簡易檢索 / 詳目顯示

研究生: 丁俊馨
Jun-Xin Ding
論文名稱: 氧摻雜二硫化鉬之製備及其同質接面二極體之研究
Study of fabrication of oxygen doped molybdenum disulfide pn homojunction diode
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 陳瑞山
Ruei-San Chen
何清華
Ching-Hwa Ho
趙良君
Liang-Chiun Chao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 53
中文關鍵詞: 過渡金屬硫屬化合物化學氣相沉積二硫化鉬氧摻雜同質接面二極體
外文關鍵詞: Transition metal dichalcogenides, Chemical vapor deposition, Molybdenum disulfide, Oxygen doped, Homojunction diode
相關次數: 點閱:371下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文利用化學氣相沉積法成長大面積的n型二硫化鉬,透過拉曼光譜儀、光激發螢光與原子力顯微鏡進行分析,結果顯示此二硫化鉬薄膜為單層直接能隙的半導體. 然而氧電漿處理為最直接且能有效的改變二硫化鉬半導體特性的方法. 因此利用氧電漿對二硫化鉬進行摻雜,利用X光光電子能譜儀分析顯示為Mo6+的峰值出現,讓二硫化鉬的半導體特性由n型轉變成為p型,歸因於在表面形成的MoO3. 經由二硫化鉬電晶體的量測特性曲線中,其最低點隨著氧電漿摻雜瓦數的增加,由負區間 -45 V逐漸位移至正區間 50 V,成功地改變二硫化鉬的半導體特性. 本實驗除了將二硫化鉬進行半導體特性改質,也將p型與n型二硫化鉬做結合,利用不銹鋼基板當遮罩選定摻雜區域,以製作同質接面pn二極體. 透過電流-電壓特性的量測,其內建電位障從2.7 V位移至4.3 V,得知表面形成的MoO3有關,因此能透過不同瓦數的摻雜,控制其內建電位障. 二硫化鉬同質接面pn二極體呈現了良好的整流現象,對於未來二極體的應用有非常高的發展性.


    In this thesis, a large area of n-type molybdenum disulfide (MoS2) was fabricated by thermal chemical vapor deposition (CVD). The results of Raman spectrum, photoluminescence (PL) and atomic force microscope (AFM) showed that the synthesized MoS2 was single layer and direct bandgap semiconductor material. To transform the characteristics of MoS2 from n-type to p-type, the oxygen plasma treatment with different radio-frequency (RF) powers was conducted. X-ray photoelectron spectroscope (XPS) analysis showed that the peak of Mo6+ mainly changed the properties of MoS2 from n-type to p-type, resulting from the surface formation of MoO3. In the field effect transistor (FET) measurement, as the MoS2 treated with the RF power increased, the current-voltage (I-V) curve of the lowest point shifted from -45 to 50 V, confirming the MoS2 changed from n-type to p-type successfully. In order to fabricate a homojunction pn diode, we defined a plasma treatment region with a mask on MoS2 surface for doping accurately. The I-V characteristic was measured to analyze the pn diode, and the built-in potential barrier was shifted from 2.7 to 4.3 V. Therefore, the built-in potential barrier could be controlled with different RF powers. Furthermore, the MoS2 homojunction pn diode demonstrated good rectification behaviors, we expect that it can be widely applied in the future.

    論文摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VI 表索引 VIII 第一章 緒論 1 1.1二維材料 1 1.2過渡金屬硫屬化合物 2 1.2.1二硫化鉬 4 1.2.2合成與製備 6 1.3 pn接面二極體 8 1.3.1背景 8 1.3.2工作原理 8 1.3.3氧摻雜 9 1.3.4同質接面 10 1.4研究動機 10 第二章 實驗方法與設備 11 2.1實驗流程圖 11 2.2薄膜成長方法 12 2.3二硫化鉬薄膜成長設備介紹 13 2.3.1化學氣相沉積系統 13 2.3.2樣品製備 14 2.3.3二硫化鉬薄膜成長 15 2.4分析量測儀器 17 2.4.1拉曼光譜儀 17 2.4.2光激發螢光 18 2.4.3原子力顯微鏡 19 2.4.4高解析度穿透式電子顯微鏡 20 2.4.5 X光光電子能譜儀 21 2.4.6電漿蝕刻系統 22 2.4.7電晶體特性量測 24 2.4.8電流-電壓特性量測 25 第三章 結果與討論 27 3.1拉曼光譜 27 3.2光激發螢光光譜 29 3.3原子力顯微鏡 30 3.4高解析度穿透式電子顯微鏡 31 3.5 X光光電子能譜儀分析 33 3.6電晶體量測 39 3.7同質接面二極體 41 第四章 結論 44 參考文獻 45

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
    [2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-dimensional atomic crystals," Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 10451-10453, 2005.
    [3] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior thermal conductivity of single-layer graphene," Nano Lett., vol. 8, pp. 902-907, 2008.
    [4] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun., vol. 146, pp. 351-355, 2008.
    [5] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colomba, and R. S. Ruoff, "Transfer of large-area graphene films for high-performance transparent conductive electrodes," Nano Lett., vol. 9, pp. 4359-4363, 2009.
    [6] V. M. Pereira and A. H. Castro Neto, "Strain engineering of graphene's electronic structure," Phys. Rev. Lett., vol. 103, 2009.
    [7] F. Schwierz, "Graphene transistors," Nat. Nanotechnol., vol. 5, pp. 487-496, 2010.
    [8] J. K. Wassei and R. B. Kaner, "Graphene, a promising transparent conductor," Mater. Today, vol. 13, pp. 52-59, 2010.
    [9] D. W. Zhang, X. D. Li, H. B. Li, S. Chen, Z. Sun, X. J. Yin, and S. M. Huang, "Graphene-based counter electrode for dye-sensitized solar cells," Carbon, vol. 49, pp. 5382-5388, 2011.
    [10] W. Yuan and G. Shi, "Graphene-based gas sensors," J. Mater. Chem. A, vol. 1, pp. 10078-10091, 2013.
    [11] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, "Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties," Nano Lett., vol. 9, pp. 1752-1758, 2009.
    [12] H. Liu, Y. Liu, and D. Zhu, "Chemical doping of graphene," J. Mater. Chem., vol. 21, pp. 3335-3345, 2011.
    [13] R. Geick, C. H. Perry, and G. Rupprecht, "Normal modes in hexagonal boron nitride," Phys. Rev., vol. 146, pp. 543-547, 1966.
    [14] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, "Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides," ACS Nano, vol. 8, pp. 1102-1120, 2014.
    [15] A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures," Nature, vol. 499, pp. 419-425, 2013.
    [16] L. F. Mattheiss, "Band structures of transition-metal-dichalcogenide layer compounds," Phys. Rev. B, vol. 8, pp. 3719-3740, 1973.
    [17] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., vol. 7, pp. 699-712, 2012.
    [18] W. Jaegermann and H. Tributsch, "Interfacial properties of semiconducting transition metal chalcogenides," Prog. Surf. Sci., vol. 29, pp. 1-167, 1988.
    [19] Z. Wang, Q. Su, G. Q. Yin, J. Shi, H. Deng, J. Guan, M. P. Wu, Y. L. Zhou, H. L. Lou, and Y. Q. Fu, "Structure and electronic properties of transition metal dichalcogenide MX2 (M = Mo, W, Nb; X = S, Se) monolayers with grain boundaries," Mater. Chem. Phys., vol. 147, pp. 1068-1073, 2014.
    [20] H. Li, J. Wu, Z. Yin, and H. Zhang, "Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets," Acc. Chem. Res., vol. 47, pp. 1067-1075, 2014.
    [21] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat. Nanotechnol., vol. 6, pp. 147-150, 2011.
    [22] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, "Emerging photoluminescence in monolayer MoS2," Nano Lett., vol. 10, pp. 1271-1275, 2010.
    [23] A. F. Wells, "Structures based on the 3-connected net 103-b," J. Solid State Chem., vol. 54, pp. 378-388, 1984.
    [24] A. Kuc, N. Zibouche, and T. Heine, "Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2," Phys. Rev. B, vol. 83, 2011.
    [25] C. Zhou, X. Wang, S. Raju, Z. Lin, D. Villaroman, B. Huang, H. L. W. Chan, M. Chan, and Y. Chai, "Low voltage and high on/off ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT," Nanoscale, vol. 7, pp. 8695-8700, 2015.
    [26] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, "Single-layer MoS2 phototransistors," ACS Nano, vol. 6, pp. 74-80, 2012.
    [27] M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, L.-J. Li, L.-J. Chen, and J.-H. He, "Monolayer MoS2 heterojunction solar cells," ACS Nano, vol. 8, pp. 8317-8322, 2014.
    [28] Z. Yin, X. Zhang, Y. Cai, J. Chen, J. I. Wong, Y. Y. Tay, J. Chai, J. Wu, Z. Zeng, B. Zheng, H. Y. Yang, and H. Zhang, "Preparation of MoS2-MoO3 hybrid nanomaterials for light-emitting diodes," Angew. Chem. Int. Edit., vol. 53, pp. 12560-12565, 2014.
    [29] A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, "Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides," J. Appl. Phys., vol. 101, 2007.
    [30] S. Bertolazzi, D. Krasnozhon, and A. Kis, "Nonvolatile memory cells based on MoS2/graphene heterostructures," ACS Nano, vol. 7, pp. 3246-3252, 2013.
    [31] X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, "Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures," Nat. Nanotechnol., vol. 9, pp. 682-686, 2014.
    [32] W.-J. Su, H.-C. Chang, Y.-T. Shih, Y.-P. Wang, H.-P. Hsu, Y.-S. Huang, and K.-Y. Lee, "Two dimensional MoS2/graphene p-n heterojunction diode: fabrication and electronic characteristics," J. Alloys Compd., vol. 671, pp. 276-282, 2016.
    [33] M. Chen, H. Nam, S. Wi, L. Ji, X. Ren, L. Bian, S. Lu, and X. Liang, "Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping," Appl. Phys. Lett., vol. 103, 2013.
    [34] A. Nipane, D. Karmakar, N. Kaushik, S. Karande, and S. Lodha, "Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation," ACS Nano, vol. 10, pp. 2128-2137, 2016.
    [35] B. K. Miremadi, R. C. Singh, S. R. Morrison, and K. Colbow, "A highly sensitive and selective hydrogen gas sensor from thick oriented films of MoS2," Appl. Phys. A-Mater., vol. 63, pp. 271-275, 1996.
    [36] C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo, and H. Liu, "Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications," Mater. Res. Bull., vol. 44, pp. 1811-1815, 2009.
    [37] Y. Yoon, K. Ganapathi, and S. Salahuddin, "How good can monolayer MoS2 transistors be?," Nano Lett., vol. 11, pp. 3768-3773, 2011.
    [38] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.-T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, "Synthesis of large-area MoS2 atomic layers with chemical vapor deposition," Adv. Mater., vol. 24, pp. 2320-2325, 2012.
    [39] A. Jäger-Waldau, M. C. Lux-Steiner, G. Jäger-Waldau, and E. Bucher, "WS2 thin films prepared by sulphurization," Appl. Surf. Sci., vol. 70-71, pp. 731-736, 1993.
    [40] S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, "Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization," ACS Nano, vol. 7, pp. 2768-2772, 2013.
    [41] L. Liu, H. Qiu, J. Wang, G. Xu, and L. Jiao, "Atomic MoS2 monolayers synthesized from a metal-organic complex by chemical vapor deposition," Nanoscale, vol. 8, pp. 4486-4490, 2016.
    [42] R. Vaidya, M. Dave, S. S. Patel, S. G. Patel, and A. R. Jani, "Growth of molybdenum disulphide using iodine as transport material," Pramana - J. Phys., vol. 63, pp. 611-616, 2004.
    [43] M. Binnewies, R. Glaum, M. Schmidt, and P. Schmidt, "Chemical vapor transport reactions - a historical review," Z. Anorg. Allg. Chem., vol. 639, pp. 219-229, 2013.
    [44] A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, "Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides," Cryst. Growth Des., vol. 13, pp. 4453-4459, 2013.
    [45] S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, "Beyond graphene: progress in novel two-dimensional materials and van der Waals solids," in Annu. Rev. Mater. Res. vol. 45, ed, 2015, pp. 1-27.
    [46] M. Riordan and L. Hoddeson, Crystal fire: the invention of the transistor and the birth of the information age: WW Norton & Company, 1997.
    [47] J. R. Hook and H. E. Hall, "Orbital dynamics of 3He-A in the presence of a heat flow and a magnetic field," J. Phys. C Solid State, vol. 12, pp. 783-800, 1979.
    [48] D. A. Neamen, Semiconductor physics and devices vol. 3: McGraw-hill New York, 1997.
    [49] A.-M. Hu, L.-L. Wang, W.-Z. Xiao, G. Xiao, and Q.-Y. Rong, "Electronic structures and magnetic properties in nonmetallic element substituted MoS2 monolayer," Comp. Mater. Sci., vol. 107, pp. 72-78, 2015.
    [50] X. Lin and J. Ni, "Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2," J. Appl. Phys., vol. 116, 2014.
    [51] Q. Yue, S. Chang, S. Qin, and J. Li, "Functionalization of monolayer MoS2 by substitutional doping: a first-principles study," Phys. Lett. A., vol. 377, pp. 1362-1367, 2013.
    [52] L.-J. Kong, G.-H. Liu, and L. Qiang, "Electronic and optical properties of O-doped monolayer MoS2," Comp. Mater. Sci., vol. 111, pp. 416-423, 2016.
    [53] G.-P. Neupane, K.-P. Dhakal, H. Kim, J. Lee, M.-S. Kim, G. Han, Y.-H. Lee, and J. Kim, "Formation of nanosized monolayer MoS2 by oxygen-assisted thinning of multilayer MoS2," J. Appl. Phys., vol. 120, 2016.
    [54] N. Kang, H. P. Paudel, M. N. Leuenberger, L. Tetard, and S. I. Khondaker, "Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment," J. Phys. Chem. C, vol. 118, pp. 21258-21263, 2014.
    [55] S. Nakamura and S. F. Chichibu, Introduction to nitride semiconductor blue lasers and light emitting diodes: CRC Press, 2000.
    [56] K. Cho, M. Min, T.-Y. Kim, H. Jeong, J. Pak, J.-K. Kim, J. Jang, S.-J. Yun, Y.-H. Lee, W.-K. Hong, and T. Lee, "Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanethiol molecules," ACS Nano, vol. 9, pp. 8044-8053, 2015.
    [57] R. Addou, L. Colombo, and R. M. Wallace, "Surface defects on natural MoS2," ACS Appl. Mater. Interfaces, vol. 7, pp. 11921-11929, 2015.
    [58] M. Yamamoto, T. L. Einstein, M. S. Fuhrer, and W. G. Cullen, "Anisotropic etching of atomically thin MoS2," J. Phys. Chem. C, vol. 117, pp. 25643-25649, 2013.
    [59] N. Choudhary, M. R. Islam, N. Kang, L. Tetard, Y. Jung, and S. I. Khondaker, "Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma," J. Phys. - Condens. Matt., vol. 28, 2016.
    [60] S.-Y. Lee, U.-J. Kim, J. Chung, H. Nam, H.-Y. Jeong, G.-H. Han, H. Kim, H.-M. Oh, H. Lee, H. Kim, Y.-G. Roh, J. Kim, S.-W. Hwang, Y. Park, and Y.-H. Lee, "Large work function modulation of monolayer MoS2 by ambient gases," ACS Nano, vol. 10, pp. 6100-6107, 2016.
    [61] H.-F. Liu, S.-L. Wong, and D.-Z. Chi, "CVD growth of MoS2-based two-dimensional materials," Chem. Vap. Deposition, vol. 21, pp. 241-259, 2015.
    [62] L. Tonks and I. Langmuir, "A general theory of the plasma of an arc," Phys. Rev., vol. 34, pp. 876-922, 1929.
    [63] D. Dumcenco, K. Chen, Y. Wang, Y. Huang, and K. Tiong, "Raman study of 2H-Mo1−xWxS2 layered mixed crystals," J. Alloys Compd., vol. 506, pp. 940-943, 2010.
    [64] X. Huang, Z. Zeng, and H. Zhang, "Metal dichalcogenide nanosheets: preparation, properties and applications," Chem. Soc. Rev., vol. 42, pp. 1934-1946, 2013.
    [65] X. Wang, H. Feng, Y. Wu, and L. Jiao, "Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition," J. Am. Chem. Soc., vol. 135, pp. 5304-5307, 2013.
    [66] Y. Mao, W. Li, X. Sun, Y. Ma, J. Xia, Y. Zhao, X. Lu, J. Gan, Z. Liu, and J. Chen, "Room-temperature ferromagnetism in hierarchically branched MoO3 nanostructures," Cryst. Eng. Comm., vol. 14, pp. 1419-1424, 2012.
    [67] B. C. Windom, W. Sawyer, and D. W. Hahn, "A raman spectroscopic study of MoS2 and MoO3: applications to tribological systems," Tribol. Lett., vol. 42, pp. 301-310, 2011.
    [68] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single-and few-layer MoS2," ACS Nano, vol. 4, pp. 2695-2700, 2010.
    [69] S. Mouri, Y. Miyauchi, and K. Matsuda, "Tunable photoluminescence of monolayer MoS2 via chemical doping," Nano Lett., vol. 13, pp. 5944-5948, 2013.
    [70] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, "Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates," Nano Lett., vol. 12, pp. 1538-1544, 2012.
    [71] K. Anunobi, "External localised corrosion of offshore topside riser system," in Society of Petroleum Engineers - SPE International Conference and Exhibition on Oilfield Corrosion 2012, 2012, pp. 287-295.
    [72] D. Ganta, S. Sinha, and R. T. Haasch, "2-D material molybdenum disulfide analyzed by XPS," Surf. Sci. Spectra, vol. 21, pp. 19-27, 2014.
    [73] N. M. D. Brown, N. Cui, and A. McKinley, "An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma," Appl. Surf. Sci., vol. 134, pp. 11-21, 1998.
    [74] J. R. Lince and P. P. Frantz, "Anisotropic oxidation of MoS2 crystallites studied by angle-resolved x-ray photoelectron spectroscopy," Tribol. Lett., vol. 9, pp. 211-218, 2001.
    [75] B. C. Windom, W. G. Sawyer, and D. W. Hahn, "A raman spectroscopic study of MoS2 and MoO3: applications to tribological systems," Tribol. Lett., vol. 42, pp. 301-310, 2011.
    [76] Y. He, J. Zhang, D. Li, J. Wang, Q. Wu, Y. Wei, L. Zhang, J. Wang, P. Liu, Q. Li, S. Fan, and K. Jiang, "Evaluating bandgap distributions of carbon nanotubes via scanning electron microscopy imaging of the Schottky barriers," Nano Lett., vol. 13, pp. 5556-5562, 2013.
    [77] M. R. Islam, N. Kang, U. Bhanu, H. P. Paudel, M. Erementchouk, L. Tetard, M. N. Leuenberger, and S. I. Khondaker, "Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma," Nanoscale, vol. 6, pp. 10033-10039, 2014.
    [78] E. A. Gulbransen, K. F. Andrew, and F. A. Brassart, "Oxidation of molybdenum 550° to 1700°C," J. Electrochem. Soc., vol. 110, pp. 952-959, 1963.
    [79] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett., vol. 77, pp. 3865-3868, 1996.

    無法下載圖示 全文公開日期 2022/07/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE