 表索引 VII 圖索引 VIII 符號表 XI 第一章 緒論 1 1.1 研究背景、動機與目的 1 1.2 文獻回顧 3 1.2.1 微鑽針加工之力學特性 3 1.2.2 金屬微銑削於有限元素模擬 5 1.2.3 複合材料微銑削於有限元素模擬 8 1.3 論文架構 10 第二章 理論基礎 12 2.1 鑽孔原理與特性 12 2.1.1 金屬切削 12 2.1.2 複合材料切削 13 2.2 有限元素法 14 2.3 金屬材料破壞理論 16 2.3.1 Johnson-Cook破壞理論 16 2.3.2 Johnson-Cook之參數驗證 17 2.4 微型鑽針鑽孔複合材料之特性 19 2.4.1 複合材料簡介 19 2.4.2 單、多層板基本構造 20 a. 單層複合材料 20 b. 多層複合材料 20 2.4.3 複材多層板理論簡介 21 2.4.4 Hashin破壞理論 22 第三章 微鑽針鑽孔實驗設計 24 3.1 微鑽針鑽孔系統 24 3.2 有限元素分析設計 27 3.2.1 微鑽針鑽孔之有限元素模型 27 3.2.2 材料性質設定 28 3.2.3 邊界條件設定 30 3.2.4 網格形式 30 3.3 實驗設備 31 3.3.1 硬體設備 31 3.3.2 軟體設備 36 3.4 實驗步驟 36 第四章 鑽孔加工之實驗與模擬 39 4.1 鑽孔加工推力分析 39 4.1.1 金屬材料鑽孔推力分析 39 4.1.2 複材鑽孔推力分析 48 4.1.3 FFT濾波與推力波型修正 53 4.2 Johnson-Cook破壞參數驗證模擬 57 4.3 CFRP材料模擬預測 67 第五章 結果與討論 69 5.1 結論 69 5.2 研究貢獻 70 5.3 未來展望 70 參考文獻 71 附錄 74

    [1]Shaw, M.C.,Oxford, C.J., “On the Drilling of Metals 2-The Torque and Thrust in Drilling,” Transactions of The ASME, pp.139-148,1957.
    [2]A.K.Pal, A.Bhattacharyya, G.C.Sen. Investigation of the torque in drilling ductile materials. International journal machining tool design & research., vol.4, pp.205-221, 1965.
    [4]E.Usui, T.Shirakashi. Analytical prediction of cutting tool wear. Wear, vol.100, pp.129-151, 1984.
    [5]C.Rubenstein. The torque and thrust force in twist drilling-I. theory. International journal machining tools manufacture, vol.31, No.4, pp.481-489.
    [6]S.C.Lin, C.J.Ting. Tool wear monitoring in drilling using force signals. Wear, vol.180, pp.53-60, 1995.
    [7]M.Elhachimi, S.Torbaty, P.Joyot. Mechanical modelling of high speed drilling. 1: predicting torque and thrust. International journal of machine tools & manufacture, vol.39, pp.553-568, 1999.
    [8]B.K.Hinds, G.M.Treanor. Analytical of stresses in micro-drills using the finite element method. International journal of machine tool, Vol.40, pp.1443-1456, 2000.
    [9]M.Rahman, A.Senthil Kumar, J.R.S.Parkash. Micro milling of pure copper. Journal of materials processing technology, vol.116, pp.39-43, 2001.
    [10]Z.Zhang, V.I.Babitsky. Finite element modeling of a micro-drill and experiments on high speed ultrasonically assisted micro-drilling. Journal of sound and vibration, vol.330, pp.2124-2137, 2011.
    [11]白廷文, “微型鑽針之靜態與動態應力分析” ,國立台灣科技大學碩士論文民國103年
    [12]G.R.Johnson, W.H.Cook. Fracture characterisitics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering fracture machanics, vol.21, No.1, pp.31-48, 1985
    [13]M.Rahman, A.Senthil Kimar,J.R.S.Parkash. Micro milling of pure copper. Journal of materials processing technology, vol.116, pp.39-43, 2001.
    [14]Y.B.Guo, D.W.Yen. A FEM study on mechanisms of discontinuous chip formation in hard machining. Journal of materials processing technology, vol.155-156, pp.1350-1356, 2004
    [15]D.Umbrello, R.M’Saoubi, J.C.Outeiro. The inflrence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel. International journal of machine tools & manufacture, vol.47, pp.462-470, 2007.
    [16]Y.Yang, J.Sun. Finite element modeling and simulation of drilling of titanium alloy. 2nd international conference on information and computing science, 2009.
    [17]W.Miezczak, k.Lis,. FEM temperature modeling in drilling process.14th international research/expert conference “Trends in the development of machinery and associated technology”, 2010.
    [18]A.shrot, M.Baker. Determination of Johnson-Cook parameters from machining simulations. Computational materials science, vol.52, pp.298-304, 2012.
    [19]Z.Hashin. Comulative damage theory for composite materials: real life and residual strength methods. Composites science and technology, vol.23,pp.1-19, 1985.
    [20]M.Lucas, A.MacvBeath, E.McCulloch, A.Cardoni. A finite element model for ultrasonic cutting. Ultrasonics, vol.44, pp.e503-e509, 2006.
    [21]C.Santiuste, S.Sanchez-Saez, E.Barbero. A comparison of progressive-failure criteria in the prediction of the dynamic bending failure of composite laminated beams. Composite structure, vol.92, pp.2406-2414, 2010.
    [22]U.Heisel, T.Pfeifroth. Influence of point angle on drill hole quality and machining forces when drilling CFRP. CIRP. Vol.1, pp.471.476,2012.
    [23]V.Phadnis, F.Makhdum, A.Roy, V.Silberschmidt. Drilling-induced damage in CFRP laminates: Experimental and numerical analysis. Solid State Pheomena, vol.188, pp.150-157, 2012.
    [24]V.A.Phadnis, F.Makhdum, A.Roy, V.Silberschmidt. Drilling in carbon/epoxy composites: experimental investigations and finite element implementation. Composite: Part A, vol.47, pp.47-51, 2013.
    [25]Y.C.Lin, Xiao-Min Chen, Ge Liu. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel. Material science and engineering A 257, pp.6980-6986, 2010
    [26]行政院公告資訊網
    http://gazette.nat.gov.tw/EG_FileManager/eguploadpub/eg013128/ch02/type2/gov10/num4/images/Eg403.htm

    無法下載圖示 全文公開日期 2022/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE