簡易檢索 / 詳目顯示

研究生: 李哲瑋
Zhe-Wei Li
論文名稱: 水溶性多精胺酸聚天門冬胺酸穩定貴金屬奈米粒子之製備與應用
Preparation and applications of soluble multi-L-arginyl-poly-L-aspartate-stabilized noble metal nanoparticles
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 曾文祺
Wen-Chi Tseng
洪儒生
Lu-Sheng Hong
唐建翔
Chien-Hsiang Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 136
中文關鍵詞: 多精胺酸聚天門冬胺酸多胜肽貴金屬奈米粒子偶氮染料
外文關鍵詞: multi-L-arginyl-poly-L-aspartate, polypeptide, noble metal nanoparticles, Azo-dye
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以基因重組大腸桿菌生產的水溶性多精胺酸聚天門冬胺酸,為一親水性及具有生物相容性的多胜肽,本研究利用此多胜肽作為穩定劑,在還原劑的作用下,以簡易快速的方法合成具高穩定性及生物相容性的貴金屬奈米粒子。
    經由穿透式電子顯微鏡觀察到5 nm以下且形狀多為球型的奈米粒子,並利用X射線光電子能譜儀 (XPS)、傅立葉轉換紅外線光譜儀 (FTIR)、能量散射X射線能譜儀 (EDX) 及凝膠電泳對水溶性多精胺酸聚天門冬胺酸穩定的貴金屬奈米粒子 (multi-L-arginyl-poly-L-aspartate-stabilized noble metal nanoparticles, sMAPA-noble metalNPs) 進行特性分析,探討其鍵結方式、成分及電荷。
    應用上探討了sMAPA-noble metalNPs在近紅外光照射下的光熱效應,以及對偶氮染料甲基橙及亞甲藍降解的催化,並計算反應速率常數及活化能,其中以鈀奈米的催化能力最為優秀。同時以MTT assay測量不同濃度的sMAPA-noble metalNPs對纖維母細胞L929的細胞毒性。
    此研究合成小於5 nm的貴金屬奈米粒子,並具備良好的生物相容性及催化能力,使其在生醫材料及偶氮染料降解催化獲得巨大潛力。


    Soluble multi-L-arginyl-poly-L-aspartate produced by recombinant Escherichia coli is a hydrophilic and biocompatible polypeptide. In this study, the polypeptide was used as a stabilizer in a simple and rapid method for the synthesis of noble metal nanoparticles with high stability and biocompatibility in the presence of a reducing agent.
    The synthesized nanoparticles below 5 nm and mostly spherical in shape were observed by transmission electron microscopy (TEM). Soluble multi-L-arginyl-poly-L-aspartate-stabilized noble metal nanoparticles (sMAPA-noble metalNPs) were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), and gel electrophoresis.
    For the applications, the photothermal effect of sMAPA-noble metalNPs under near-infrared light irradiation was discussed as well as the utilization as a catalyst for the degradation of two azo dyes, methyl orange and methylene blue. The reaction rate constant and activation energy were estimated. Among those sMAPA-noble metalNPs, palladium nanoparticles showed a high catalytic efficiency. Finally, the cytotoxicity of different concentrations of sMAPA-noble metalNPs on fibroblast L929 was tested by MTT assay.
    In this study, noble metal nanoparticles blow 5 nm were synthesized and showed good biocompatibility and catalytic efficiency, which make them great potential as a composite biomaterial and catalyst for the degradation of azo dyes.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 第二章 文獻回顧 2 2.1 多精胺酸聚天門冬胺酸 2 2.1.1 基因重組生產多精胺酸聚天門冬胺酸 3 2.1.2 多精胺酸聚天門冬胺酸的應用 4 2.2 金屬奈米粒子 5 2.2.1 金奈米粒子 6 2.2.2 銀奈米粒子 10 2.2.3 鉑奈米粒子 13 2.2.4 鈀奈米粒子 15 2.3 多胜肽穩定金屬奈米粒子 17 2.4 偶氮染料 19 第三章 實驗材料與方法 21 3.1 實驗藥品 21 3.2 實驗儀器 23 3.3 藥品配置 24 3.3.1 基因重組大腸桿菌的培養 24 3.3.2 SDS-PAGE 26 3.3.3 多精胺酸聚天門冬胺酸的胺基酸組成分析 27 3.3.4 偶氮染料的降解 28 3.3.5 L929細胞毒性測試 29 3.4 實驗步驟 30 3.4.1 基因重組大腸桿菌的培養 30 3.4.2 多精胺酸聚天門冬胺酸的純化 31 3.4.3 SDS-PAGE 31 3.4.4 多精胺酸聚天門冬胺酸的胺基酸組成分析 32 3.4.5 貴金屬奈米粒子的合成 33 3.4.6 sMAPA-noble metalNPs之UV-Vis圖譜分析 34 3.4.7 sMAPA-noble metalNPs之金屬含量檢測 34 3.4.8 sMAPA-noble metalNPs之特性分析 35 3.4.9 sMAPA-noble metalNPs之穿透式電子顯微鏡粒徑分析 37 3.4.10 穩定性測試 38 3.4.11 偶氮染料的降解 38 3.4.12 光熱效應 40 3.4.13 L929細胞毒性測試 40 第四章 結果與討論 43 4.1 sMAPA-noble metalNPs之UV-Vis圖譜分析 43 4.1.1 sMAPA-AuNPs 43 4.1.2 sMAPA-AgNPs 45 4.1.3 sMAPA-PtNPs 47 4.1.4 sMAPA-PdNPs 50 4.2 sMAPA-noble metalNPs之金屬含量檢測 52 4.3 sMAPA-noble metalNPs之特性分析 55 4.3.1 X射線光電子能譜儀 55 4.3.2 傅立葉轉換紅外線光譜儀 57 4.3.3能量散射X射線能譜儀 59 4.3.4 凝膠電泳 62 4.4 sMAPA-noble metalNPs之穿透式電子顯微鏡粒徑分析 63 4.5 穩定性測試 68 4.6 偶氮染料的降解 71 4.6.1 甲基橙的降解 71 4.6.2 亞甲藍的降解 79 4.7 光熱效應 87 4.8 L929細胞毒性測試 91 第五章 結論與未來展望 95 附錄 97 附錄一 SDS-PAGE分析sMAPA & iMAPA分子量 97 附錄二 HPLC分析sMAPA的胺基酸組成 98 附錄三 sMAPA-noble metalNPs照片 99 附錄四 sMAPA-noble metalNPs之XPS圖譜 103 附錄五 sMAPA-noble metalNPs之ImageJ計算粒徑分析 108 附錄六 200 μg/mL sMAPA-noble metalNPs於NIR區域的UV-Vis圖譜 110 附錄七 sMAPA-noble metalNPs對纖維母細胞L929毒性的MTT assay結果統整 111 參考文獻 112

    1. Björn Watzer and Karl Forchhammer. Cyanophycin: A Nitrogen-Rich Reserve Polymer. Cyanobacteria 2018.
    2. Martin Obst, Alexander Steinbüchel. Cynophycin — an ideal bacterial nitrogen storage material with unique chemical properties. Microbiol Monogr 2006.
    3. Robeet D. Simon. Cyanophycin granules from the Blue-Green alga Anabaena cylindrica: A reserve materal consisting of copolymers of aspartic acid and arginine. Proc Natl Acad Sci USA 1971, 68 (2), 265–267.
    4. Enrique Flores, Sergio Arévalo, Mireia Burnat. Cyanophycin and arginine metabolism in cyanobacteria. Algal Research 2019, 42.
    5. Tran Hai, Fred Bernd Oppermann-Sanio, Alexander Steinbüchel. Purification and characterization of cyanophycin and cyanophycin synthetase from the thermophilic Synechococcus sp. MA19. FEMS Microbiol Lett 1999, 181, 229–236.
    6. Karl Ziegler, Annette Diener, Carine Herpin, Ralf Richter, Rainer Deutzmann, Wolfgang Lockau. Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). Eur J Biochem 1998, 254 (1), 154–159.
    7. Holger Berg, Karl Ziegler, Kirill Piotukh, Kerstin Baier, Wolfgang Lockau and Rudolf Volkmer-Engert. Biosynthesis of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartic acid (cyanophycin): mechanism of the cyanophycin synthetase reaction studied with synthetic primers. Eur J Biochem 2000, 267, 5561–5570.
    8. Elsayed Aboulmagd, Fred Bernd Oppermann-Sanio, Alexander Steinbüchel. Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Arch Microbiol 2000, 174 (5), 297–306.
    9. Kay M. Frey, Fred B. Oppermann-Sanio, Holger Schmidt, and Alexander Steinbuchel. Technical-Scale Production of Cyanophycin with Recombinant Strains of Escherichia coli. Applied and Environmental Microbiology 2002, 68, 3377–3384.
    10. Nikita A. Khlystov, Wui Yarn Chan, Aditya M. Kunjapur, Weichao Shi, Kristala L.J. Prather, Bradley D. Olsen. Material properties of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartate (cyanophycin). Polymer 2017, 109, 238–245.
    11. Anna Steinle, Sabrina Witthoff, Jens P. Krause, and Alexander Steinbüchel. Establishment of cyanophycin biosynthesis in Pichia pastoris and optimization by use of engineered cyanophycin synthetases. Applied and Environmental Microbiology 2010, 76, 1062–1070.
    12. Anna Steinle, Fred Bernd Oppermann-Sanio, Rudolf Reichelt, and Alexander Steinbuchel. Synthesis and Accumulation of Cyanophycin in Transgenic Strains of Saccharomyces cerevisiae. Applied and environment microbiology 2008, 3410–3418.
    13. Elsayed Aboulmagd, Ingo Voss, Fred B. Oppermann-Sanio, and Alexander Steinbu1chel. Heterologous Expression of Cyanophycin Synthetase and Cyanophycin Synthesis in the Industrial Relevant Bacteria Corynebacterium glutamicum and Ralstonia eutropha and in Pseudomonas putida. Biomacromolecules 2001, 2, 1338–1342.
    14. Katrin Neumann, Dirk Paul Stephan, Karl Ziegler, Maja Hühns, Inge Broer, Wolfgang Lockau and Elfriede K. Pistorius. Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnology Journal 2005, 3, 249-258.
    15. Maja Huhns, Katrin Neumann, Tina Hausmann, Friederike Klemke, Wolfgang Lockau, Uwe Kahmann, Lilya Kopertekh, Dorothee Staiger, Elfriede K. Pistorius, Jens Reuther, Eva Waldvogel, Wolfgang Wohlleben, Martin Effmert, Holger Junghans, Katja Neubauer, Udo Kragl, Kerstin Schmidt, Jorg Schmidtke and Inge Broer. Tuber-specific cphA expression to enhance cyanophycin production in potatoes. Plant Biotechnology Journal 2009, 7, 883–898.
    16. Jens Kroll, Stefan Klinte, Alexander Steinbüchel. A novel plasmid addiction system for large-scale production of cyanophycin in Escherichia coli using mineral salts medium. Appl Microbiol Biotechnol 2011, 89, 593–604.
    17. Wen-Chi Tseng, Tsuei-Yun Fang, Yuan-Chieh Hsie, Chien-Yu Chen, Meng-Che Li. Solubility and thermal response of fractionated cyanophycin prepared with recombinant Escherichia coli. Journal of Biotechnology 2017, 249, 59–65.
    18. Wen-Chi Tseng, Tsuei-Yun Fang, Chiung-Yu Cho, Po-Shao Chen, and Ching-Shiang Tsai. Assessments of Growth Conditions on the Production of Cyanophycin by Recombinant Escherichia Coli Strains Expressing Cyanophycin Synthetase Gene. Biotechnol Progress 2012, 28 (2), 358–63.
    19. Lars Wiefel, Alexander Steinbüchel. Solubility Behavior of Cyanophycin Depending on Lysine Content. Applied and Environmental Microbiology 2014, 80, 1091–1096.
    20. Martin Obst and Alexander Steinbuchel. Microbial Degradation of Poly(amino acid)s. Biomacromolecules 2004, 5, 1166–1176.
    21. Ying Zhao, Haijia Su, Li Fang, Tianwei Tan. Superabsorbent hydrogels from poly(aspartic acid) with salt, temperature and pH-responsiveness properties. Polymer 2005, 46, 5368–5376.
    22. David Hasson, Hilla Shemer, and Alexander Sher. State of the Art of Friendly “Green” Scale Control Inhibitors: A Review Article. |Ind. Eng. Chem. Res. 2011, 50, 7601–7607.
    23. Ahmed Sallam, Alexander Steinbüchel. Dipeptides in nutrition and therapy: cyanophycin-derived dipeptides as natural alternatives and their biotechnological production. Appl Microbiol Biotechnol 2010, 87, 815–828.
    24. James Cookson. The Preparation of Palladium Nanoparticles. Platinum Metals Rev. 2012, 56 (2), 83–98.
    25. Asim Ali Yaqoob, Khalid Umar, Mohamad Nasir Mohamad Ibrahim. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Applied Nanoscience 2020, 10, 1369–1378.
    26. Jayasmita Jana, Mainak Ganguly and Tarasankar Pal. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. The Royal Society of Chemistry 2016, 6, 86174–86211.
    27. Yi-Cheun Yeh, Brian Creran, and Vincent M. Rotello. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology. Nanoscale 2012, 4, 1871–1880.
    28. Stephan Link and Mostafa A. El-Sayed. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217.
    29. Peter N. Njoki, I-Im S. Lim, Derrick Mott, Hye-Young Park, Bilal Khan, Suprav Mishra, Ravishanker Sujakumar, Jin Luo, and Chuan-Jian Zhong. Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles. J. Phys. Chem. C 2007, 111, 14664–14669.
    30. Michael Faraday. Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London 1857, 147, 145–181.
    31. John Turkevich, Peter Cooper Stevenson and James Hillier. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussion of the Faraday society 1951, 11, 55–75.
    32. G. Frens. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science volume 1973, 241, 20–22.
    33. Michael Giersig and Paul Mulvaney. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 1993, 9, 3408–3413.
    34. Mathias Brust, Merry1 Walker, Donald Bethell, David J. Schiffrin and Robin Whyman. Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System. Journal of the Chemical Society, Chemical Communications 1994, 801–802.
    35. Han-Wen Cheng, Zakiya R. Skeete, Elizabeth R. Crew, Shiyao Shan, Jin Luo and Chuan-Jian Zhong. Synthesis of Gold Nanoparticles. Comprehensive Analytical Chemistry 2014, 66, 37–79.
    36. Tapan K. Sau and Catherine J. Murphy. Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution. Langmuir 2004, 20, 6414–6420.
    37. Tan Pham, Joseph B. Jackson, Naomi J. Halas, and T. Randall Lee. Preparation and Characterization of Gold Nanoshells Coated with Self-Assembled Monolayers. Langmuir 2002, 18, 4915–4920.
    38. Wenjing Xi and Amanda J. Haes. Elucidation of HEPES Affinity to and Structure on Gold Nanostars. J. Am. Chem. Soc. 2019, 141, 4034−4042.
    39. Yukihito Kondo and Kunio Takayanagi. Synthesis and Characterization of Helical Multi-Shell Gold Nanowires. Science 2000, 289, 606–608.
    40. Elin M. Larsson, Joan Alegret, Mikael Kall and Duncan S. Sutherland. Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors. Nano Lett. 2007, 7 (5), 1256–1263.
    41. W. Page Faulk, G. Malcolm Taylor. An immunocolloid method for the electron microscope. Immunochemistry 1971, 8 (11), 1081–1083.
    42. Jan Raoul De Mey, A. M. Lambert, A. S. Bajer, M. Moeremans, M De Brabander. Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with the immuno-gold staining method. Proc Natl Acad Sci U S A. 1982, 79(6), 1898–1902.
    43. Xiaohua Huang, Prashant K. Jain, Ivan H. El-Sayed, Mostafa A. El-Sayed. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008, 23, 217–228.
    44. Terry B Huff, Ling Tong, Yan Zhao, Matthew N Hansen, Ji-Xin Cheng, Alexander Wei. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007, 2 (1), 125–132.
    45. YunWei Charles Cao, Rongchao Jin, Chad A. Mirkin. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science 2002, 297 (5586), 1536–1540.
    46. Ximei Qian, Xiang-Hong Peng, Dominic O. Ansari, Qiqin Yin-Goen, Georgia Z. Chen, Dong M. Shin, Lily Yang, Andrew N. Young, May D. Wang, Shuming Nie. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology 2008, 26, 83–90.
    47. Michael Himmelhaus, Hiroyuki Takei. Cap-shaped gold nanoparticles for an optical biosensor. Sensors and Actuators B 2000, 63, 24–30.
    48. Jacob D. Gibson, Bishnu P. Khanal, and Eugene R. Zubarev. Paclitaxel-Functionalized Gold Nanoparticles. J. AM. CHEM. SOC. 2007, 129, 11653–11661.
    49. Nathaniel L. Rosi, David A. Giljohann, C. Shad Thaxton, Abigail K. R. Lytton-Jean, Min Su Han, Chad A. Mirkin. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 2006, 312 (5776), 1027–1030.
    50. Ji-Ae Park, Hee-Kyung Kim, Joo-Hyun Kim, Sang-Won Jeong, Jae-Chang Jung, Gang-Ho Lee, Jongmin Lee, Yongmin Chang, Tae-Jeong Kim. Gold nanoparticles functionalized by gadolinium–DTPA conjugate of cysteine as a multimodal bioimaging agent. Bioorganic & Medicinal Chemistry Letters 2010, 20, 2287–2291.
    51. Guofang Chen, Jingran Lu, Clarissa Lam and Yong Yu. A novel green synthesis approach for polymer nanocomposites decorated with silver nanoparticles and their antibacterial activity. Analyst 2014, 139, 5793–5799.
    52. Helinor J. Johnston, Gary Hutchison, Frans M. Christensen, Sheona Peters, Steve Hankin, and Vicki Stone. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Critical Reviews in Toxicology, 2010, 40 (4), 328–346.
    53. Tao Huang and Xiao-Hong Nancy Xu. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J. Mater. Chem., 2010, 20, 9867–9876.
    54. Siavash Iravani, Hassan Korbekandi, Seyed Vahid Mirmohammadi, Behzad Zolfaghari. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences 2014, 9 (6), 385–406.
    55. Pramujitha Mendis, Rohini M. de Silva, K. M. Nalin de Silva, Lahiru A. Wijenayaka, Kalana Jayawardana and Mingdi Yan. Nanosilver rainbow: a rapid and facile method to tune different colours of nanosilver through the controlled synthesis of stable spherical silver nanoparticles. RSC Adv. 2016, 6, 48792–48799.
    56. Wanzhong Zhang, Xueliang Qiao, Jianguo Chen. Synthesis of silver nanoparticles—Effects of concerned parameters in water/oil microemulsion. Materials Science and Engineering B 2007, 142, 1–15.
    57. Angshuman Pal, Sunil Shah, Surekha Devi. Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Materials Chemistry and Physics 2009, 114, 530–532.
    58. Haytham M.M. Ibrahim. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences 2015, 8, 265–275.
    59. Li Xu, Yi-Yi Wang, Jie Huang, Chun-Yuan Chen, Zhen-Xing Wang, Hui Xie. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10 (20), 8996–9031.
    60. Muniyandi Jeyaraj, Sangiliyandi Gurunathan, Muhammad Qasim, Min-Hee Kang and Jin-Hoi Kim. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials 2019, 9, 1719.
    61. Fangxing Xiao. Layer-by-Layer Self-Assembly Construction of Highly Ordered MetalTiO2 Nanotube Arrays Heterostructures (M/TNTs, M = Au, Ag, Pt) with Tunable Catalytic Activities. J. Phys. Chem. C 2012, 116 (31), 16487–16498.
    62. Zhaoyu Ma, Yifan Zhang, Jin Zhang, Weiyun Zhang, Mohamed F. Foda, Xinxin Dai, and Heyou Han. Ultrasmall Peptide-Coated Platinum Nanoparticles for Precise NIR-II. ACS Appl. Mater. Interfaces 2020, 12, 39434–39443.
    63. Asad Syed, Absar Ahmad. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces 2012, 97, 27–31.
    64. Sumit Ghosh. Cisplatin: The first metal based anticancer drug. Bioorganic Chemistry 2019, 88, 102925.
    65. Irene H.L. Hamelers, Rutger W.H.M. Staffhorst, Jarno Voortman, Ben de Kruijff, Jan Reedijk, Paul M.P. van Bergen en Henegouwen, and Anton I.P.M. de Kroon. High Cytotoxicity of Cisplatin Nanocapsules in Ovarian Carcinoma Cells Depends on Uptake by Caveolae-Mediated Endocytosis. Clin Cancer Res 2009, 15 (4), 1259–1268.
    66. Yingwei Li and Ralph T. Yang. Hydrogen Storage on Platinum Nanoparticles Doped on Superactivated Carbon. J. Phys. Chem. C 2007, 111, 11086–11094.
    67. Jian-Ding Qiu, Guo-Chong Wang, Ru-Ping Liang, Xing-Hua Xia and Hong-Wen Yu. Controllable Deposition of Platinum Nanoparticles on Graphene As an Electrocatalyst for Direct Methanol Fuel Cells. J. Phys. Chem. C 2011, 115, 15639–15645.
    68. Sarah De Marchi, Sara Núñez-Sánchez, Gustavo Bodelón, Jorge Pérez-Juste and Isabel Pastoriza-Santos. Pd nanoparticles as a plasmonic material: synthesis, optical properties and applications. Nanoscale, 2020, 12, 23424–23443.
    69. Suresh K. Konda, Aicheng Chen. Palladium based nanomaterials for enhanced hydrogen spillover and storage. Materials Today 2016, 19, 100–108.
    70. Safieh Moimen, Iraj Nabipour. A Simple Green Synthesis of Palladium Nanoparticles with Sargassum Alga and Their Electrocatalytic Activities Towards Hydrogen Peroxide. Applied Biochemistry and Biotechnology 2015, 176, 1937–1949.
    71. Matteo Cargnello, Noah L. Wieder, Patrizia Canton, Tiziano Montini, Giuliano Giambastiani, Alvise Benedetti, Raymond J. Gorte and Paolo Fornasiero. A Versatile Approach to the Synthesis of Functionalized Thiol-Protected Palladium Nanoparticles. Chem. Mater. 2011, 23 (17), 3961–3969.
    72. Unnikrishnan R. Pillai, Endalkachew Sahle-Demessie. Phenanthroline-stabilized palladium nanoparticles in polyethylene glycol—an active and recyclable catalyst system for the selective hydrogenation of olefins using molecular hydrogen. Journal of Molecular Catalysis A: Chemical 2004, 222, 153–158.
    73. Seung Uk Son, Youngjin Jang, Ki Youl Yoon, Eunae Kang, and Taeghwan Hyeon. Facile Synthesis of Various Phosphine-Stabilized Monodisperse Palladium Nanoparticles through the Understanding of Coordination Chemistry of the Nanoparticles. Nano Letters 2004, 4 (6), 1147–1151.
    74. Ivan Saldan, Yuriy Semenyuk, Iryna Marchuk, Oleksandr Reshetnyak. Chemical synthesis and application of palladium nanoparticles. J Mater Sci 2015, 50, 2337–2354.
    75. Viet Long Nguyen, Duc Chien Nguyen, Hirohito Hirata, Michitaka Ohtaki, Tomokatsu Hayakawa and Masayuki Nogami. Chemical synthesis and characterization of palladium nanoparticles. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2010, 1, 035012.
    76. Angelica Balanta, Cyril Godard and Carmen Claver. Pd nanoparticles for C–C coupling reactions. Chem. Soc. Rev. 2011, 40, 4973–4985.
    77. Yanhui Niu, Lee K. Yeung and Richard M. Crooks. Size-Selective Hydrogenation of Olefins by Dendrimer-Encapsulated Palladium Nanoparticles. J. Am. Chem. Soc. 2001, 123, 6840–6846.
    78. Huajie Huang and Xin Wang. Pd nanoparticles supported on low-defect graphene sheets: for use as high-performance electrocatalysts for formic acid and methanol oxidation. J. Mater. Chem. 2012, 22, 22533–22541.
    79. Rajesh Sardar, Jong-Won Park, and Jennifer S. Shumaker-Parry. Polymer-Induced Synthesis of Stable Gold and Silver Nanoparticles and Subsequent Ligand Exchange in Water. Langmuir 2007, 23, 11883–11889.
    80. Jing-Jing Zhang, Miao-Miao Gu, Ting-Ting Zheng, and Jun-Jie Zhu. Synthesis of Gelatin-Stabilized Gold Nanoparticles and Assembly of Carboxylic Single-Walled Carbon Nanotubes/Au Composites for Cytosensing and Drug Uptake. Anal. Chem. 2009, 81, 6641–6648.
    81. Michal S. Shoshan, Thomas Vonderach, Bodo Hattendorf, and Helma Wennemers. Peptide-coated Platinum Nanoparticles with Selective Toxicity against Liver Cancer Cells. Angewandte Chemie International Edition 2019, 58 (15), 4901–4905.
    82. Linlin Sun, Dianjun Liu, and Zhenxin Wang. Functional Gold Nanoparticle-Peptide Complexes as Cell-Targeting Agents. Langmuir 2008, 24, 10293–10297.
    83. Zhaoyu Ma, Yifan Zhang, Jin Zhang, Weiyun Zhang, Mohamed F. Foda, Xinxin Dai, Heyou Han. Ultrasmall Peptide-Coated Platinum Nanoparticles for Precise NIR-II Photothermal Therapy by Mitochondrial Targeting. ACS Appl. Mater. Interfaces 2020, 12, 39434–39443.
    84. Zhaoyu Ma, Kai Han, Xinxin Dai, Heyou Han. Precisely Striking Tumors without Adjacent Normal Tissue Damage via Mitochondria- Templated Accumulation. ACS Nano 2018, 12, 6252–6262.
    85. Michelle Longmire, Peter L. Choyke, Hisataka Kobayashi. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 2008, 3 (5), 703–17.
    86. Shaoheng Tang , Mei Chen , Nanfeng Zheng. Sub-10-nm Pd Nanosheets with Renal Clearance for Efficient Near-Infrared Photothermal Cancer Therapy. Small 2014, 10 (15), 3139–3144.
    87. Satyabrata Si and Tarun K. Mandal. pH-Controlled Reversible Assembly of Peptide-Functionalized Gold Nanoparticles. Langmuir 2007, 23, 190–195.
    88. Said Benkhaya, Sara El Harfi and Ahmed El Harfi. Classifications, properties and applications of textile dyes: A review. Applied Journal of Environmental Engineering Science 2017, 3 (3), 311–320.
    89. Myrna Solís, Aida Solís, Herminia Inés Pérez, Norberto Manjarrez, Maribel Flores. Microbial decolouration of azo dyes: A review. Process Biochemistry 2012, 47, 1723–1748.
    90. Chung, King-Thom (2016). Azo Dyes and Human Health: A Review. Journal of Environmental Science and Health, Part C 2016, 34 (4), 233–261.
    91. Keiichi Tanaka, Kanjana Padermpole, Teruaki Hisanaga. Photocatalytic degradation of commercial azo dyes. Water Research 2000, 34 (1), 327–333.
    92. Daiane Iark, Ana Júlia dos Reis Buzzo, Jéssica Amanda Andrade Garcia, Vanesa Gesser Côrrea, Cristiane Vieira Helm, Rúbia Carvalho Gomes Corrêa, Rosely A. Peralta, Regina de Fátima Peralta Muniz Moreira, Adelar Bracht, Rosane Marina Peralta. Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresource Technology 2019, 289, 121655.
    93. Bao-E. Wang, Yong-You Hu, Lei Xie, Kang Peng. Biosorption behavior of azo dye by inactive CMC immobilized Aspergillus fumigatus beads. Bioresource Technology 2008, 99, 794–800.
    94. Gang Li, Yun Li, Zhengdong Wang, Huihong Liu. Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes. Materials Chemistry and Physics 2017, 187, 133–140.
    95. Xu Zhang, Mark R. Servos and Juewen Liu. Ultrahigh Nanoparticle Stability against Salt, pH, and Solvent with Retained Surface Accessibility via Depletion Stabilization. J. Am. Chem. Soc. 2012, 134 (24), 9910–9913.
    96. Arijit Mondal, Bibhutosh Adhikary, Debkumar Mukherjee. Room-temperature synthesis of air stable cobalt nanoparticles and their use as catalyst for methyl orange dye degradation. Colloids and Surfaces A: Physicochem. Eng. Aspects 2015, 482, 248–257.
    97. Samahe Sadjadi, pourya Mohammadi & Majid Heravi. Bio-assisted synthesized pd nanoparticles supported on ionic liquid decorated magnetic halloysite: an efficient catalyst for degradation of dyes. Scientific Reports 2020, 10, 6535.
    98. Ali K. Ilunga, Bhekie B. Mamba, Thabo T. I. Nkambule. Fabrication of palladium and platinum nanocatalysts stabilized by polyvinylpyrrolidone and their use in the hydrogenolysis of methyl orange. Reaction Kinetics, Mechanisms and Catalysis 2020, 129, 991–1005.
    99. Ying-Chu Wanga, You-Ren Laia, Josephine W. Wub, Steven S.-S. Wanga, Kuen-Song Lin. Using palladium nanoparticle-decorated lysozyme amyloid fibrils to catalyze the reduction of methylene blue. Journal of the Taiwan Institute of Chemical Engineers 2021, 118, 187–195.
    100. Tanujjal Bora, David Zoepfl, Joydeep Dutta. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods. Scientific Reports 2016, 6, 26913.
    101. Meng Li, Qiang Gao, Teng Wang, Yan-Sheng Gong, Bo Han, Kai-Sheng Xia, Cheng-Gang Zhou. Solvothermal synthesis of MnxFe3 − xO4 nanoparticles with interesting physicochemical characteristics and good catalytic degradation activity. Materials and Design 2016, 97, 341–348.
    102. Dinesh Dhamecha, Sunil Jalalpure, Kiran Jadhav. Nepenthes khasiana mediated synthesis of stabilized gold nanoparticles: characterization and biocompatibility studies. Journal of Photochemistry and Photobiology B: Biology 2016, 154, 108–117.
    103. Gamze Tan, Mehmet Ali Onur. Cellular localization and biological effects of 20nm-gold nanoparticles. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH A 2018, 106 (6), 1708–1721.
    104. Aline Satie Takamiya, Daniel Galera Bernabe, Emerson Rodrigues Camargo, Sandra Helena Penha Oliveira. In Vitro and In Vivo Toxicity Evaluation of Colloidal Silver Nanoparticles Used in Endodontic Treatments. Journal of Endodontics 2016, 42 (6), 953–960.
    105. Jiang-Jen Lin,Wen-Chun Lin, Rui-Xuan Dong and Shan-hui Hsu. The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers. Nanotechnology 2012, 23, 065102.
    106. Hashimoto M, Yamaguchi S, Sasaki J-I, Kawai K, Kawakami H, Iwasaki Y, Imazato S. Inhibition of matrix metalloproteinases and toxicity of gold and platinum nanoparticles in L929 fibroblast cells. Eur J Oral Sci 2016, 124, 68–74.
    107. Sathishkumar Gnanasekar, Jeyaraj Murugaraj, Divyabharathi Balakrishnan, Varunkumar Krishnamoorthy, Pradeep K Jha, Prabukumar Seetharaman, Ravikumar Vilwanathan, Sivaramakrishnan Sivaperumal. Antibacterial and cytotoxicity effects of biogenic palladium nanoparticles synthesized using fruit extract of Couroupita guianensis Aubl. Journal of Applied Biomedicine 2018, 16 (1), 59–65.
    108. Krishnamurthy Shanthi1, Vellingiri Sreevani1, Karuppaiya Vimala1, Soundarapandian Kannan. Cytotoxic Effect of Palladium Nanoparticles Synthesized From Syzygium aromaticum Aqueous Extracts and Induction of Apoptosis in Cervical Carcinoma. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 2017, 87, 1101–1112.

    無法下載圖示 全文公開日期 2024/09/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE