簡易檢索 / 詳目顯示

研究生: 鄭堯升
Yao-Sheng Cheng
論文名稱: 開發雙金屬鈷錳硫化物對電極與奈米碳管雙功能電極應用於量子點敏化太陽能電池與敏化光充電離子電容器
Developing Bimetallic CoMn Sulfide Counter Electrode and Carbon Nanotube based Bifunctional Electrode for Quantum-dot Sensitized Solar Cells and Sensitized Photorechargeable Ion Capacitors
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 蘇威年
Wei-Nien Su
張家耀
Jia-Yaw Chang
林律吟
Lu-Yin Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 124
中文關鍵詞: 奈米碳管鈷錳硫化物室內光光伏離子儲存層量子點敏化太陽能電池氧化還原沉積法敏化光充電離子電容器
外文關鍵詞: Carbon nanotube, Cobalt manganese sulfide, Indoor photovoltaic, Ion-storage layers, Quantun-dot sensitized solar cells, Redox-deposition, Senistized photorechargeable ion capacitors
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代的發展,石化能源的持續消耗以及環境汙染問題日益嚴重,導致能源危機的問題長期以來一直受到重視;因此,如何有效率地利用再生能源變成全世界討論的一個重要議題。在眾多再生能源中,穩定且龐大的太陽能是最受到矚目的永續替代能源,具備高轉換效率、低成本且無排放等優點的光伏電池成為所有的再生能源技術中最有潛力的一項技術。因此,本論文主軸將著重於開發高效能且高穩定性之電極材料應用於量子點敏化太陽能電池及敏化光充電儲能元件中來提升太陽能取代傳統石化能源的可行性。
    擁有高消光係數的量子點被廣泛應用於敏化太陽電池中的光敏化層且具有高達44%的理論光電轉換效率,因此吸引學者們將其視為極具潛力的研究領域。然而,開發高效率的量子點敏化太陽能電池須具備高電催化活性的對電極才能有效還原電解液中的氧化還原對並進一步提供量子點再生的功能。因此,本論文的第4章中將利用氧化還原沉積薄膜技術用於製備雙金屬鈷錳硫化物對電極應用於量子點敏化太陽能電池;首先,利用過錳酸鉀作為表面錨定氧化劑與溶液中的醋酸鈷產生表面氧化還原反應進而於導電玻璃表面上形成鈷錳氧化物,此沉積技術不受限於基材材質及其表面粗糙度,具備成本低、可低溫操作、易於大面積製作且元素均勻度高等優勢。錳與鈷能產生協同效應進而增加其雙金屬氧化物的導電性並產生額外缺陷來提供更多的活性位點,基於上述導入錳於氧化鈷的優勢,本研究將進一步透過硫化將鈷錳氧化物轉化為鈷錳硫化物來提升其電催化能力。經由最適化控制鈷錳前驅物的比例進而探討不同雙金屬比例下鈷錳硫化物於多硫氧化還原對的還原能力,其結果顯示最適化的鈷錳硫化物(5:1)對電極在100 mW/cm2光照強度下,其元件效能可達到5.88±0.19%。此外,經過長圈數循環伏安法測試(50圈),鈷錳硫化物電極所組成的元件之光電流保留率(90%)相較於傳統硫化銅電極(30%)展現出更好的穩定性。本章節研究提供一種簡易製程的雙金屬鈷錳硫化物薄膜對電極應用於實現高效能與高穩定性之量子點敏化太陽能電池。
    另一方面,為了克服太陽能電池具有間歇性供電的先天問題,許多研究團隊開始嘗試將太陽能電池與儲能元件兩種元件結合進而發展出全新型態的光驅動充電儲能系統。然而,元件串聯電阻所造成的能量損耗以及複雜的線路設計使得此種系統在實務應用上的限制與挑戰。有鑑於此,發展兼具光電轉化能力與儲能效果的雙功能光驅動充電儲能元件是極具有潛力的研究。因此本論文的第5章設計一種新穎兩極式結構之敏化光充電離子電容器,提出利用兼具電催化能力與儲能效果的奈米碳管雙功能電極來實現光驅動充電儲能元件能兼具染料敏化太陽能電池(創能)與離子電容器(儲能)的功能。在敏化光充電離子電容器中,光陽極由染料敏化層與三氧化鎢儲能層(負極)所組成,另一端電極則使用奈米碳管作為兼具電催化能力與儲存電荷(正極)的雙功能電極。具有高比表面積且良好導電性的奈米碳管備廣泛應用於染料敏化太陽能電池的對電極電催化層以及超級電容器的儲能層。本研究結果顯示最適化奈米碳管雙功能電極能使敏化光充電離子電容器之光伏效能達到2.38%且具有2.57 uAh/cm2的儲能效果。在5分鐘的光驅動充電中,使用奈米碳管雙功能電極的元件可提供穩定的光伏電壓(0.70 V),在閉光操作下仍可維持0.45 V的開路電壓,顯示奈米碳管比傳統白金更適合應用於敏化光充電離子電容器。在實際應用方面,本研究使用4顆元件串聯可提供高達1.80V左右的光電壓來驅動單一LED並可於室內弱光下提供穩定電壓輸出持續驅動LED燈。本章所提出的新式敏化光充電離子電容器可於戶外強光下直接作為太陽能電池將太陽能轉成電能應用於電子元件或儲存於元件的儲能層中;在室內弱光下則可利用儲能層驅動電子元件並透過染敏電池於弱光下的高轉換效率來持續維持充電。綜合上述敏化光充電離子電容器的優點,未來將可整合雙功能光驅動充電儲能元件於穿戴式電子元件中實現永續光驅動穿戴式元件的願景。


    The continous increase of energy demand and the fossil fuel dependence has caused severe environmental pollution problems. Thus, the effective and efficient use of renewable energy become so much important worldwide. Solar energy is the most attractive sustainable alternative energy nowadays. At such, photovoltaic cells with high efficiency, low cost, and zero emission have become the most potential technology among all renewable energy technologies. Therefore, this research will focus on developing high stability and efficiency electrode materials for quantum dot-sensitized solar cells (QDSSCs) and sensitized photorechargeable ion capacitors (SPICs) to improve the feasibility of replacing traditional fossil fuels with solar energy.
    Quantum dots with high extinction coefficient are frequently employed in the photosensitizing layer of QDSSCs, drawing researchers' interest as a prospective research subjects. However, developing high-efficiency QDSSCs requires counter electrodes (CEs) with high electrocatalytic activity to reduce the redox couple and further regenerating quantum-dot in the polysulfide electrolyte. Herein, Chapter 4 will describe the facile redox deposition fabricated the Cobalt Manganese sulfide (CMS) as CEs for QDSSCs. In brief, the potassium permanganate act as the surface anchoring oxidant that reacts with the cobalt acetate via surface redox reaction and then deposits the cobalt manganese oxyhydroxide (CMOH) on the substrate. Co and Mn can synergistically increase the conductivity of the CMOH and create defects to provide more active sites. Taking the advantages of abovementioned, the CMOH is then sulfurized to improve its electrocatalytic activity. By controlling the precursor ratio of Co and Mn, the CMS could be adjusted to manipulate the electrocatalytic activity for Sn2- reduction. As a result, the QDSSCs with an optimized CMS (5:1) CEs exhibit a high η of 5.88± 0.19% under 100 mW/cm2 irradiation. Furthermore, after 50th scanning cycles of cyclic voltammetry, the photocurrent retention rate of the QDSSCs composed of the CMS CE (90%) showed better than that of CuS CE (30%) in the stability test. This chapter revealed the simple redox deposition of CMS thin film, which possessed superior reduction activity to Sn2- at the CE/electrolyte interface.
    On the other hand, to overcome the inherent problem of intermittent power supply of solar cells, many researchers have tried to combine solar cells and energy storage devices to develop a new type of solar-driven charging storage system. However, the energy loss caused by the series resistance of the components and the complicated circuit design made a limitation and challenge in practical application. Because of this, the dual-function solar-driven charging storage device with photo-conversion capability and energy storage ability has been an attractive topic lately. In Chapter 5, a novel dual-electrode of SPICs is designed by introducing a bifunctional carbon nanotubes (CNTs) electrode with electrocatalytic and energy storage ability for realizing solar-driven charging storage device. In SPICs, the photoanode is composed of a dye-sensitized layer of N719/TiO2 and a energy storage layer of WO3. The other bifunctional electrode utilizes CNTs with electrocatalytic ability and ion storage capability. CNTs with high specific surface area and good electrical conductivity are widely used in the electrocatalytic layer of dye-sensitized solar cells and the energy storage layer of supercapacitors. As a result, the optimized bifunctional CNTs electrode can achieve a photovoltaic efficiency of 2.38% and an energy storage effect of 2.57 uAh/cm2 for SPICs. During 5 minutes of photocharging, the SPIC with bifunctional CNTs electrodes can provide a stable photovoltage (0.70 V) and maintain at 0.45 V under closed light, showing that CNTs are more suitable for use in SPICs, compare with traditional Pt. Furthermore, connected with four series SPICs provide a photovoltage of up to 1.80V to drive a single LED and continuously drive LED lights under indoor light by the stable voltage output. Combining the advantages of the SPICs, the vision of sustainable solar-driven devices can be realized by integrating dual-functional SPICs into wearable electronic devices in the future.

    中文摘要 I Abstract III Table of Contents V List of Tables VIII List of Figures IX Nomenclature XIII Chapter 1 Introduction 1 1.1 Overview of the development of Solar Cells 1 1.1.1 Preface 1 1.1.2 Dye-sensitized solar cells (DSSCs) 3 1.1.3 Quantum dot sensitized solar cells (QDSSCs) 6 1.2 Energy Storage Device 9 1.2.1 Lithium-ion battery 9 1.2.2 Supercapacitors 12 Chapter 2 Literature Review and Research Scope 16 2.1 Review of Counter electrode for DSSCs and QDSSCs 16 2.2 Review of Tungsten trioxide (WO3) for energy storage 20 2.3 Review of Carbon nanotube (CNTs) for energy storage 23 2.4 Photo-rechargeable system 24 2.4.1 Photo-rechargeable energy storage device 24 2.4.2 Photoelectrochromic Devices (PECDs) 26 2.5 Motivation and Research Scope 28 Chapter 3 Experimental Procedure 32 3.1 Experimental Chemicals and Instrument 32 3.3.1 Photovoltaic properties for QDSSCs. 33 3.1.2 Electrochemical Analysis for QDSSCs. 34 3.1.3 X-Ray Diffractometer (XRD) 38 3.1.4 Field Emission-Scanning Electron Microscopy (FE-SEM) 39 3.1.5 Energy-dispersive X-ray spectroscopy (EDX) 40 3.1.6 Transmission Electron Microscope (TEM) 41 3.1.7 X-ray photoelectron spectroscopy (XPS) 42 3.1.8 Raman Spectroscopy 44 3.1.9 Inductivity Coupled Plasma Optical Emission Spectrometry (ICP-OES) 45 3.1.10 Ultraviolet-visible (UV-Vis) spectroscopy 46 3.2 Experimental Materials 48 3.3 Experimental Procedure 49 3.3.1 Synthesis and fabrication of different CMS thin film (Chapter 4) 49 3.3.2 Preparation of Photoanodes for QDSSCs (Chapter 4) 50 3.3.3 Assembly of QDSSCs with polysulfide electrolyte (Chapter 4) 51 3.3.4 Preparation of tungsten trioxide (WO3) thin film (Chapter 5) 51 3.3.5 Preparation of Carbon nanotube (CNTs) thin film (chapter 5) 51 3.3.6 Preparation of Photoanodes for sensitized photorechargeable ion-capacitors (Chapter 5) 52 3.3.7 Assembly of sensitized photorechargeable ion-capacitors (Chapter 5) 52 Chapter 4 Bimetallic Cobalt Manganese Sulfide as Robust Counter electrode for Quantum Dot-sensitized Solar Cells 54 4.1 Motivation and Conceptual Design 54 4.2 Results and Discussion 56 4.2.1 Characterization of Cobalt Manganese Sulfide (CMS) thin film 56 4.2.2 Optimized the amount of cobalt and manganese of the CMS 59 4.2.3 Electrochemical and Photovoltaic performance of cobalt and manganese sulfide (CMS) 60 4.2.4 Robust stability performance for CMS CEs 66 4.2.5 Device stability of QDSSCs 68 4.3 Summary 69 Chapter 5 Developing Bifunctional Carbon Nanotube Material as Cathode for Sensitized Photorechargeable Ion-Capacitors 70 5.1 Motivation and Conceptual Design 70 5.2 Results and Discussion 72 5.2.1 Optimized the amount of WO3, CNTs, and Pt thin film in a three-electrode system 72 5.2.2 Investigated the effect of different amounts of CNTs in ion capacitors (ICs). 75 5.2.3 The performance of ion capacitors (ICs) compared with CNTs and Pt 78 5.2.4 Electrochemical and Photovoltaic performance of CNTs for DSSCs 80 5.2.5 Energy storage performance for sensitized photorechargeable ion-capacitors (SPICs) 84 5.2.6 Application for Sensitized photorechargeable ion capacitors (SPICs) 87 5.3 Summary 88 Chapter 6 Conclusion and Suggestion 89 6.1 Conclusion 89 6.2 Suggestions and Prospects 90 References 91 Appendix A Curriculum Vitae 103

    [1]. S.J. Babcock, N.P. Irvin, E.Y. Chen, C.B. Honsberg, R.R. King, Effects of high photon gas density and radiative efficiency on upper bounds of energy conversion efficiency in single-crystal solar cells, 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), 2019, pp. 3195-3199.
    [2]. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society, 2009, 131, 6050-6051.
    [3]. F. Dimroth, T.N.D. Tibbits, M. Niemeyer, F. Predan, P. Beutel, C. Karcher, E. Oliva, G. Siefer, D. Lackner, P. Fuß-Kailuweit, A.W. Bett, R. Krause, C. Drazek, E. Guiot, J. Wasselin, A. Tauzin, T. Signamarcheix, Four-Junction Wafer-Bonded Concentrator Solar Cells, IEEE Journal of Photovoltaics, 2016, 6, 343-349.
    [4]. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Counter electrodes in dye-sensitized solar cells, Chemical Society Reviews, 2017, 46, 5975-6023.
    [5]. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell, Nature, 1976, 261, 402-403.
    [6]. S.-W. Wang, C.-C. Chou, F.-C. Hu, K.-L. Wu, Y. Chi, J.N. Clifford, E. Palomares, S.-H. Liu, P.-T. Chou, T.-C. Wei, T.-Y. Hsiao, Panchromatic Ru(ii) sensitizers bearing single thiocyanate for high efficiency dye sensitized solar cells, Journal of Materials Chemistry A, 2014, 2, 17618-17627.
    [7]. Y.-S. Yen, H.-H. Chou, Y.-C. Chen, C.-Y. Hsu, J.T. Lin, Recent developments in molecule-based organic materials for dye-sensitized solar cells, Journal of Materials Chemistry, 2012, 22, 8734-8747.
    [8]. J.B. Baxter, Commercialization of dye sensitized solar cells: Present status and future research needs to improve efficiency, stability, and manufacturing, Journal of Vacuum Science & Technology A, 2012, 30, 020801.
    [9]. L.-Y. Lin, M.-H. Yeh, C.-P. Lee, C.-Y. Chou, K.-C. Ho, Flexible dye-sensitized solar cells with one-dimensional ZnO nanorods as electron collection centers in photoanodes, Electrochimica Acta, 2013, 88, 421-428.
    [10]. T.M. Brown, F. De Rossi, F. Di Giacomo, G. Mincuzzi, V. Zardetto, A. Reale, A. Di Carlo, Progress in flexible dye solar cell materials, processes and devices, Journal of Materials Chemistry A, 2014, 2, 10788-10817.
    [11]. H.-N. Kim, J.H. Moon, Enhanced Photovoltaic Properties of Nb2O5-Coated TiO2 3D Ordered Porous Electrodes in Dye-Sensitized Solar Cells, ACS Applied Materials & Interfaces, 2012, 4, 5821-5825.
    [12]. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes, Materials Today, 2015, 18, 155-162.
    [13]. J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials, Renewable and Sustainable Energy Reviews, 2012, 16, 5848-5860.
    [14]. A. Mishra, M.K.R. Fischer, P. Bäuerle, Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules, Angewandte Chemie International Edition, 2009, 48, 2474-2499.
    [15]. S. Ahmad, E. Guillén, L. Kavan, M. Grätzel, M.K. Nazeeruddin, Metal free sensitizer and catalyst for dye sensitized solar cells, Energy & Environmental Science, 2013, 6, 3439-3466.
    [16]. P. Semalti, S.N.J.J.o.n. Sharma, nanotechnology, Dye sensitized solar cells (DSSCs) electrolytes and natural photo-sensitizers: a review, Journal of nanoscience nanotechnology, 2020, 20, 3647-3658.
    [17]. H.A. Maddah, V. Berry, S.K. Behura, Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights, Renewable and Sustainable Energy Reviews, 2020, 121, 109678.
    [18]. J.E. Ikpesu, S.E. Iyuke, M. Daramola, A.O. Okewale, Synthesis of improved dye-sensitized solar cell for renewable energy power generation, Solar Energy, 2020, 206, 918-934.
    [19]. N.C.D. Nath, J.-J. Lee, Binary redox electrolytes used in dye-sensitized solar cells, Journal of Industrial and Engineering Chemistry, 2019, 78, 53-65.
    [20]. T. Bandara, H. Fernando, E. Rupasinghe, J. Ratnasekera, P. Chandrasena, M. Furlani, I. Albinsson, M. Dissanayake, B.J.C.J.o.S. Mellander, N719 and N3 dyes for quasi-solid state dye sensitized solar cells-A comparative study using polyacrylonitrile and CsI based electrolytes, Ceylon Journal of Science, 2016, 45,
    [21]. A. Yella, H.-W. Lee, N. Tsao Hoi, C. Yi, K. Chandiran Aravind, M.K. Nazeeruddin, W.-G. Diau Eric, C.-Y. Yeh, M. Zakeeruddin Shaik, M. Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, 2011, 334, 629-634.
    [22]. A. Yella, S. Mathew, S. Aghazada, P. Comte, M. Grätzel, M.K. Nazeeruddin, Dye-sensitized solar cells using cobalt electrolytes: the influence of porosity and pore size to achieve high-efficiency, Journal of Materials Chemistry C, 2017, 5, 2833-2843.
    [23]. L. Spanhel, H. Weller, A.J.J.o.t.A.C.S. Henglein, Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles, Journal of the American Chemical Society, 1987, 109, 6632-6635.
    [24]. A. Zaban, O.I. Mićić, B.A. Gregg, A.J. Nozik, Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots, Langmuir, 1998, 14, 3153-3156.
    [25]. P. Yu, K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank, A.J. Nozik, Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots, The Journal of Physical Chemistry B, 2006, 110, 25451-25454.
    [26]. L.J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells, Applied Physics Letters, 2007, 91, 023116.
    [27]. W.-T. Sun, Y. Yu, H.-Y. Pan, X.-F. Gao, Q. Chen, L.-M. Peng, CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes, Journal of the American Chemical Society, 2008, 130, 1124-1125.
    [28]. P.K. Santra, P.V. Kamat, Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%, Journal of the American Chemical Society, 2012, 134, 2508-2511.
    [29]. Z. Pan, I. Mora-Seró, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, J. Bisquert, High-Efficiency “Green” Quantum Dot Solar Cells, Journal of the American Chemical Society, 2014, 136, 9203-9210.
    [30]. Z. Du, Z. Pan, F. Fabregat-Santiago, K. Zhao, D. Long, H. Zhang, Y. Zhao, X. Zhong, J.-S. Yu, J. Bisquert, Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11%, The Journal of Physical Chemistry Letters, 2016, 7, 3103-3111.
    [31]. J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, L.-J. Wan, Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%, Journal of the American Chemical Society, 2016, 138, 4201-4209.
    [32]. W. Wang, W. Feng, J. Du, W. Xue, L. Zhang, L. Zhao, Y. Li, X. Zhong, Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12%, Advanced Materials, 2018, 30, 1705746.
    [33]. Y. Lin, H. Song, H. Rao, Z. Du, Z. Pan, X. Zhong, MOF-Derived Co,N Codoped Carbon/Ti Mesh Counter Electrode for High-Efficiency Quantum Dot Sensitized Solar Cells, The Journal of Physical Chemistry Letters, 2019, 10, 4974-4979.
    [34]. A.S. Rasal, S. Yadav, A.A. Kashale, A. Altaee, J.-Y. Chang, Stability of quantum dot-sensitized solar cells: A review and prospects, Nano Energy, 2022, 94, 106854.
    [35]. S. Rühle, M. Shalom, A. Zaban, Quantum-Dot-Sensitized Solar Cells, ChemPhysChem, 2010, 11, 2290-2304.
    [36]. J. Tang, E.H. Sargent, Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress, Advanced Materials, 2011, 23, 12-29.
    [37]. S. Emin, S.P. Singh, L. Han, N. Satoh, A. Islam, Colloidal quantum dot solar cells, Solar Energy, 2011, 85, 1264-1282.
    [38]. H. Tada, M. Fujishima, H. Kobayashi, Photodeposition of metal sulfide quantum dots on titanium(iv) dioxide and the applications to solar energy conversion, Chemical Society Reviews, 2011, 40, 4232-4243.
    [39]. I. Hod, A. Zaban, Materials and Interfaces in Quantum Dot Sensitized Solar Cells: Challenges, Advances and Prospects, Langmuir, 2014, 30, 7264-7273.
    [40]. M. Ye, X. Gao, X. Hong, Q. Liu, C. He, X. Liu, C. Lin, Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes, Sustainable Energy & Fuels, 2017, 1, 1217-1231.
    [41]. J. Tian, G. Cao, Semiconductor quantum dot-sensitized solar cells, Nano Reviews, 2013, 4, 22578.
    [42]. M. Kouhnavard, S. Ikeda, N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat-Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells, Renewable and Sustainable Energy Reviews, 2014, 37, 397-407.
    [43]. H. Zhang, K. Cheng, Y.M. Hou, Z. Fang, Z.X. Pan, W.J. Wu, J.L. Hua, X.H. Zhong, Efficient CdSe quantum dot-sensitized solar cells prepared by a postsynthesis assembly approach, Chemical Communications, 2012, 48, 11235-11237.
    [44]. L. Mu, C. Liu, J. Jia, X. Zhou, Y. Lin, Dual post-treatment: a strategy towards high efficiency quantum dot sensitized solar cells, Journal of Materials Chemistry A, 2013, 1, 8353-8357.
    [45]. J. Kim, J. Yang, J. Yu, W. Baek, C. Lee, H. Son, T. Hyeon, M.J.G.S.T.i.n.c.r.f.t.r. Ko, ACS Nano 2015, 9, 11286–11295 DOI: 10.1021/acsnano. 5b04917 [ACS Full Text ACS Full Text], ACS Nano, 2015, 9,
    [46]. B. Bai, D. Kou, W. Zhou, Z. Zhou, Q. Tian, Y. Meng, S. Wu, Quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells: Synthesis, passivation and ligand exchange, Journal of Power Sources, 2016, 318, 35-40.
    [47]. J. Yang, X. Zhong, CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media, Journal of Materials Chemistry A, 2016, 4, 16553-16561.
    [48]. K. Zhao, Z. Pan, I. Mora-Seró, E. Cánovas, H. Wang, Y. Song, X. Gong, J. Wang, M. Bonn, J. Bisquert, X. Zhong, Boosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells Beyond 8% by Recombination Control, Journal of the American Chemical Society, 2015, 137, 5602-5609.
    [49]. S. Jiao, J. Wang, Q. Shen, Y. Li, X. Zhong, Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%, Journal of Materials Chemistry A, 2016, 4, 7214-7221.
    [50]. V. Chakrapani, D. Baker, P.V. Kamat, Understanding the Role of the Sulfide Redox Couple (S2–/Sn2–) in Quantum Dot-Sensitized Solar Cells, Journal of the American Chemical Society, 2011, 133, 9607-9615.
    [51]. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials for Sustainable Energy, Co-Published with Macmillan Publishers Ltd, UK2010, pp. 171-179.
    [52]. M.S. Whittingham, Lithium Batteries and Cathode Materials, Chemical Reviews, 2004, 104, 4271-4302.
    [53]. F. Zhan, L.J. Jiang, B.R. Wu, Z.H. Xia, X.Y. Wei, G.R. Qin, Characteristics of Ni/MH power batteries and its application to electric vehicles, Journal of Alloys and Compounds, 1999, 293-295, 804-808.
    [54]. D. Coup, Toyota's approach to alternative technology vehicles: The power of diversification strategies, Corporate Environmental Strategy, 1999, 6, 258-269.
    [55]. W.J. Lee, U.N. Maiti, J.M. Lee, J. Lim, T.H. Han, S.O. Kim, Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications, Chemical Communications, 2014, 50, 6818-6830.
    [56]. D.W. Murphy, F.A. Trumbore, The Chemistry of TiS3 and NbSe3 Cathodes, Journal of The Electrochemical Society, 1976, 123, 960-964.
    [57]. M.S. Whittingham, Electrical Energy Storage and Intercalation Chemistry, Science, 1976, 192, 1126-1127.
    [58]. M.S. Islam, C.A.J. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties, Chemical Society Reviews, 2014, 43, 185-204.
    [59]. J. Cho, Y.J. Kim, B. Park, Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell, Chemistry of Materials, 2000, 12, 3788-3791.
    [60]. M. Yoncheva, V. Koleva, M. Mladenov, M. Sendova-Vassileva, M. Nikolaeva-Dimitrova, R. Stoyanova, E. Zhecheva, Carbon-coated nano-sized LiFe1−xMnxPO4 solid solutions (0 ≤ x ≤ 1) obtained from phosphate–formate precursors, Journal of Materials Science, 2011, 46, 7082-7089.
    [61]. A. Sobkowiak, M.R. Roberts, R. Younesi, T. Ericsson, L. Häggström, C.-W. Tai, A.M. Andersson, K. Edström, T. Gustafsson, F. Björefors, Understanding and Controlling the Surface Chemistry of LiFeSO4F for an Enhanced Cathode Functionality, Chemistry of Materials, 2013, 25, 3020-3029.
    [62]. J. Tu, X.B. Zhao, G.S. Cao, D.G. Zhuang, T.J. Zhu, J.P. Tu, Enhanced cycling stability of LiMn2O4 by surface modification with melting impregnation method, Electrochimica Acta, 2006, 51, 6456-6462.
    [63]. S.K. Martha, O. Haik, E. Zinigrad, I. Exnar, T. Drezen, J.H. Miners, D. Aurbach, On the Thermal Stability of Olivine Cathode Materials for Lithium-Ion Batteries, Journal of The Electrochemical Society, 2011, 158, A1115.
    [64]. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy & Environmental Science, 2014, 7, 513-537.
    [65]. N.A. Kaskhedikar, J. Maier, Lithium Storage in Carbon Nanostructures, Advanced Materials, 2009, 21, 2664-2680.
    [66]. G.-N. Zhu, Y.-G. Wang, Y.-Y. Xia, Ti-based compounds as anode materials for Li-ion batteries, Energy & Environmental Science, 2012, 5, 6652-6667.
    [67]. Z. Chen, I. Belharouak, Y.K. Sun, K. Amine, Titanium-Based Anode Materials for Safe Lithium-Ion Batteries, Advanced Functional Materials, 2013, 23, 959-969.
    [68]. J. Cabana, L. Monconduit, D. Larcher, M.R. Palacín, Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions, Advanced Materials, 2010, 22, E170-E192.
    [69]. P. Sahoo, S. Ishihara, K. Yamada, K. Deguchi, S. Ohki, M. Tansho, T. Shimizu, N. Eisaku, R. Sasai, J. Labuta, D. Ishikawa, J.P. Hill, K. Ariga, B.P. Bastakoti, Y. Yamauchi, N. Iyi, Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide, ACS Applied Materials & Interfaces, 2014, 6, 18352-18359.
    [70]. K. Teshima, H. Inagaki, S. Tanaka, K. Yubuta, M. Hozumi, K. Kohama, T. Shishido, S. Oishi, Growth of Well-Developed Li4Ti5O12 Crystals by the Cooling of a Sodium Chloride Flux, Crystal Growth & Design, 2011, 11, 4401-4405.
    [71]. M.K.Y. Chan, C. Wolverton, J.P. Greeley, First Principles Simulations of the Electrochemical Lithiation and Delithiation of Faceted Crystalline Silicon, Journal of the American Chemical Society, 2012, 134, 14362-14374.
    [72]. J.R. Miller, P. Simon, The Chalkboard: Fundamentals of Electrochemical Capacitor Design and Operation, The Electrochemical Society Interface, 2008, 17, 31-32.
    [73]. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, Journal of Power Sources, 2006, 157, 11-27.
    [74]. F.A. Permatasari, M.A. Irham, S.Z. Bisri, F. Iskandar, Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges, Nanomaterials, 2021, 11,
    [75]. H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche (Schluss.), Annalen der Physik, 1853, 165, 353-377.
    [76]. H.I. Becker, Low voltage electrolytic capacitor, Google Patents, 1957.
    [77]. H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L.L. Zhang, A.H. MacDonald, R.S. Ruoff, Capacitance of carbon-based electrical double-layer capacitors, Nature Communications, 2014, 5, 3317.
    [78]. G.L. Bullard, H.B. Sierra-Alcazar, H.L. Lee, J.L. Morris, Operating principles of the ultracapacitor, IEEE Transactions on Magnetics, 1989, 25, 102-106.
    [79]. Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and Mechanisms of Asymmetric Supercapacitors, Chemical Reviews, 2018, 118, 9233-9280.
    [80]. J. Sung, C. Shin, Recent Studies on Supercapacitors with Next-Generation Structures, Micromachines, 2020, 11,
    [81]. C. Lin, J.A. Ritter, B.N. Popov, Correlation of Double‐Layer Capacitance with the Pore Structure of Sol‐Gel Derived Carbon Xerogels, Journal of The Electrochemical Society, 1999, 146, 3639-3643.
    [82]. S. Shiraishi, H. Kurihara, L. Shi, T. Nakayama, A. Oya, Electric Double-Layer Capacitance of Meso/Macroporous Activated Carbon Fibers Prepared by the Blending Method, Journal of The Electrochemical Society, 2002, 149, A855.
    [83]. C.-M. Yang, Y.-J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, Nanowindow-Regulated Specific Capacitance of Supercapacitor Electrodes of Single-Wall Carbon Nanohorns, Journal of the American Chemical Society, 2007, 129, 20-21.
    [84]. G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy, 2013, 2, 213-234.
    [85]. Y. Qian, R. Liu, Q. Wang, J. Xu, D. Chen, G. Shen, Efficient synthesis of hierarchical NiO nanosheets for high-performance flexible all-solid-state supercapacitors, Journal of Materials Chemistry A, 2014, 2, 10917-10922.
    [86]. G. Zhang, X.W. Lou, General Solution Growth of Mesoporous NiCo2O4 Nanosheets on Various Conductive Substrates as High-Performance Electrodes for Supercapacitors, Advanced Materials, 2013, 25, 976-979.
    [87]. H. Heydari, S.E. Moosavifard, S. Elyasi, M. Shahraki, Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors, Applied Surface Science, 2017, 394, 425-430.
    [88]. H.E. Katz, P.C. Searson, T.O. Poehler, Batteries and charge storage devices based on electronically conducting polymers, Journal of Materials Research, 2010, 25, 1561-1574.
    [89]. S. Kulandaivalu, Y. Sulaiman, Recent Advances in Layer-by-Layer Assembled Conducting Polymer Based Composites for Supercapacitors, Energies, 2019, 12,
    [90]. L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes, Journal of Materials Chemistry, 2010, 20, 5983-5992.
    [91]. N.A. Karim, U. Mehmood, H.F. Zahid, T. Asif, Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs), Solar Energy, 2019, 185, 165-188.
    [92]. H. Wang, J. Gao, J. Zhu, J.-Y. Ma, H. Zhou, J. Xiao, M. Wu, Design bifunctional nitrogen doped flexible carbon sphere electrode for dye-sensitized solar cell and supercapacitor, Electrochimica Acta, 2020, 334, 135582.
    [93]. M.-H. Yeh, Y.-A. Leu, W.-H. Chiang, Y.-S. Li, G.-L. Chen, T.-J. Li, L.-Y. Chang, L.-Y. Lin, J.-J. Lin, K.-C. Ho, Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: Heteroatom doping level effect on tri-iodide reduction reaction, Journal of Power Sources, 2018, 375, 29-36.
    [94]. Y.-C. Chang, C.-A. Tseng, C.-P. Lee, S.-B. Ann, Y.-J. Huang, K.-C. Ho, Y.-T. Chen, N- and S-codoped graphene hollow nanoballs as an efficient Pt-free electrocatalyst for dye-sensitized solar cells, Journal of Power Sources, 2020, 449, 227470.
    [95]. C.-S. Wu, T.-W. Chang, H. Teng, Y.-L. Lee, High performance carbon black counter electrodes for dye-sensitized solar cells, Energy, 2016, 115, 513-518.
    [96]. C. Yu, Z. Liu, X. Meng, B. Lu, D. Cui, J. Qiu, Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction, Nanoscale, 2016, 8, 17458-17464.
    [97]. S.-H. Park, B.-K. Kim, W.-J. Lee, Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells, Journal of Power Sources, 2013, 239, 122-127.
    [98]. W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, Efficient Dye-Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes, ACS Applied Materials & Interfaces, 2009, 1, 1145-1149.
    [99]. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry, 2014, 6, 242-247.
    [100]. S.-M. Jung, I.T. Choi, K. Lim, J. Ko, J.C. Kim, J.-J. Lee, M.J. Ju, H.K. Kim, J.-B. Baek, B-Doped Graphene as an Electrochemically Superior Metal-Free Cathode Material As Compared to Pt over a Co(II)/Co(III) Electrolyte for Dye-Sensitized Solar Cell, Chemistry of Materials, 2014, 26, 3586-3591.
    [101]. G. Yue, J. Wu, Y. Xiao, J. Lin, M. Huang, Z. Lan, Application of Poly(3,4-ethylenedioxythiophene):Polystyrenesulfonate/Polypyrrole Counter Electrode for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, 2012, 116, 18057-18063.
    [102]. H. Shi, Y. Xie, P. Wei, H. Chen, Y. Qiang, Application of Co-Mo bimetal/carbon composite in dye-sensitized solar cells and its research on synergy mechanism, Journal of Solid State Electrochemistry, 2020, 24, 753-759.
    [103]. C.-W. Kung, H.-W. Chen, C.-Y. Lin, K.-C. Huang, R. Vittal, K.-C. Ho, CoS Acicular Nanorod Arrays for the Counter Electrode of an Efficient Dye-Sensitized Solar Cell, ACS Nano, 2012, 6, 7016-7025.
    [104]. X. Cui, Z. Xie, Y. Wang, Novel CoS2 embedded carbon nanocages by direct sulfurizing metal–organic frameworks for dye-sensitized solar cells, Nanoscale, 2016, 8, 11984-11992.
    [105]. H. Sun, L. Zhang, Z.-S. Wang, Single-crystal CoSe2 nanorods as an efficient electrocatalyst for dye-sensitized solar cells, Journal of Materials Chemistry A, 2014, 2, 16023-16029.
    [106]. C.V. Thulasi-Varma, S.S. Rao, K.D. Ikkurthi, S.-K. Kim, T.-S. Kang, H.-J. Kim, Enhanced photovoltaic performance and morphological control of the PbS counter electrode grown on functionalized self-assembled nanocrystals for quantum-dot sensitized solar cells via cost-effective chemical bath deposition, Journal of Materials Chemistry C, 2015, 3, 10195-10206.
    [107]. C.V. Thulasi-Varma, C.V.V.M. Gopi, S.S. Rao, D. Punnoose, S.-K. Kim, H.-J. Kim, Time Varied Morphology Controllable Fabrication of NiS Nanosheets Structured Thin Film and its Application as a Counter Electrode for QDSSC, The Journal of Physical Chemistry C, 2015, 119, 11419-11429.
    [108]. J. Xu, X. Yang, T.-L. Wong, C.-S. Lee, Large-scale synthesis of Cu2SnS3 and Cu1.8S hierarchical microspheres as efficient counter electrode materials for quantum dot sensitized solar cells, Nanoscale, 2012, 4, 6537-6542.
    [109]. X. Zhang, X. Huang, Y. Yang, S. Wang, Y. Gong, Y. Luo, D. Li, Q. Meng, Investigation on New CuInS2/Carbon Composite Counter Electrodes for CdS/CdSe Cosensitized Solar Cells, ACS Applied Materials & Interfaces, 2013, 5, 5954-5960.
    [110]. C.V.V. Muralee Gopi, S. Ravi, S.S. Rao, A. Eswar Reddy, H.-J. Kim, Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors, Scientific Reports, 2017, 7, 46519.
    [111]. D.J. Ham, J.S. Lee, Transition Metal Carbides and Nitrides as Electrode Materials for Low Temperature Fuel Cells, Energies, 2009, 2,
    [112]. J. Xiao, X. Zeng, W. Chen, F. Xiao, S. Wang, High electrocatalytic activity of self-standing hollow NiCo2S4 single crystalline nanorod arrays towards sulfide redox shuttles in quantum dot-sensitized solar cells, Chemical Communications, 2013, 49, 11734-11736.
    [113]. H.-J. Kim, S.-W. Kim, C.V.V.M. Gopi, S.-K. Kim, S.S. Rao, M.-S. Jeong, Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode, Journal of Power Sources, 2014, 268, 163-170.
    [114]. C.V.V.M. Gopi, M. Venkata-Haritha, S. Ravi, C.V. Thulasi-Varma, S.-K. Kim, H.-J. Kim, Solution processed low-cost and highly electrocatalytic composite NiS/PbS nanostructures as a novel counter-electrode material for high-performance quantum dot-sensitized solar cells with improved stability, Journal of Materials Chemistry C, 2015, 3, 12514-12528.
    [115]. K. Saranya, M. Rameez, A. Subramania, Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview, European Polymer Journal, 2015, 66, 207-227.
    [116]. H. Gu, H. Zhang, C. Gao, C. Liang, J. Gu, Z. Guo, New Functions of Polyaniline, ES Materials & Manufacturing, 2018, 1, 3-12.
    [117]. C. Bu, Q. Tai, Y. Liu, S. Guo, X. Zhao, A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell, Journal of Power Sources, 2013, 221, 78-83.
    [118]. T.H. Lee, K. Do, Y.W. Lee, S.S. Jeon, C. Kim, J. Ko, S.S. Im, High-performance dye-sensitized solar cells based on PEDOT nanofibers as an efficient catalytic counter electrode, Journal of Materials Chemistry, 2012, 22, 21624-21629.
    [119]. P.A. Shinde, S.C. Jun, Review on Recent Progress in the Development of Tungsten Oxide Based Electrodes for Electrochemical Energy Storage, ChemSusChem, 2020, 13, 11-38.
    [120]. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews, 2012, 41, 797-828.
    [121]. D.J. Ham, A. Phuruangrat, S. Thongtem, J.S. Lee, Hydrothermal synthesis of monoclinic WO3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water, Chemical Engineering Journal, 2010, 165, 365-369.
    [122]. S.S. Kalanur, Y.J. Hwang, S.Y. Chae, O.S. Joo, Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity, Journal of Materials Chemistry A, 2013, 1, 3479-3488.
    [123]. J. Zhu, S. Wang, S. Xie, H. Li, Hexagonal single crystal growth of WO3 nanorods along a [110] axis with enhanced adsorption capacity, Chemical Communications, 2011, 47, 4403-4405.
    [124]. Q. Li, N. Li, M. Ishida, H. Zhou, Saving electric energy by integrating a photoelectrode into a Li-ion battery, Journal of Materials Chemistry A, 2015, 3, 20903-20907.
    [125]. Y.P. Xie, G. Liu, L. Yin, H.-M. Cheng, Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion, Journal of Materials Chemistry, 2012, 22, 6746-6751.
    [126]. Y. Cai, Y. Wang, S. Deng, G. Chen, Q. Li, B. Han, R. Han, Y. Wang, Graphene nanosheets-tungsten oxides composite for supercapacitor electrode, Ceramics International, 2014, 40, 4109-4116.
    [127]. L. Ma, X. Zhou, L. Xu, X. Xu, L. Zhang, C. Ye, J. Luo, W. Chen, Hydrothermal preparation and supercapacitive performance of flower-like WO3·H2O/reduced graphene oxide composite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 609-615.
    [128]. A.K. Nayak, A.K. Das, D. Pradhan, High Performance Solid-State Asymmetric Supercapacitor using Green Synthesized Graphene–WO3 Nanowires Nanocomposite, ACS Sustainable Chemistry & Engineering, 2017, 5, 10128-10138.
    [129]. C. Wang, Y. Zhao, L. Zhou, Y. Liu, W. Zhang, Z. Zhao, W.N. Hozzein, H.M.S. Alharbi, W. Li, D. Zhao, Mesoporous carbon matrix confinement synthesis of ultrasmall WO3 nanocrystals for lithium ion batteries, Journal of Materials Chemistry A, 2018, 6, 21550-21557.
    [130]. Z.-S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu, H.-M. Cheng, High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors, ACS Nano, 2010, 4, 5835-5842.
    [131]. G. Zhu, J. Chen, Z. Zhang, Q. Kang, X. Feng, Y. Li, Z. Huang, L. Wang, Y. Ma, NiO nanowall-assisted growth of thick carbon nanofiber layers on metal wires for fiber supercapacitors, Chemical Communications, 2016, 52, 2721-2724.
    [132]. K. Lee, J. Park, M.-S. Lee, J. Kim, B.G. Hyun, D.J. Kang, K. Na, C.Y. Lee, F. Bien, J.-U. Park, In-situ Synthesis of Carbon Nanotube–Graphite Electronic Devices and Their Integrations onto Surfaces of Live Plants and Insects, Nano Letters, 2014, 14, 2647-2654.
    [133]. Y. Zhang, T. Mao, H. Wu, L. Cheng, L. Zheng, Carbon Nanotubes Grown on Flax Fabric as Hierarchical All-Carbon Flexible Electrodes for Supercapacitors, Advanced Materials Interfaces, 2017, 4, 1601123.
    [134]. L. Xie, G. Sun, F. Su, X. Guo, Q. Kong, X. Li, X. Huang, L. Wan, W. song, K. Li, C. Lv, C.-M. Chen, Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications, Journal of Materials Chemistry A, 2016, 4, 1637-1646.
    [135]. Q. Li, Y. Liu, S. Guo, H. Zhou, Solar energy storage in the rechargeable batteries, Nano Today, 2017, 16, 46-60.
    [136]. J. Xu, Y. Chen, L. Dai, Efficiently photo-charging lithium-ion battery by perovskite solar cell, Nature Communications, 2015, 6, 8103.
    [137]. A. Paolella, C. Faure, G. Bertoni, S. Marras, A. Guerfi, A. Darwiche, P. Hovington, B. Commarieu, Z. Wang, M. Prato, M. Colombo, S. Monaco, W. Zhu, Z. Feng, A. Vijh, C. George, G.P. Demopoulos, M. Armand, K. Zaghib, Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries, Nature Communications, 2017, 8, 14643.
    [138]. A. Kumar, P. Thakur, R. Sharma, A.B. Puthirath, P.M. Ajayan, T.N. Narayanan, Photo Rechargeable Li-Ion Batteries Using Nanorod Heterostructure Electrodes, Small, 2021, 17, 2105029.
    [139]. R. Thimmappa, B. Paswan, P. Gaikwad, M.C. Devendrachari, H. Makri Nimbegondi Kotresh, R. Rani Mohan, J. Pattayil Alias, M.O. Thotiyl, Chemically Chargeable Photo Battery, The Journal of Physical Chemistry C, 2015, 119, 14010-14016.
    [140]. A. Cannavale, P. Cossari, G.E. Eperon, S. Colella, F. Fiorito, G. Gigli, H.J. Snaith, A. Listorti, Forthcoming perspectives of photoelectrochromic devices: a critical review, Energy & Environmental Science, 2016, 9, 2682-2719.
    [141]. T. Inoue, A. Fujishima, K. Honda, Photoelectrochromic Characteristics of Photoelectrochemical Imaging System with a Semiconductor/Solution (Metallic Ion) Junction, Journal of The Electrochemical Society, 1980, 127, 1582-1588.
    [142]. F. Carlucci, A review of smart and responsive building technologies and their classifications, Future Cities Environment, 2021, 7,
    [143]. A. Cannavale, F. Martellotta, F. Fiorito, U. Ayr, The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices, Energies, 2020, 13,
    [144]. C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B.A. Gregg, Photoelectrochromic windows and displays, Nature, 1996, 383, 608-610.
    [145]. C.-Y. Cheng, Y.-J. Chiang, H.-F. Yu, L.-Y. Hsiao, C.-L. Yeh, L.-Y. Chang, K.-C. Ho, M.-H. Yeh, Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows, Nano Energy, 2021, 90, 106575.
    [146]. S. Wang, J. Tian, Recent advances in counter electrodes of quantum dot-sensitized solar cells, RSC Advances, 2016, 6, 90082-90099.
    [147]. J. Colomer i Farrarons, P.L. Miribel-Català, I. Rodríguez-Villarreal, J.J.C.i.S. Samitier i Martí, Pier Andrea. . New Perspectives in Biosensors Technology, A.I.I.-.-.-.-D.p. 373-400., Portable bio-devices: design of electrochemical instruments from miniaturized to implantable devices, New Perspectives in Biosensors Technology, 2011,
    [148]. A. Lasia, Modeling of experimental data, Electrochemical Impedance Spectroscopy and its Applications, Springer2014, pp. 301-321.
    [149]. Y. Jiang, X. Qian, Y. Niu, L. Shao, C. Zhu, L. Hou, Cobalt iron selenide/sulfide porous nanocubes as high-performance electrocatalysts for efficient dye-sensitized solar cells, Journal of Power Sources, 2017, 369, 35-41.
    [150]. A.A. Bunaciu, E.g. Udriştioiu, H.Y. Aboul-Enein, X-Ray Diffraction: Instrumentation and Applications, Critical Reviews in Analytical Chemistry, 2015, 45, 289-299.
    [151]. K. Akhtar, S.A. Khan, S.B. Khan, A.M. Asiri, Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization, in: S.K. Sharma (Ed.) Handbook of Materials Characterization, Springer International Publishing, Cham, 2018, pp. 113-145.
    [152]. Y. Jusman, S.C. Ng, N.A. Abu Osman, Investigation of CPD and HMDS Sample Preparation Techniques for Cervical Cells in Developing Computer-Aided Screening System Based on FE-SEM/EDX, The Scientific World Journal, 2014, 2014, 289817.
    [153]. M. Ezzahmouly, A. Elmoutaouakkil, M. Ed-Dhahraouy, H. Khallok, A. Elouahli, A. Mazurier, A. ElAlbani, Z. Hatim, Micro-computed tomographic and SEM study of porous bioceramics using an adaptive method based on the mathematical morphological operations, Heliyon, 2019, 5, e02557.
    [154]. M. Mingjiang, H. Hongyu, L. Qiushi, L. Chong, Z. Baozhen, G. Zhixing, Z. Xiaohua, Study of Raman spectroscopy detection for the mixture under opaque PTFE, Proc.SPIE, 2021.
    [155]. S. Cherevko, K. Mayrhofer, On-line inductively coupled plasma spectrometry in electrochemistry: Basic principles and applications, 2018,
    [156]. A.C. Quevedo, E. Guggenheim, S.M. Briffa, J. Adams, S. Lofts, M. Kwak, T.G. Lee, C. Johnston, S. Wagner, T.R. Holbrook, UV-Vis spectroscopic characterization of nanomaterials in aqueous media, Journal of Visualized Experiments, 2021,
    [157]. W. Li, L. He, J. Zhang, B. Li, Q. Chen, Q. Zhong, Anchoring spinel MnCo2S4 on carbon nanotubes as efficient counter electrodes for Quantum Dot Sensitized solar cells, The Journal of Physical Chemistry C, 2019, 123, 21866-21873.
    [158]. C. Deng, L. Yang, C. Yang, P. Shen, L. Zhao, Z. Wang, C. Wang, J. Li, D. Qian, Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors, Applied Surface Science, 2018, 428, 148-153.
    [159]. J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong, C.-S. Lee, Cu2ZnSnS4 hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells, The Journal of Physical Chemistry C, 2012, 116, 19718-19723.
    [160]. C. Lamiel, J.-J. Shim, 3D hierarchical mesoporous NiCo2S4@Ni(OH)2 core–shell nanosheet arrays for high performance supercapacitors, New Journal of Chemistry, 2016, 40, 4810-4817.
    [161]. Z. Kang, Y. Li, Y. Yu, Q. Liao, Z. Zhang, H. Guo, S. Zhang, J. Wu, H. Si, X. Zhang, Facile synthesis of NiCo2S4 nanowire arrays on 3D graphene foam for high-performance electrochemical capacitors application, Journal of Materials Science, 2018, 53, 10292-10301.
    [162]. Z. Sadighi, J. Liu, F. Ciucci, J.-K. Kim, Mesoporous MnCo2S4 nanosheet arrays as an efficient catalyst for Li–O2 batteries, Nanoscale, 2018, 10, 15588-15599.
    [163]. X. Wu, S. Li, B. Wang, J. Liu, M. Yu, NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries, Physical Chemistry Chemical Physics, 2016, 18, 4505-4512.
    [164]. Z. Chi, J. Shen, H. Zhang, L. Chen, NiCo2S4 nanosheets in situ grown on carbon fibers as an efficient counter electrode for fiber-shaped dye-sensitized solar cells, Journal of Materials Science: Materials in Electronics, 2017, 28, 10640-10644.
    [165]. W. Hou, Y. Xiao, G. Han, An Interconnected Ternary MIn2S4 (M= Fe, Co, Ni) Thiospinel Nanosheet Array: A Type of Efficient Platinum‐Free Counter Electrode for Dye‐Sensitized Solar Cells, Angewandte Chemie, 2017, 129, 9274-9278.
    [166]. B. Hou, J. Fu, H. Su, X. Du, Preparation of 3D nanostructured MnCo2S4 as a robust electrocatalyst for overall water splitting, ChemistrySelect, 2019, 4, 4499-4505.
    [167]. X. Wu, S. Li, B. Wang, J. Liu, M. Yu, In situ template synthesis of hollow nanospheres assembled from NiCo2S4@ C ultrathin nanosheets with high electrochemical activities for lithium storage and ORR catalysis, Physical Chemistry Chemical Physics, 2017, 19, 11554-11562.
    [168]. Q. Luo, Y. Gu, J. Li, N. Wang, H. Lin, Efficient ternary cobalt spinel counter electrodes for quantum-dot sensitized solar cells, Journal of Power Sources, 2016, 312, 93-100.
    [169]. L. Givalou, M. Antoniadou, D. Perganti, M. Giannouri, C.-S. Karagianni, A.G. Kontos, P. Falaras, Electrodeposited cobalt-copper sulfide counter electrodes for highly efficient quantum dot sensitized solar cells, Electrochimica Acta, 2016, 210, 630-638.
    [170]. E. Vijayakumar, S.-H. Kang, K.-S. Ahn, Facile electrochemical synthesis of manganese cobalt sulfide counter electrode for quantum dot-sensitized solar cells, Journal of The Electrochemical Society, 2018, 165, F375.
    [171]. R.-H. Jhang, C.-Y. Yang, M.-C. Shih, J.-Q. Ho, Y.-T. Tsai, C.-H. Chen, Redox-assisted multicomponent deposition of ultrathin amorphous metal oxides on arbitrary substrates: highly durable cobalt manganese oxyhydroxide for efficient oxygen evolution, Journal of Materials Chemistry A, 2018, 6, 17915-17928.
    [172]. S.J.E.o.A.C.A. Oswald, Theory, Instrumentation, X‐ray photoelectron spectroscopy in analysis of surfaces, Encyclopedia of Analytical Chemistry: Applications, Theory Instrumentation, 2006,
    [173]. M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, S. Li, Nanohoneycomb-like manganese cobalt sulfide/three dimensional graphene-nickel foam hybid electrodes for high-rate capability supercapacitors, Applied Surface Science, 2017, 396, 1816-1824.
    [174]. J. Cao, Y. Hu, Y. Zhu, H. Cao, M. Fan, C. Huang, K. Shu, M. He, H.C. Chen, Synthesis of mesoporous nickel-cobalt-manganese sulfides as electroactive materials for hybrid supercapacitors, Chemical Engineering Journal, 2021, 405, 126928.
    [175]. S. Liu, S.C. Jun, Hierarchical manganese cobalt sulfide core–shell nanostructures for high-performance asymmetric supercapacitors, Journal of Power Sources, 2017, 342, 629-637.
    [176]. T. Huang, Z. Lou, Y. Lu, R. Li, Y. Jiang, G. Shen, D. Chen, Metal‐Organic‐Framework‐Derived MCo2O4 (M= Mn and Zn) Nanosheet Arrays on Carbon Cloth as Integrated Anodes for Energy Storage Applications, ChemElectroChem, 2019, 6, 5836-5843.
    [177]. J.Y. Ahn, J.H. Kim, J.M. Kim, D. Lee, S.H. Kim, Multiwalled carbon nanotube thin films prepared by aerosol deposition process for use as highly efficient Pt-free counter electrodes of dye-sensitized solar cells, Solar energy, 2014, 107, 660-667.
    [178]. M. Wu, X. Lin, A. Hagfeldt, T. Ma, Low‐cost molybdenum carbide and tungsten carbide counter electrodes for dye‐sensitized solar cells, Angewandte Chemie, 2011, 123, 3582-3586.
    [179]. A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochimica acta, 2001, 46, 3457-3466.
    [180]. Z. Yang, C.Y. Chen, C.W. Liu, C.L. Li, H.T. Chang, Quantum dot–sensitized solar cells featuring CuS/CoS electrodes provide 4.1% efficiency, Advanced Energy Materials, 2011, 1, 259-264.
    [181]. W. Li, S. Zhang, Q. Chen, Q. Zhong, Tailorable boron-doped carbon nanotubes as high-efficiency counter electrodes for quantum dot sensitized solar cells, Catalysis Science Technology 2021, 11, 2745-2752.
    [182]. A.S. Rasal, T.-W. Chang, C. Korupalli, J.-Y. Chang, Composition engineered ternary copper chalcogenide alloyed counter electrodes for high-performance and stable quantum dot-sensitized solar cells, Composites Part B: Engineering, 2022, 232, 109610.

    無法下載圖示 全文公開日期 2027/09/29 (校內網路)
    全文公開日期 2027/09/29 (校外網路)
    全文公開日期 2027/09/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE